
Chris Spear, Kevork Dikramanjian,

Abhisek Verma

Synopsys
spear@synopsys.com

kevork@synopsys.com,
abhiv@synopsys.com

C through UVM: Effectively using C based models with UVM
based Verification IP

1. INTRODUCTION
Based on widely used and emerging protocols, standards-compliant

third-party Verification IP (VIP) is rapidly being adopted to

accelerate the development of a complete verification environment.

Since the High definition Multimedia Interface (HDMI) supports a

wide variety of audio and video formats, one of the major challenges

in verifying it is to create all kinds of stimulus responsible to

generate various types of frames. At Qualcomm we chose Synopsys

HDMI VIP as it was compliant with the HDMI-1.4b specification,

adheres to the latest verification methodologies such as Universal

Verification Methodology (UVM) and was developed using

SystemVerilog.

The challenge for this project was to integrate the legacy C

models/testbench mainly used for HDMI stimulus generation with

the HDMI VIP UVM code effectively. The HDMI VIP would then

hook onto the design under test (DUT). With careful planning and

execution we were successfully connected these three pieces. This

ensured complete reuse of the C-based models and efficient usage of

the HDMI VIP. The DUT is a video capture and processing

subsystem used as a front-end to various video interfaces, including

HDMI.

The HDMI VIP uses UVM-compliant classes to represent protocol

activity and the characteristics of that activity. For example, a

transaction object has members that define the audio and video

information being transmitted. A set of base classes provide common

functionality and structure to form the foundation for the entire

HDMI VIP.

In a testbench, an HDMI VIP agent can be a source in active mode or

as a sink with EDID enabled optionally. Stimulus is created as a

UVM sequence with constrained random values for frame line values

of R, G and B components during video active period. These values

can be randomized either independently or could depend on certain

HDMI VIP configuration parameters. A test would run many

standard HDMI frames from source to sink of a certain format type.

The HDMI VIP has a default functional coverage model

implemented as user extensions or callbacks to the HDMI monitor. It

has a rich set of covergroups on HDMI configuration and HDMI

frame line class for comprehensive functional coverage. Enhanced

debug and validation is provided by allowing the user to read in

audio video data, by-passing the built-in generation infrastructure. It

incorporates place-holders for hooking the DUT on one side and C

based model on the other thus enabling reuse of C based models for

stimulus generation. To increase throughput per test, the UVM

phasing mechanism is leveraged to revert to the post-configure

phases to line up multiple tests in one simulation.

This paper demonstrates how a UVM compliant VIP enabled us to

create a highly configurable testbench.

The project was divided into the following milestones:

 Define the communication between the C testbench and the

UVM based VIP

 Develop the SystemVerilog Direct Programming Interface

(DPI-C) code to transfer data from C to SystemVerilog side of

testbench

 Transfer data between the C and SystemVerilog parts of the

testbench with DPI-C

 Establish the connectivity between the C testbench, the UVM

based VIP (source) and the DUT (sink)

 Configure the HDMI VIP to run tests

The C testbench acts as a stimulus generator and creates the frame as

per the HDMI protocol. The frame data is passed to the UVM based

VIP, which drives them on signal interface as per the protocol.

The flow below outlines how we established handshaking to

synchronize the flow between the C test and the SV testbench:

 The UVM VIP enters build phase, deliberately skips the

randomization of the configuration class and then enters the

connect and run phases where it polls the test_done flag, set by

the C model.

 The C model initializes and then calls test library functions to

set high-level knobs. DPI-C functions are used to set fields

which eventually go into SystemVerilog constraint blocks

within the configuration class. Constraints include video, audio

and packet mode and traffic profile.

 The C model calls a SystemVerilog function which builds and

randomizes the configuration class with the applied constraints

 The C model reads back low-level constraints which were

solved by HDMI VIP and then configures the DUT with same

constraints.

 C model starts HDMI traffic sequence in the VIP. In the

SystemVerilog testbench or the UVM VIP, the sequence

generates N transactions and sends it to driver and then to the

DUT

Categories and Subject Descriptors
HDMI, UVM, Re-use philosophy

General Terms
Verification, Design

Keywords
HDMI, VIP, UVM, CEA-861-D, VESA, DMT, HDCP.

2. HDMI PROTOCOL OVERVIEW
The HDMI is the de-facto standard for digital connection for

consumer electronics and PC products. It delivers highest quality

audio/video signal over a single cable. HDMI system architecture is

defined as consisting of Sources, Sinks, Repeaters, and Cable

Assemblies. A given device may have one or more HDMI inputs,

and one or more HDMI outputs. The HDMI cables and connectors

carry four differential pairs that make up the TMDS data and clock

channels as shown in Figure-3. These channels are used to carry

Senay Haile

Qualcomm
shaile@qualcomm.com

mailto:spear@synopsys.com
mailto:kevork@synopsys.com
mailto:abhiv@synopsys.com
mailto:shaile@qualcomm.com

video, audio and auxiliary data. Note that this paper doesn’t talk

about the Consumer Electronics Control (CEC) protocol associated

with a typical HDMI device.

A HDMI source is responsible to send frames onto the Transition-

minimized differential signaling (TMDS) interface, while a HDMI

sink receive them. The sink never responds back to the data from

source. As shown in Figure 3, an HDMI link includes three TMDS

data channels and a single TMDS clock channel. Each frame consists

of a set of lines as per the HDMI specification. Each line is further

segmented into video data audio data and control periods. The

complete feature list can be referred from [2].

Figure 1 :- HDMI source(Tx) and sink(Rx) block Diagram

Since the HDMI protocol supports a wide variety of audio and video

formats, one of the major challenges is verifying all the different

frames across all the different configurations.

3. HDMI UVM VIP ARCHITECTURE
Figure-2 shows the architecture of Synopsys SVT (SystemVerilog

Technology) UVM based HDMI VIP.

Here are some of the features of the UVM VIP which are in our VIP

adoption guidelines.

Configuration: A protocol such as HDMI gives the flexibility of

working with different parameters. For example, the device can take

a varying number of frames to stabilize the video signal. Hence, to

address all such requirements, we would need to bring in the UVM

Resource mechanism to provide the configurability required. The

UVM VIP has a configuration class which is shared across all

components. This class is randomized in the build phase and then

propagated down to different individual component using the UVM

Resource mechanism [6]. This sharing allows individual components

to reconfigure themselves dynamically at different points in time. If a

user needs to change the configuration properties for specific tests, it

would require setting constraints on a derived configuration class and

overriding the configuration class in the environment using factories

or through UVM configuration mechanism.

Stimulus generation: To stay consistent with the architecture of the

HDMI and Consumer Electronic Control (CEC) protocols, a layered

approach has been adopted by the UVM VIP for stimulus generation.

There are transaction classes for each of these layers (HDMI and

CEC). These are typical UVM data descriptors which will translate

to protocol specified frames.

Transaction level Interfaces: UVM analysis ports broadcast the

required parameters to the coverage and scoreboard models.

Extension points: The VIP provides a rich set of UVM based

callbacks across the different layers so we can add in project or test

specific extensions.

Data Exceptions: The extension points can also be used for changing

the default stimulus and generate appropriate conditions for negative

tests. A number of exception data classes are defined within the VIP

library for this purpose.

Factory Infrastructure: The VIP provides the user with the benefit of

overriding the default behavior of VIP components by providing user

specified extensions. This allows the user to meet the unpredictable

needs of different tests.

Event synchronization: Many UVM events are provided so users can

synchronize their testbench with transition of data or states within the

VIP. Most events are tied to the HDMI standard but there are a few

that are generic notifications from the data class.

Sequence Library: A rich set of sequences are available with the

HDMI VIP. These can be readily leveraged in tests by setting them

as the default_sequence of the HDMI source sequencer or by

explicitly starting them on the HDMI source sequencer. These

sequences help generate various types of HDMI compliant frames.

These are the building blocks for the user to stitch together a

complicated scenario if required.

Figure 2 :- Synopsys HDMI VIP Block Diagram

3.1 VIP usage and Configurability
The HDMI VIP can be configured to have either or both of the

following two environments:

Source Environment - The Source Environment encapsulates the

Source Agent and the CEC Agent (if CEC is enabled). It also

contains the Source configuration object and a virtual sequencer to

orchestrate the HDMI and CEC sequencers.

Sink Environment - The Sink Environment encapsulates the Sink

Agent and the CEC agent (if CEC is enabled). It also contains the

Sink Configuration object and the CEC sequencer.

The HDMI VIP can be configured either as source or sink. This

requires either of the Source/Sink Environment to be instantiated and

hooked onto the TMDS interface. The Environment should be

configured with the corresponding configuration object descriptor.

Both Source and Sink configuration objects encapsulate audio and

video configuration objects to support various types of audio and

video attributes such as ASP audio or 24bit color video etc. The

complete list of attributes can be referred from [3]. Additionally,

these objects have parameters to control a host of features such as the

number of frames to be sent; enabling/disabling coverage, etc.

These configuration objects are created in the UVM testbench. Their

attributes are then set or randomized then propagated to either the

Source or Sink Environments using the UVM Resource mechanism

to configure the individual VIP components. The various modes of

operation and the complete feature list can be referred from [3].

4. The Testbench
The structural testbench integration was done as shown in the figure

3 below. The components shown in purple color are Synopsys UVM

compliant VIPs. The components shown in orange are the

Qualcomm legacy C testbench while the DUT is the light blue box.

Figure 3 :- Synopsys HDMI VIP with Qualcomm C based

testbench.

The DUT is a video capture and processing subsystem that is a front-

end to various video interfaces, including HDMI. The DUT consists

of a set of DSP-intensive video processing blocks which process

incoming analog/digital video streams and stores them into system

memory.

The video processing blocks within the subsystem are modeled using

SystemC reference models which are simulated within a C/C++

reference testbench as shown by the orange components in Figure 3.

The SystemC reference models are used to generate reference

memory dumps from a given video frame(s). The C/C++ reference

testbench is a pure software testbench which simulates only the

SystemC reference models and generates reference memory dump

files used for comparison.

In the other configuration (blue components in Figure 3) the C/C++

RTL testbench instantiates the HDMI Source VIP and the DUT, and

the same video frame(s) is passed to the HDMI Source VIP which

transmits it to the DUT. The DUT processes the video stimuli(s)

from the HDMI VIP and generates a memory dump which is then

compared to the memory dump generated by the reference testbench.

Since the reference testbench is used to validate the results from the

RTL testbench, the video configuration and the video stimuli needs

to be kept consistent between the C/C++ reference testbench and

C/C++ RTL testbench.

4.1 Test flow

The HDMI is a SystemVerilog UVM-compliant VIP which contains

the built-in standard phases for test flow. These include the

build_phase(uvm_phase phase), connect_phase(uvm_phase phase)

and run_phase(uvm_phase phase) phases which are invoked from

the UVM scheduler when the run_test() method is called in the

testbench.

The C/C++ testbench follows its own test flow that is independent

from the UVM test flow. Since the C/C++ RTL testbench invokes

the initialize/reset functions, DUT/VIP configuration functions and

checking functions it was decided that the C/C++ RTL testbench

would dictate the test flow for the tests instead of the HDMI UVM-

compliant VIP. In order to allow the C/C++ RTL testbench to control

the test flow and to prevent the UVM test flows from colliding with

the C/C++ test flows, the HDMI VIP was effectively made a slave to

the C/C++ testbench. This was done by adding a semi-infinite loop

to the run_phase(uvm_phase phase) method of the uvm_test class

such that the HDMI VIP would never exit the loop until invoked by

the C/C++ RTL testbench. The HDMI VIP would only be active

when it accepts commands from C/C++ test library via DPI-C export

functions for the purpose of configuration and stimulus generation.

That way the HDMI VIP can gracefully go through all the UVM

phases at the end of the test as dictated by the UVM scheduler.

4.2 Configuration

The HDMI VIP contains a configuration class which has several

fields used to configure the type of video, audio and packet data it

can generate. The fields are fully constrained-random and are used in

several SystemVerilog constraint blocks that are included as part of

the HDMI VIP package. This contrasts with the more directed nature

of the C/C++ testbench, since C/C++ does not lend itself easily to

constrained-random testing.

A mechanism needed to be developed where the high-level video

mode could be controlled from the C/C++ test library and passed into

the HDMI VIP, effectively bypassing some of the constraint blocks

for relevant configuration fields. Only the fields required for high-

level video mode would be set from C/C++, whereas other fields not

required by the reference testbench would be randomized within the

HDMI VIP. The fields required to be controlled from the C/C++ test

library includes video frame height, frame width, scan type, timing

information (blanking/synchronization), pixel encoding type and

color depth. These fields are passed in from C/C++ test library

because they are used by the C/C++ reference testbench to configure

the SystemC reference models and generate the golden memory

dumps.

DPI-C was chosen as the method of communication between C/C++

test library and HDMI VIP, since SystemVerilog has built-in support

for DPI-C with little overhead. Configuration information that is

determined from the C/C++ test library is passed into the HDMI VIP

via DPI-C export functions as shown in Figure ?. They get passed

into the configuration class and ultimately end up as inputs to custom

constraint blocks of the configuration class. Once all the

configuration is passed in, the C/C++ test library invokes the

randomize() method of the configuration class via DPI-C to solve the

applied constraints.

Configuration fields in the HDMI VIP which are not constrained

from C/C++ test library are randomized and returned to the C/C++

test library for DUT configuration, such as audio-related

configuration and control-related information. This way the C/C++

RTL testbench can take full advantage of the randomization features

of SystemVerilog while maintaining control over basic configuration

required for the C/C++ reference testbench.

Abhisek, insert code here:
-

4.3 Stimulus Generation
Because the C/C++ reference testbench was used to generate golden

memory dumps for comparison, identical video frame stimuli were

applied to both the SystemC reference models and the DUT. Though

the HDMI VIP has the capability of generating random video frames,

it was required that the video frame stimuli needed to be generated

from C/C++ test library and sent to the HDMI VIP via DPI-C

functions/tasks. A DPI-C export task and a DPI-C import function

were used for passing video horizontal frame lines from C/C++ test

library to HDMI VIP. The DPI-C export task

sv_hdmi_send_frame_line() is invoked from C/C++ test library, and

within the task a DPI-C import task c_hdmi_get_frame_line_pixels()

is invoked from HDMI VIP to retrieve the frame line from C/C++

test library and pack it to the HDMI VIP sequence item for

transmission.

By allowing the HDMI VIP to retrieve video frames from the C/C++

test library, the same video frame stimuli can be applied to both

testbenches for producing golden memory dumps.

Figure 4 :- The C Side

Figure 4 and 5 show the code snippet used for interaction between

the C stimulus generation and SystemVerilog HDMI VIP.

Figure 5 :- The SV side

4.2 HDMI VIP and Reconfiguration
The correct configuration for the VIP was known sometime during

the run_phase. On the other hand, the source model needed the

correct configuration to start the model during build_phase. This

called for a reconfiguration of the HDMI VIP during run phase as

shown in Figure [6]. This enables the integration of the HDMI VIP

into non-UVM testbenches. Of course some of the configuration

attributes are static and cannot be changed during run_phase but

most of them being dynamic enabled a robust reconfiguration.

Figure 6 :- reconfiguring the model

The new configuration was randomized to ensure all the

configuration parameters obey the reasonable and valid constraints as

part of the VIP. These constraints ensure that the protocol

specification is not violated. For example, in Digital Visual Interface

(DVI) mode the VIP ensures there are no data island packets by

constraining the attribute no_of_di_pkt of the frame line class to

zero. The user-constraints added for this testbench ensured that some

of the configuration values which came from C-side got applied to

the system configuration of the HDMI VIP.

4.3 Audio data Scoreboard
Unlike video data, audio data was entirely generated and checked

within the context of the HDMI Source VIP. An external audio

scoreboard was used for audio data checking. A callback function

within the UVM based HDMI Source monitor was used to extract

reference audio samples and queue them up in the scoreboard for

future comparison. There was little reliance of the C side since audio

data passes through the DUT relatively untouched. A monitor was

used in the audio output interface of the DUT for protocol checking,

and upon reception of an audio packet the monitor sends the packet

to the scoreboard for comparison.

Figure 7 :- Audio scoreboard callback in source monitor

4.4 Video data Scoreboard
The video data scoreboard relies on the C reference testbench for

reference video frames. The C/C++ reference testbench contains

SystemC models which emulate the video processing functions

found in the DUT. Once a SystemC simulation completes the

memory output file is used to validate the C RTL simulation results.

In this way the video data scoreboard acts as a post-process checker

for video data.

4.5 Control data Scoreboard
Similar to audio data, control/Info-frame data was entirely generated

and checked within the context of the HDMI Source VIP. Since the

packet data remains untouched within the DUT, packet data

scoreboard and callback functions were used to extract reference

control packet data from the HDMI stream for comparison with DUT

output packet data.

5. Feature Verification
Hooking up of the Protocol Analyzer helped a lot in debugging

purposes as shown in Figure [8]. It provided a GUI based view of the

transaction and its synchronization with the waveforms helped a lot

in debugging at the transaction level.

Figure 8 :- Hooking of the Protocol Analyser with the

HDMI VIP

5.1 HDCP Authentication
The HDCP (High-bandwidth Digital Content Protection)

authentication for the source model can be enabled by using a

configuration attribute. The authentication in terms of reading and

writing registers happen on the DDC (digital down-converter) or the

i2c bus connected to the sink. Once the authentication is successful,

the encrypted frames appear on the TMDS interface. As per protocol

we also needed to apply a default pull-up on the sda and the sclk

lines.

EVENT_HDCP_AU_DONE event is triggered by the source driver

once the authentication is done. The default keys for the cipher

process have been taken from the appendix A of the HDCP 1.4 spec

[7].The user had the flexibility to use his own defined set of Key

Selection Vectors (KSV), Key set and AN through a callback task

[pre_hdcp_keyset] in the source driver and the monitor. There is a

minimum requirement for a frame to have at least 508 pixels (which

is equal to `SVT_HDMI_HDCP_KEEP_OUT_START) when run

with HDCP enabled. This will lead to errors from the model if not

met.

There is an array in source configuration "hdcp_seq", which the

Source used to read/write from/to registers. Check the reasonable

constraint shown in figure 9 below –

Figure 9:- HDCP Authentication sequence by using

SystemVerilog constraints.

It was a set of reads and writes to various registers in the sink thru

the ddc interface. This was the first authentication process, once this

goes thru without any errors, the source will start sending encrypted

frames on the HDMI tmds interface from the subsequent frames.

The above read and write to the registers was observed on the DUT

interface as shown in Figure 10 below.

Figure 10: HDCP sequence as viewed on the DUT ddc

interface

5.2 VESA DMT frame generation in DVI mode
The HDMI source model was configured to generate the VESA

DMT format frames during DVI mode apart from the HDMI CEA

frames. The configuration to switch the mode from HDMI to DVI

came from the C-side via an API. This was then used to constrain the

op_mode attribute of the source configuration to DVI_MODE and

switch off the reasonable_op_mode constraint which sets the

op_mode to be in HDMI_MODE by default. The video_standard

attribute of the current frame video configuration was also obtained

from the C-Side and set either to VESA or CEA as shown in

Figure[11] below.

Figure 11: Configuration of SV model from C

5.3 Enabling faster simulation
The HDMI VIP provides for a mechanism to reduce the number of

video active lines (denoted as vactive) in a given HDMI frame

leading to faster simulation. The number of pixels in each vactive

line (denoted by hactive) can also be reduced to further shorten the

frame size and increase simulation speed.

For example, according to the CEA-861D specification, the total

number of lines to construct a frame in 2D format with video id code

(VIC) 1 is 525, out of which 480 lines are vactive lines. Each vactive

line contains 640 active pixels (or hactive). Hence the frame is of

size 640x480. The same frame when shortened to 16x12 improves

simulation performance drastically, while still keeping the control

lines same as the CEA-861E spec.

It was achieved by using the UVM factory override of the HDMI

database object which contains the information as available in Table

2 and 3 of CEA-861E spec. The HDMI database object of the VIP

provides set_format_field and get_video_id APIs to be overridden by

the user to supply the attributes such as vactive/hactive of a frame

As shown in figure [12] below.

Figure 12: set_format_fields and get_video_id APIs to

enable faster simulation

The extended HDMI database class can be then used to override the

blueprint of the HDMI database with the model by using the UVM

factory override function as shown in Figure [12] below.

Figure 13: Overidding the HDMI database thru test class

5.4 Non-standard frame generation
The concept discussed in Section 5.3 was extended to generate non-

standard HDMI frames. The typical parameters present in the HDMI

database object that define a frame are shown in Figure [14]. The

values in the figure is for VIC=1 extended resolution format. . The

set_format_field and get_video_id APIs of the HDMI database were

overridden to generate a frame of user choice i.e the frame

parameters were redefined using the set_format_field API as shown

in Figure[12] and subsequently the get_video_id API needs to map

the new values of the frame parameters to the video id code.

Figure 14: Frame parameters

6. Results and Conclusion
This challenging project was a good example of how to integrate a

legacy testbench with new technology. By integrating our

C/SystemC testbench with the HDMI VIP which was developed

using UVM/SV we have reused our testbench code and have

benefitted from using state of the art verification IP which complies

with the HDMI standards, compared to developing the VIP

ourselves. The simulation performance is measured as a tradeoff

between the relaxed System Verilog constraint solver efforts and

overhead for DPI-C calls.

Thus, with minimal user involvement, we were able to create and

control the desired testcases and thus concentrate on converging in

completing the verification tasks efficiently. Though the UVM based

HDMI VIP was used to demonstrate this flow, the various

approaches techniques and guidelines can be well leveraged with

other VIPs and methodologies across various constrained random

verification environments to increase the verification productivity.

7. REFERENCES
[1] Accellera, Universal Verification Methodology (UVM) 1.1 User’s

Guide, 2011

[2] HDMI-1.4 Specification

[3] Synopsys HDMI UVM VIP User Guide

[4] CEA-861-D Specification

[5] UVM Reference Guide

[6] Mark Glasser, Mohamed Elmalaki, Advanced Testbench

Configuration with Resources, DVCon 2011

[7] HDCP 1.4 Specification

[8] VESA DMT version 1 revision 12

