
“C” you on the faster side: Accelerating SV DPI based co-simulation

Parag Goel,

Synopsys, India

91.80.40188000

paragg@synopsys.com

Amit Sharma,

Synopsys, India

+91.80.40188000

amits@synopsys.com

Hari Vinodh Balisetty

Broadcom,

+1.408.821.0362

harivino@broadcom.com

Abstract: The SystemVerilog Direct Programming

Interface (DPI) based infrastructure is now increasingly

used in software simulations to mimic real time HW SW

interaction in SoC’s. It is also used to integrate C/C++

based architectural models and also to create C/C++

based tests which can later be reused in post silicon

validation as well as in simulation acceleration using

emulation based platforms. C/C++ based testbenches are

now frequently used for transactor based emulation and

SOC validation. The requirements for complex

protocols such as PCIe require the C/C++ components

to be able to handle concurrency. However, for

verification engineer conversant primarily with HDLs

and HVLs such as SystemVerilog, non-optimal usage of

the SV DPI based infrastructure can lead to major

inefficiencies. This paper will focus on the techniques

that would enable us to ensure that the communication

overhead is minimal between the software and hardware

components. It will also talk about how to leverage

multi-threading for C/C++ based threads to meet the

requirements of controlling hardware components.

Additionally, it will lay down guidelines for efficient

usage of C/C++ in the context of verification

requirements.

Categories and Subject Descriptors
Co-simulation, Simulation Acceleration, Transaction

Level Modeling

General Terms-Verification, Methodology, Verification IP

Keywords—SystemVerilog, Direct Programming

Interface

I. Introduction

With an increase in software content in today’s SOC, it

becomes imperative to model hardware software

interaction in simulations. Additionally, C/C++ models

are typically used as golden reference models during

simulation. C/C++ testbenches which can be reused in

emulation and post silicon validation has also become

common use case for reusability. The SystemVerilog

Direct Programming Interface (DPI) was developed to

standardize the interface between SystemVerilog and a

foreign programming language that can be in C or C++.

The SV DPI allows SystemVerilog to call a C function

or task just like any other native SystemVerilog

function/task Variables passed directly to/from C/C++.

This greatly simplifies the usage of C/C++ components

in a HVL testbench. This paper will focus on the

techniques that would enable us to ensure that the

communication overhead is minimal between the

software and hardware components when using

SystemVerilog DPI. From the perspective of

software/testbench code running on the host, the paper

will put forward recommendations for ensuring schemes

are adopted which ensures that such execution will not

negatively impact the overall performance of an

emulated setup.

II. SystemVerilog DPI: Key Aspects

The SV DPI provides an interface between

SystemVerilog and a foreign programming language.

This direct interface can significantly reduce the

complexity of interfacing testbenches to C/C++ models.

It thus provides a more practical mechanism for

connecting C/C++ code to SV without knowledge and

overhead of VPI/PLI.

For DPI based communication, there are two major

classifications that exist based on the direction of

communication or rather where the definition of the

task/function lies (SystemVerilog or C/C++).

mailto:paragg@synopsys.com
mailto:amits@synopsys.com
mailto:harivino@broadcom.com

‘Import’ Tasks/Functions
These are the methods whose definitions exist in C/C++.

These methods are invoked from the SystemVerilog

code. Imported tasks and functions can have zero or

more formal input, output and inout arguments.

However, arguments cannot be passed by reference.

Imported functions can return a result or be defined as

void function. The following is an example snippet of an

‘import’ function.

Again the ‘imported’ function itself can be declared as

“context” or “pure” and imported task can be declared

as “context”. A function can be specified as pure when

its result depends solely on the values of its input

arguments. A pure function is assumed not to directly or

indirectly (i.e., by calling other functions) perform the

following:

a. Perform any read or write operations from or to

files

b. Access environment variables, objects from the

operating system or other processes, shared

memory, sockets, etc.

c. Access any persistent data, like global or static

variables

By default import tasks and functions are non-context.

They shall not access any data objects from

SystemVerilog other than its actual arguments and thus

they do not hinder simulator optimizations. However,

there might be a need for an ‘import’ function to access

or modify simulator data structures via the Programming

Language Interface (PLI) or Verilog Procedural

Interface (VPI) calls or making a call back into

SystemVerilog through an ‘export’ method. Such tasks

and functions would then be ‘context’ tasks/functions.

The effects of calling PLI or VPI functions or SV

tasks/functions can be unpredictable; Such calls will fail

if the caller requires a context and if that not been

properly set.

Export Tasks/Functions

In case of Export tasks or functions, the definition of the

task or function is in SystemVerilog and is invoked from

the C/C++ domain. Functions/tasks which are members

of classes cannot be exported, but all other

SystemVerilog functions/task can be exported. Exported

functions/tasks are always context. The following is an

example snippet of an ‘export’ function.

It is illegal to call an exported task from an imported

function. It is legal for an imported task to call an

exported task only if the imported task is declared with

the context property.

III. Co-simulation Using DPI

Transactor Based Verification

Transaction-based verification changes the level of

abstraction at which your testbenches are written.

Instead of writing testbenches based on signal

assignments and signal monitoring, the testbenches are

written with high-level commands or actions (such as

read something or get something). Using these high-

level commands, testbenches are easier to write and

faster to create. A transactor is a behavioral model that

gives a higher representation of an interface. This

interface can be simple or complex, standard or

proprietary. For each behavior, a transactor can be

written once and reused as many times as required in

one or more projects.

Thus it is a bridge from untimed transaction-based

testbenches to the signal-level input to the DUT. They

are typically used for Host-to-DUT SoC bus-level

structures, standard communication protocols and

peripheral interface standards. From a co-simulation

context, the testbench and emulated DUT are

synchronized only when required and thus the testbench

and DUT can run in parallel and transactions can be

queued. The speed improvement over cycle-based can

be orders of magnitude faster reaching tens of MHz

Usage of DPI in the Context of transactors

When it comes to co-emulation, a simulator and an

emulator in conjunction can use DPI to create the

transactor bridge such that each function call is a

transaction that is automatically off-loaded into the

emulation hardware.

In simple terms, for a SV/Verilog testbench running on

the host simulator, we have an ‘import’ task/function

which carries the relevant data to the hardware side

through the task/function arguments. The Intermediate C

layer then does minor data processing and sends the data

and invokes the hardware time consuming method

through an export task. Similar, communication in the

other direction is achieved when the DUT running in the

hardware needs to communicate with the software

testbench. In specific context, when we have a

synthesizable testbench, we might just need to have

some processing done on the host side (When hardware

needs a complex operation result which is easier to

implement in software) then the usage context with DPI

is made more simpler as shown below.

IV. Recommended usage for faster co-

simulation performance

As seen below, in transaction-based co-emulation, the

testbench and Emulated DUT are synchronized only

when required whereas in traditional verification, the

testbench interacts with the DUT at pin-level using PLI

and a lot of traffic is going on, very often on each clock

cycle.

Hence, the overall performance is dictated by the time

spent in testbench and the communication overhead due

to the DPI calls across the testbench and the emulated

DUT. Hence, inefficiencies in the DPI communication

layer itself can make a significant difference to the co-

emulation performance. Inefficient communication

especially if bulk transfers are involved can significantly

slow down simulation performance.

The inefficiencies can also arise due to incorrect data

types used, inappropriate handling of dynamic data

structures, the size of the transfers itself and redundant

exchange of data. An incorrect usage of formal/actual

arguments can lead to memory leaks in the interface

which can be quite difficult to debug.

Frequency of DPI calls

To ensure that the testbench does not slow down the

overall performance, it would be prudent to use multi-

cycle transactions. If DPI calls are very frequent, the

recommendation is to combine them and prune

argument lists to reduce the amount of data transferred

from the simulator:

1. Each DPI call in hardware results in a transfer

of an n-bit packet header word. Additional n-bit

words are added to the packet to convey

argument values. For example, if both f() and

g() are functions that take a one bit wide

argument each (SV 'bit' data type), then "f(a);

f(b); g(c); g(d);" causes a transfer of 4*2(n-bit)

words.

2. One way to minimize the total amount of words

transferred is to combine calls. In the above

example, by creating a new wrapper function

ffgg(bit a, bit b, bit c, bit d), we can reduce the

total transfer size from 4*2(n-bit) words to2(n-

bit).

3. Make sure that each argument is declared to be

as narrow as possible -- for example, never use

the 'int' data type if the argument can only be 0

or 1 in case of (hardware) emulation import DPI

calls.

4. When passing a limited number of constants, try

to create multiple versions of DPI functions to

eliminate the need for constants -- but only do it

if this reduces the total number of words to be

transferred. For example, we have a method

which has index as one of the arguments. This

method if called multiple times with different

values of index, say 1, 2 etc. like,

5. compare_values (index, x, y) then it would be

better to have multiple methods instead,

compare_values_1(val,addr),

compare_values_2(val,addr) etc.

Enabling efficient communication

Appropriate usage of language constructs

1. Declare imported functions as ‘pure’ whenever

possible, to allow for more optimizations: Calls

to pure functions can be targeted by generic

simulator optimizations or replaced with the

values previously computed for the same values

of the input arguments.

2. Avoid using large bandwidth if not required:

Relevant data should be sent and additional

variables not used by the DUT should be

discarded.

3. Using the correct data types: While invoking

DPI functions from the testbench, users should

preferably use data types that map to native C-

data types, like char, shortint etc. Avoid usage

of scalar data types (bit/reg/logic) and the

packed counterparts in case of (software)

simulation of DPI calls. Also avoid using

packed types like, arrays, structures, unions and

enumerated data types. The scalar bit/logic/reg

mapped to scalar “unsigned char”, while the

packed bit/logic/reg mapped to canonical form.

So there is an additional conversion which may

cause performance to degrade. The

SystemVerilog-specific types, including packed

types (arrays, structures, unions), which have no

natural correspondence in C. For these the

designers can choose the layout and

representation that best suits their simulation

performance. The representation of data types

such as packed bit and logic arrays are

implementation-dependent, therefore

applications using them are not binary-

compatible (i.e. an application compiled for a

given platform will not work with every

SystemVerilog simulator on that

platform).Every packed type is eventually

equivalent to a packed one-dimensional array.

On the foreign language side of the DPI, all

packed types are perceived as packed one-

dimensional arrays regardless of their

declaration in the SystemVerilog code. Open

array in SV side is always mapped to

svOpenArrayHandle in C side:

typedef void* svOpenArrayHandle

4. Avoid using the 4-state passing across the C

interface.

5. Map the compatible types for arguments in import

method definition and declaration for correct results.

Each data type that is passed through the DPI-C

requires two matching type definitions: SV and C

definitions. It is the user’s responsibility to correctly

declare compatible data types. The DPI does not

check for type compatibility

There are important differences in the ways a simulator

handles a packed type versus an unpacked type. A

packed array (either as a separate entity or an element of

an unpacked array) is treated as a vector. A vector can

be used as a single entity in an arithmetic operation

(e.g., tagPacked >= tagPacked + 1'b1;) and all bits of a

vector is guaranteed to be contiguous. This increases

overall simulation performance.

Packed types of SystemVerilog do not have any natural

counterpart in the C domain. Nor does SystemVerilog

LRM provide any direction regarding how this would be

done. This is because simulators often optimize packed

types for performance and hence the exact details of

how a packed type is treated are implementation

dependent.

Recommendations for more efficient data transfers

1. Perform the processing where it makes sense:

Data processing usually done in testbench.

Control processing usually done in synthesized

part of the testbench

2. Use the most narrow data type possible to

transfer information to the host PC. Avoid

unused bits.

3. Arguments widths <= 32 bits result in better

performance.

4. If there are large numbers of very short vectors,

it may be best to concatenate them in Verilog,

and unpack on the C++ side. However, this will

only lead to efficient code if the concatenation is

aligned on a 32-bit boundary.

5. Sending vectors greater than 32 bits that aren't

aligned on a word boundary will be one of the

most inefficient transfer scenarios

6. 64-bit wide integers (longint) will also deliver

good performance.

7. Wide bit vectors are good if we can align them

(multiples of 32-bits will always be aligned).

8. Avoid logic vector (4-state) arguments,

unpacked structures.

If the memory/array is 16-bit/8-bit wide then use

appropriate data type for building C-side arrays. “int” is

fine for very small (few hundred items) memories.

Using wider elements than needed is a bad idea for two

reasons: RAM usage goes up, and CPU cache may

become clogged with junk.

Communication schemes

Offline processing

One technique for achieving it is that the parameters that

are passed via the DPI call to the ‘C’ side are off-loaded

for offline process by assigning these to some global

data structures defined in the imported domain and the

main function resumes the execution of the functionality

further. Now the methods look at these global structures

to do the required functionality in this case a data

comparison. But one can achieve such functionality if

and only if the import task/function doesn’t have a

return value or doesn’t have output arguments. In case

the processing results are required to be passed back to

the calling domain then this technique may not actually

work.

Efficient File I/O

It is also important to hand file I/O efficiently as in

specific scenarios, it constitutes a major component in

the overall elapsed time for co-emulation. This is

especially true in the context of backdoor loading of

HW memories required for SOC based environments.

Some recommendations in this area are:

1. Usage of the in-built standard function like

(std::ifstream file(file_path);) for reading the

text file to be loaded increases processing speed.

2. Usage of the binary files to load instead of other

formats like hex/octal etc. The loading of binary

files have been observed to increase the

performance over 5X both in simulation and co-

simulation.

Leveraging Multi-threading

C/C++ based testbenches are now frequently used for

transactor based emulation and SOC validation. The

requirements for complex protocols such as PCIe

require the C/C++ components to be able to handle

concurrency. For example, in the PCIe link training

process, let’s say we have two software components for

the Endpoint and the Root Complex. For the link

training to occur both the DPI threads initiating the

training process needs to be active concurrently. Since

in a single threaded C based execution, only one thread

can be active at any point in time, there would be a

deadlock situation which can only be managed through a

complex and non-optimal set of spawned out threads on

the SV side. Multi-threading schemes when

implemented on the software side helps speed up the

processing on the ‘C’ side. For example, in case one

needs to do multiple DPI calls at the same clock edge

and these are mutually exclusive to each other. In such a

scenario, one can actually create multiple threads in ‘C’

and get the processing done in parallel for these

methods. One such example could be, file loading into

software or hardware memories. In such situation if we

have to pre-load the memories with specific data, we can

actually fork off different threads for loading memories

which can take place in parallel and loading of one

memory doesn’t affect another. In one such case study,

where we had to pre-load/initialize almost 56 huge

memories even before triggering the execution in the

hardware domain, we saw a significant improvement.

Loading memories linearly was 7x slower than when

done using multiple threads (210 seconds vs. 30

seconds)

Note: Multi-threading can also be a killer for

performance when more threads than CPUs are used

typically.

Enabling concurrency in the ‘C’ domain

Let’s take the case of the two PCIe testbenches with a

user API layer in the C domain. These are connected

back to back (one configured as Root Complex and

other as Endpoint). It is required to perform the link

training process, which essentially involves the

simultaneous transactions from both ends. Here, we

need to spawn out the link training process of the Root

Complex and the Endpoint so that each model can

execute and drive the interface and complete the link

training process by mutually exchanging the required

ordered sets.

Essentially to accomplish the training process, we need

to introduce threads for both the modes RootComplex

and EndPoint respectively.

Then based on the mode of the BFM, we can create an

appropriate pthread and for any number of instances of

the BFM.

The C-method is finally imported and synchronized in

the configure_phase of the UVM to coordinate things

across the C and SV (UVM) domain.

Profiling and Debugging DPI based communication in co-

simulation context

An incorrect usage of formal/actual arguments can lead

to memory leaks in the interface which can be quite

difficult to debug. Hence, an appropriate profiling

interface is required as well. Profiling schemes for

assessing the optimal size of transfers, mechanisms for

software based caching is required in the context of DPI

based co-emulation but is not easy to address.

Various mechanisms which can be employed for

profiling:

 Built-in machinery in x86 CPUs that counts

executed instructions. Tools like “VTune” can

access those counters.

 CPI measure would show us the average time

spent on executing an instruction in both

simulations as well as emulation.

 Use call counters displayed in the DPI

functions. The DPI method with the biggest

numbers shall indicate that they can be rewritten

for better efficiency.

 Use $time in SV code before and after the calls

V. Sample results based on DPI based

improvements

Finally, we list down improvements observed in

simulation performance and memory overhead for the

following setups:

1. A UVM frontend leveraging SV DPI to

communicate with a Synthesizable PCIe

transactor

2. DPI based scoreboard and reference for a video

decoder block

Changes Done Percentage

Improvement

Improvement using less number

of DPI calls : 100 secs for 35 DPI

calls got reduced to 30 secs for 20

3.33X

Using efficient file IO operations :

usage of standard file streaming

leads to a reduction from 90 secs

to 15 secs

6X

Loading binary files against hex

files

5X

Introducing threading : in file

loading operation – time

improved from 50 secs to 10 secs

5X

Usage of correct and compact and

native C data types

1.5X

Offline processing on the C-side 2X

VI. Acknowledgement

We would like to thank members of our R&D team - Jan

Koslacz; Cedric Alquier; Frederic Dumoulin for

providing their expert insights in this area. A significant

number of recommendations have been made based on

their inputs.

VII. References

[1] “IEEE Std. 1364-2001 standard for the Verilog

Hardware Description Language”, IEEE, Pascataway,

New Jersey, 2001. ISBN 0-7381-2827-9.

[2] ZeBu™ ZEMI-3 Manual

[3] “IEEE Standard for SystemVerilog -

Unified Hardware Design, Specification, and

Verification Language”

(http://standards.ieee.org/getieee/1800/download/1800-

2012.pdf)

[4]

http://www.cs.cmu.edu/~gilpin/c++/performance.html

[5]http://stackoverflow.com/questions/1135964/simple-

pthread-c

[6] https://computing.llnl.gov/tutorials/pthreads/

http://standards.ieee.org/getieee/1800/download/1800-2012.pdf
http://standards.ieee.org/getieee/1800/download/1800-2012.pdf
http://www.cs.cmu.edu/~gilpin/c++/performance.html
http://stackoverflow.com/questions/1135964/simple-pthread-c
http://stackoverflow.com/questions/1135964/simple-pthread-c
https://computing.llnl.gov/tutorials/pthreads/

