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Abstract: The SystemVerilog Direct Programming 

Interface (DPI) based infrastructure is now increasingly 

used in software simulations to mimic real time HW SW 

interaction in SoC’s. It is also used to integrate C/C++ 

based architectural models and also to create C/C++ 

based tests which can later be reused in post silicon 

validation as well as in simulation acceleration using 

emulation based platforms. C/C++ based testbenches are 

now frequently used for transactor based emulation and 

SOC validation. The requirements for complex 

protocols such as PCIe require the C/C++ components 

to be able to handle concurrency.  However, for 

verification engineer conversant primarily with HDLs 

and HVLs such as SystemVerilog, non-optimal usage of 

the SV DPI based infrastructure can lead to major 

inefficiencies. This paper will focus on the techniques 

that would enable us to ensure that the communication 

overhead is minimal between the software and hardware 

components. It will also talk about how to leverage 

multi-threading for C/C++ based threads to meet the 

requirements of controlling hardware components.  

Additionally, it will lay down guidelines for efficient 

usage of C/C++ in the context of verification 

requirements. 

 

Categories and Subject Descriptors  
Co-simulation, Simulation Acceleration, Transaction 
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I. Introduction 

 

With an increase in software content in today’s SOC, it 

becomes imperative to model hardware software 

interaction in simulations.  Additionally, C/C++ models 

are typically used as golden reference models during 

simulation.  C/C++ testbenches which can be reused in 

emulation and post silicon validation has also become 

common use case for reusability. The SystemVerilog  

Direct Programming Interface (DPI) was developed to 

standardize the interface between SystemVerilog and a 

foreign programming language that can be in C or C++. 

The SV DPI allows SystemVerilog to call a C function 

or task just like any other native SystemVerilog 

function/task Variables passed directly to/from C/C++. 

This greatly simplifies the usage of C/C++ components 

in a HVL testbench. This paper will focus on the 

techniques that would enable us to ensure that the 

communication overhead is minimal between the 

software and hardware components when using 

SystemVerilog DPI. From the perspective of 

software/testbench code running on the host, the paper 

will put forward recommendations for ensuring schemes 

are adopted which ensures that such execution will not 

negatively impact the overall performance of an 

emulated setup. 

II. SystemVerilog DPI: Key Aspects 

 

The SV DPI provides an interface between 

SystemVerilog and a foreign programming language. 

This direct interface can significantly reduce the 

complexity of interfacing testbenches to C/C++ models. 

It thus provides a more practical mechanism for 

connecting C/C++ code to SV without knowledge and 

overhead of VPI/PLI. 

 

For DPI based communication, there are two major 

classifications that exist based on the direction of 

communication or rather where the definition of the 

task/function lies (SystemVerilog or C/C++).  
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‘Import’ Tasks/Functions   
These are the methods whose definitions exist in C/C++. 

These methods are invoked from the SystemVerilog 

code. Imported tasks and functions can have zero or 

more formal input, output and inout arguments. 

However, arguments cannot be passed by reference. 

Imported functions can return a result or be defined as 

void function. The following is an example snippet of an 

‘import’ function. 

 

 
 

Again the ‘imported’ function itself can be declared as 

“context” or “pure” and imported task can be declared 

as “context”. A function can be specified as pure when 

its result depends solely on the values of its input 

arguments. A pure function is assumed not to directly or 

indirectly (i.e., by calling other functions) perform the 

following: 

a. Perform any read or write operations from or to 

files 

b. Access environment variables, objects from the 

operating system or other processes, shared 

memory, sockets, etc. 

c. Access any persistent data, like global or static 

variables 

By default import tasks and functions are non-context. 

They shall not access any data objects from 

SystemVerilog other than its actual arguments and thus 

they do not hinder simulator optimizations.  However, 

there might be a need for an ‘import’ function to access 

or modify simulator data structures via the Programming 

Language Interface (PLI) or Verilog Procedural 

Interface (VPI) calls or making a call back into 

SystemVerilog through an ‘export’ method. Such tasks 

and functions would then be ‘context’ tasks/functions.  

The effects of calling PLI or VPI functions or SV 

tasks/functions  can be unpredictable; Such calls will fail  

if the caller requires a context and if that not been 

properly set. 

 

Export Tasks/Functions   

In case of Export tasks or functions, the definition of the 

task or function is in SystemVerilog and is invoked from 

the C/C++ domain. Functions/tasks which are members 

of classes cannot be exported, but all other 

SystemVerilog functions/task can be exported. Exported 

functions/tasks are always context. The following is an 

example snippet of an ‘export’ function. 

 

 
 

It is illegal to call an exported task from an imported 

function. It is legal for an imported task to call an 

exported task only if the imported task is declared with 

the context property. 

III. Co-simulation Using DPI 

Transactor Based Verification  

Transaction-based verification changes the level of 

abstraction at which your testbenches are written. 

Instead of writing testbenches based on signal 

assignments and signal monitoring, the testbenches are 

written with high-level commands or actions (such as 

read something or get something). Using these high-

level commands, testbenches are easier to write and 

faster to create. A transactor is a behavioral model that 

gives a higher representation of an interface. This 

interface can be simple or complex, standard or 

proprietary. For each behavior, a transactor can be 

written once and reused as many times as required in 

one or more projects.  

 
 

Thus it is a bridge from untimed transaction-based 

testbenches to the signal-level input to the DUT. They 

are typically used for Host-to-DUT SoC bus-level 



structures, standard communication protocols and 

peripheral interface standards. From a co-simulation 

context, the testbench and emulated DUT are 

synchronized only when required and thus the testbench 

and DUT can run in parallel and transactions can be 

queued. The speed improvement over cycle-based can 

be orders of magnitude faster reaching tens of MHz  

Usage of DPI in the Context of transactors  

When it comes to co-emulation, a simulator and an 

emulator in conjunction can use DPI to create the 

transactor bridge such that each function call is a 

transaction that is automatically off-loaded into the 

emulation hardware. 

 

 

In simple terms, for a SV/Verilog testbench running on 

the host simulator, we have an ‘import’ task/function 

which carries the relevant data to the hardware side 

through the task/function arguments. The Intermediate C 

layer then does minor data processing and sends the data 

and invokes the hardware time consuming method 

through an export task. Similar, communication in the 

other direction is achieved when the DUT running in the 

hardware needs to communicate with the software 

testbench. In specific context, when we have a 

synthesizable testbench, we might just need to have 

some processing done on the host side (When hardware 

needs a complex operation result which is easier to 

implement in software) then the usage context with DPI 

is made more simpler as shown below. 

 

 

IV. Recommended usage for faster co-

simulation performance 

As seen below, in transaction-based co-emulation, the 

testbench and Emulated DUT are synchronized only 

when required whereas in traditional verification, the 

testbench interacts with the DUT at pin-level using PLI 

and a lot of traffic is going on, very often on each clock 

cycle.  

 

 
 

Hence, the overall performance is dictated by the time 

spent in testbench and the communication overhead due 

to the DPI calls across the testbench and the emulated 

DUT. Hence, inefficiencies in the DPI communication 

layer itself can make a significant difference to the co-

emulation performance. Inefficient communication 

especially if bulk transfers are involved can significantly 

slow down simulation performance. 

The inefficiencies can also arise due to incorrect data 

types used, inappropriate handling of dynamic data 

structures, the size of the transfers itself and redundant 

exchange of data.  An incorrect usage of formal/actual 

arguments can lead to memory leaks in the interface 

which can be quite difficult to debug.   

Frequency of DPI calls 

To ensure that the testbench does not slow down the 

overall performance, it would be prudent to use multi-

cycle transactions. If DPI calls are very frequent, the 

recommendation is to combine them and prune 

argument lists to reduce the amount of data transferred 

from the simulator: 

 

1. Each DPI call in hardware results in a transfer 

of an n-bit packet header word. Additional n-bit 

words are added to the packet to convey 

argument values. For example, if both f() and 

g() are functions that take a one bit wide 

argument each (SV 'bit' data type), then "f(a); 

f(b); g(c); g(d);" causes a transfer of 4*2(n-bit) 

words. 

2. One way to minimize the total amount of words 

transferred is to combine calls. In the above 

example, by creating a new wrapper function 

ffgg(bit a, bit b, bit c, bit d), we can reduce the 

total transfer size from 4*2(n-bit) words to2(n-

bit). 



3. Make sure that each argument is declared to be 

as narrow as possible -- for example, never use 

the 'int' data type if the argument can only be 0 

or 1 in case of (hardware) emulation import DPI 

calls. 

4. When passing a limited number of constants, try 

to create multiple versions of DPI functions to 

eliminate the need for constants -- but only do it 

if this reduces the total number of words to be 

transferred. For example, we have a method 

which has index as one of the arguments. This 

method if called multiple times with different 

values of index, say 1, 2 etc. like,  

5. compare_values (index, x, y) then it would be 

better to have multiple methods instead, 

compare_values_1(val,addr), 

compare_values_2(val,addr) etc.  

Enabling efficient communication 

Appropriate usage of language constructs 

1. Declare imported functions as ‘pure’ whenever 

possible, to allow for more optimizations:  Calls 

to pure functions can be targeted by generic 

simulator optimizations   or replaced with the 

values previously computed for the same values 

of the input arguments.  

 

2. Avoid using large bandwidth if not required: 

Relevant data should be sent and additional 

variables not used by the DUT should be 

discarded.  

 

3. Using the correct data types: While invoking 

DPI functions from the testbench, users should 

preferably use data types that map to native C-

data types, like char, shortint etc.  Avoid usage 

of scalar data types (bit/reg/logic) and the 

packed counterparts in case of (software) 

simulation of DPI calls. Also avoid using 

packed types like, arrays, structures, unions and 

enumerated data types. The scalar bit/logic/reg 

mapped to scalar “unsigned char”, while the 

packed bit/logic/reg mapped to canonical form. 

So there is an additional conversion which may 

cause performance to degrade. The 

SystemVerilog-specific types, including packed 

types (arrays, structures, unions), which have no 

natural correspondence in C. For these the 

designers can choose the layout and 

representation that best suits their simulation 

performance. The representation of data types 

such as packed bit and logic arrays are 

implementation-dependent, therefore 

applications using them are not binary-

compatible (i.e. an application compiled for a 

given platform will not work with every 

SystemVerilog simulator on that 

platform).Every packed type is eventually 

equivalent to a packed one-dimensional array. 

On the foreign language side of the DPI, all 

packed types are perceived as packed one-

dimensional arrays regardless of their 

declaration in the SystemVerilog code. Open 

array in SV side is always mapped to 

svOpenArrayHandle in C side:  

typedef void* svOpenArrayHandle 

 

4. Avoid using the 4-state passing across the C 

interface. 

 

 
 

5.  Map the compatible types for arguments in import 

method definition and declaration for correct results. 

Each data type that is passed through the DPI-C 

requires two matching type definitions: SV and C 

definitions. It is the user’s responsibility to correctly 

declare compatible data types. The DPI does not 

check for type compatibility 

 



 
 

There are important differences in the ways a simulator 

handles a packed type versus an unpacked type. A 

packed array (either as a separate entity or an element of 

an unpacked array) is treated as a vector. A vector can 

be used as a single entity in an arithmetic operation 

(e.g., tagPacked >= tagPacked + 1'b1;) and all bits of a 

vector is guaranteed to be contiguous. This increases 

overall simulation performance. 

 

Packed types of SystemVerilog do not have any natural 

counterpart in the C domain. Nor does SystemVerilog 

LRM provide any direction regarding how this would be 

done. This is because simulators often optimize packed 

types for performance and hence the exact details of 

how a packed type is treated are implementation 

dependent. 

Recommendations for more efficient data transfers 

1. Perform the processing where it makes sense: 

Data processing usually done in testbench. 

Control processing usually done in synthesized 

part of the testbench 

2. Use the most narrow data type possible to 

transfer information to the host PC. Avoid 

unused bits. 

3. Arguments widths <= 32 bits result in better 

performance. 

4. If there are large numbers of very short vectors, 

it may be best to concatenate them in Verilog, 

and unpack on the C++ side. However, this will 

only lead to efficient code if the concatenation is 

aligned on a 32-bit boundary. 

5. Sending vectors greater than 32 bits that aren't 

aligned on a word boundary will be one of the 

most inefficient transfer scenarios 

6. 64-bit wide integers (longint) will also deliver 

good performance. 

7. Wide bit vectors are good if we can align them 

(multiples of 32-bits will always be aligned). 

8. Avoid logic vector (4-state) arguments, 

unpacked structures. 

 

If the memory/array is 16-bit/8-bit wide then use 

appropriate data type for building C-side arrays. “int” is 

fine for very small (few hundred items) memories. 

Using wider elements than needed is a bad idea for two 

reasons: RAM usage goes up, and CPU cache may 

become clogged with junk. 

Communication schemes 

Offline processing 

One technique for achieving it is that the parameters that 

are passed via the DPI call to the ‘C’ side are off-loaded 

for offline process by assigning these to some global 

data structures defined in the imported domain and the 

main function resumes the execution of the functionality 

further. Now the methods look at these global structures 

to do the required functionality in this case a data 

comparison. But one can achieve such functionality if 

and only if the import task/function doesn’t have a 

return value or doesn’t have output arguments. In case 

the processing results are required to be passed back to 

the calling domain then this technique may not actually 

work. 

Efficient File I/O 

It is also important to hand file I/O efficiently as in 

specific scenarios, it constitutes a major component in 

the overall elapsed time for co-emulation.  This is 

especially true in the context of backdoor loading of 

HW memories required for SOC based environments. 

Some recommendations in this area are: 

1. Usage of the in-built standard function like 

(std::ifstream file(file_path);) for reading the 

text file to be loaded increases processing speed. 

 

 
 

2. Usage of the binary files to load instead of other 

formats like hex/octal etc. The loading of binary 

files have been observed to increase the 



performance over 5X both in simulation and co-

simulation. 

Leveraging Multi-threading 

C/C++ based testbenches are now frequently used for 

transactor based emulation and SOC validation. The 

requirements for complex protocols such as PCIe 

require the C/C++ components to be able to handle 

concurrency. For example, in the PCIe link training 

process, let’s say we have two software components for 

the Endpoint and the Root Complex. For the link 

training to occur both the DPI threads initiating the 

training process needs to be active concurrently. Since 

in a single threaded C based execution, only one thread 

can be active at any point in time, there would be a   

deadlock situation which can only be managed through a 

complex and non-optimal set of spawned out threads on 

the SV side.  Multi-threading schemes when 

implemented on the software side helps speed up the 

processing on the ‘C’ side. For example, in case one 

needs to do multiple DPI calls at the same clock edge 

and these are mutually exclusive to each other. In such a 

scenario, one can actually create multiple threads in ‘C’ 

and get the processing done in parallel for these 

methods. One such example could be, file loading into 

software or hardware memories. In such situation if we 

have to pre-load the memories with specific data, we can 

actually fork off different threads for loading memories 

which can take place in parallel and loading of one 

memory doesn’t affect another. In one such case study, 

where we had to pre-load/initialize almost 56 huge 

memories even before triggering the execution in the 

hardware domain, we saw a significant improvement.  

Loading memories linearly was 7x slower than when 

done using multiple threads (210 seconds vs. 30 

seconds) 

 
Note: Multi-threading can also be a killer for 

performance when more threads than CPUs are used 

typically. 

 

Enabling concurrency in the ‘C’ domain  

Let’s take the case of the two PCIe testbenches with a 

user API layer in the C domain. These are connected 

back to back (one configured as Root Complex and 

other as Endpoint).  It is required to perform the link 

training process, which essentially involves the 

simultaneous transactions from both ends.  Here, we 

need to spawn out the link training process of the Root 

Complex and the Endpoint so that each model can 

execute and drive the interface and complete the link 

training process by mutually exchanging the required 

ordered sets. 

 

Essentially to accomplish the training process, we need 

to introduce threads for both the modes RootComplex 

and EndPoint respectively. 



 
 

Then based on the mode of the BFM, we can create an 

appropriate pthread and for any number of instances of 

the BFM. 

 
 

The C-method is finally imported and synchronized in 

the configure_phase of the UVM to coordinate things 

across the C and SV (UVM) domain. 

 

Profiling and Debugging DPI based communication in co-

simulation context 

An incorrect usage of formal/actual arguments can lead 

to memory leaks in the interface which can be quite 

difficult to debug.  Hence, an appropriate profiling 

interface is required as well.  Profiling schemes for 

assessing the optimal size of transfers, mechanisms for 

software based caching is required in the context of DPI 

based co-emulation but is not easy to address.  

Various mechanisms which can be employed for 

profiling: 

 Built-in machinery in x86 CPUs that counts 

executed instructions. Tools like “VTune” can 

access those counters. 

 CPI measure would show us the average time 

spent on executing an instruction in both 

simulations as well as emulation. 

 Use call counters displayed in the DPI 

functions. The DPI method with the biggest 

numbers shall indicate that they can be rewritten 

for better efficiency.  

 Use $time in SV code before and after the calls 

 

V. Sample results based on DPI based 

improvements 

 

Finally, we list down improvements observed in 

simulation performance and memory overhead for the 

following setups: 

1. A UVM frontend leveraging SV DPI to 

communicate with a Synthesizable PCIe 

transactor 

2. DPI based scoreboard and reference for a video 

decoder block 

 

Changes Done Percentage 

Improvement 

Improvement using less number 

of DPI calls : 100 secs for 35 DPI 

calls got reduced to 30 secs for 20 

3.33X 

Using efficient file IO operations : 

usage of standard file streaming 

leads to a reduction from 90 secs 

to 15 secs 

6X 

Loading binary files against hex 

files 

5X 

Introducing threading : in file 

loading operation – time 

improved from 50 secs to 10 secs 

5X 

Usage of correct and compact and 

native C data types 

1.5X 

Offline processing on the C-side 2X 
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