
“C” you on the faster side: 

Accelerating SV DPI based  

co-simulation 

Hari Vinod Balisetty, Parag Goel, 

Amit Sharma 

DVCON-2014 



• DPI - SystemVerilog Standard 
o An interface between SystemVerilog and a foreign programming 

language: C or C++ 

 

• Simple interface to C models 

o Allows SystemVerilog to call a C function just like any other native 

SystemVerilog function/task 

o Variables passed directly to/from C/C++ 

o NO need to write PLI-like applications/wrappers 

 

• Why DPI 

o Easy of use 

o Allows SystemVerilog to call a C function just like any other native 

SystemVerilog function/task 

o Direct interface provides better performance 

 

• Support both functions and tasks 

Introduction: C Integration Support 



DPI: Two-way Communication 

• Import “DPI” 
o SystemVerilog calling C/C++ 

functions 

• Export “DPI” 
o C calls SystemVerilog functions 

o C calls SystemVerilog (blocking) 
tasks 

Pure Context 

Prone to 
better 

optimization 
Only non-void 
functions with 
no output or 

inout arguments 
can be specified 

as pure 

Result 
depend 

solely on 
the values 
of its input 
arguments 

By default 
import 

tasks and 
functions 
are non-
context 

Not a barrier 
for simulator 
optimizations 

DPI: Pure vs. Context Declarations 

Best-suited for 
co-simulation. 

Support for 
import-export 

nesting 



Co-simulation Using DPI :  
Transactor Based Verification  

Result: The speed improvement over cycle-based can be orders of magnitude faster reaching tens of MHz  

Increased level of 
abstraction 

Signal level 
communication 

Bridge 
Untimed transactions => Timed Signal 

Step 1: An ‘import’ task/function which 

carries the relevant data to the hardware 

side. 

 

Step II: The Intermediate C layer  maps 

HW/SW calls with the correct data types and  

 

Step III: forwards the data and invokes the 

hardware time consuming method through 

an export task.  

SIMULATOR DPI as BRIDGE EMULATOR 



Achieving co-simulation performance 

• Reduced Frequency of DPI calls 

• Enabling efficient 
communication 
o Appropriate usage of language 

constructs 

o Recommendations for more 
efficient data transfers 

Challenge: Reduce the inefficiencies in Communication 

Testbench and DUT are synchronized 

on a cycle basis, and communication 

overhead occurs at each and every 

cycle 

With Transaction-Based Emulation, 

synchronization is done only when 

required 

• Improved communication 
schemes 
o Offline processing 

o Leveraging Multi-threading 

o Enabling concurrency in the ‘C’ 
domain  

o Efficient File I/O 

Cycle-Based 
 

Time 

Test Bench 

Communication Overhead 

Emulated DUT 

Transaction-Based 
 

Time 

Test Bench 

Communication Overhead 

Emulated DUT 



• Declare imported functions as 

‘pure’ whenever possible, to 

allow for more optimizations. 

 

• Preferably use data types that 

map to native C-data 

Reduced Communication Overhead  

Appropriate Usage Of Language Constructs 

SystemVerilog C (input) C (out/inout) 

byte  char char* 

shortint short int short int* 

int int int* 

longint  long int long int* 

shortreal float float* 

real double double* 

string const char* char** 

string[n] const char** char** 

• Avoid usage of scalar data types 

(bit/reg/logic) mapped to scalar “unsigned 

char”, and the packed counterparts 

mapped to canonical form.  

 

• The SystemVerilog-specific types, including 

packed types (arrays, structures, unions), 

which have no natural correspondence in C. 

SystemVerilog C (input) C (out/inout) 

bit svBit svBit* 

logic, reg svLogic svLogic* 

bit[N:0] const svBitVecVal* svBitVecVal* 

reg[N:0] 
logic[N:0] 

const svLogicVecVal* svLogicVecVal* 

Open array[ ]  
(import only) 

const svOpenArrayHandle svOpenArrayHandle 

chandle const void* void* 



• Each argument should be declared as narrow as possible 

o for example, never use the 'int' data type if the argument can only be 0/ 

1. 

• Combine them and prune argument lists to reduce the amount of 

data transferred from the simulator 

 

Reduced Communication Overhead  
Reduced Number of Argument in DPI calls 

import "DPI-C" context function void compare_values 

   (int unsigned  mem_idx, int unsigned CAL_VAL, int unsigned  ADDRESS); 

import "DPI-C" context function void compare_values 

    (bit[7:0] mem_idx, bit[15:0] CAL_VAL, bit[31:0] ADDRESS); 

`define VA8_T     byte unsigned     // bit[7:0] 

`define VAL_T     shortint unsigned // bit[15:0] 

`define ADD_T     int unsigned      // bit[31:0] 

import "DPI-C" context function void compare_values 

    (`VA8_T mem_idx, `VAL_T CAL_VAL, `ADD_T ADDRESS); 



• If DPI calls are very frequent,  
o Each DPI call results in a transfer of at least a n-bit packet header. 

Additional n-bit words are added to the packet to convey 
argument values.  

o When passing a limited number of constants, try to create multiple 

versions of DPI functions to eliminate the need for constants. 

Reduced Communication Overhead  
Reduced Frequency of DPI calls 

import "DPI-C" function void compare_values_EDGE 

    (`ADD_T add, `VAL_T val); 

import "DPI-C" context function void compare_values 

    (`VA8_T mem_idx, `VAL_T CAL_VAL, `ADD_T ADDRESS); 



Reduced Communication Overhead  
Reduced Frequency of DPI calls 

• Reduction of redundant calls, for example,  
o if both f() and g() are functions that take a one bit wide argument 

each (SV 'bit' data type), then "f(a); f(b); g(c); g(d);" causes a 
transfer of 4*2(n-bit) words. One way to minimize the total amount of 
words transferred is to combine calls. In the above example, by 
creating a new wrapper function ffgg(bit a, bit b, bit c, bit d), we 
can reduce the total transfer size from 4*2(n-bit) words to 2(n-bit). 

import "DPI-C" function void compare_values_HV 

          (`ADD_T add, `VAL_T val_0, `VAL_T val_1); 

import "DPI-C" context function void compare_values 

   (`VA8_T mem_idx, `VAL_T CAL_VAL, `ADD_T ADDRESS); 

import "DPI-C" context function void compare_values 

   (`VA8_T mem_idx, `VAL_T CAL_VAL, `ADD_T ADDRESS); 

Comparison of content for two memories 

@ Same event and same address  

with different values 

Specialized function  

-> Infer mem_idx implicitly 

-> Reduced arguments 

-> Reduced number of call 



To enhance data transfers to the host PC (System Verilog),  

• Avoid unused bits by using the narrowest data type possible  

• Avoid logic vector (4-state) arguments and unpacked structures  

• Use arguments whose width is less than or equal to 32 bits  

• Concatenate large numbers of short vectors in Verilog and unpack them on 

the C++ side. This will ensure more data transfer with less communication 

overhead. 

• Bit-vectors aligned with 32-bit or multiple of 32-bits boundaries yields greater 

performance. So does the use of 64 bit wide integers as they are natively 

mapped as longint on C-side. 

 

On the C-front: 

• If the memory/array is 16-bit/8-bit wide then use appropriate data type for 

building C-side arrays. For example, use byte to map the 8-bit wide vectors, 

shortint for 16-bit wide vectors etc. 

o Using wider elements than needed is a bad idea for two reasons:  

• RAM usage goes up, and  

• CPU cache may become clogged with junk. 

Reduced Communication Overhead  

Tips for efficient data transfers 



• Offline processing 

o Parameters that are passed via the DPI call to the ‘C’ side are off-

loaded for offline process, 

• by assigning these to some global data structures defined in the 

imported domain and the main function resumes the execution of the 

functionality further.  

Reduced Communication Overhead  

Communication schemes 

• Leveraging Multi-threading 

Thread 
Declaration 

Thread 
Creation 

Import 
Declaration 

Import Call 



Reduced Communication Overhead  

Communication schemes 
• Efficient File Operations 

• Original Case: In this example we have 56 variable sized memories that 

needs to be loaded using the HEX dump files 

HEX Files BIN Files 

SERIAL 
LOADING 

PARALLEL
LOADING 

Using 
efficient 
File IO 

Loading Time 



Results & Summary 
Improvements observed in simulation performance and memory overhead 
for the following setups: 
• A UVM frontend leveraging SV DPI to communicate with a 

Synthesizable PCIe transactor 
• DPI based scoreboard and reference for a video decoder block 

Changes Done Percentage 

Improvement 

Improvement using less number of DPI calls : 100 

secs for 35 DPI calls got reduced to 30 secs for 20 

3.33X 

Using efficient file IO operations : usage of 

standard file streaming leads to a reduction from 

90 secs to 15 secs 

6X 

Loading binary files against hex files 5X 

Introducing threading : in file loading operation – 

time improved from 50 secs to 10 secs 

5X 

Usage of correct and compact and native C data 

types 

1.5X 

Offline processing on the C-side 2X 


