
Building Smart SoCs
Using Virtual Prototyping for the Design and SoC Integration of Deep

Learning Accelerators

Holger Keding
Solutions Architect

© Accellera Systems Initiative 1

Agenda

• Deep Learning Market and Technology Trends

• How to Design a Deep Learning Accelerator (DLA)

• Analytical Performance Modeling

• Shift Left Architecture Analysis and Optimization with Virtual Prototyping

• Example

• Importing Network Algorithms as prototxt + generate analytical model spreadsheet

• Find suited configuration and scaling parameters in analytical model

• Validate first results, and explore architecture for dynamic and power aspects using

Virtual Platforms

• Summary

Increasing number of AI Accelerators

Source: Qualcomm AI Day Speaker Presentation 2019

Deep Learning Technology Trends

New Neural Network algorithms
– Higher accuracy, lower size and less processing

– But: less data re-use, less cycles per byte

Neural Network Compiler optimizations
– Loop-tiling, -unrolling, and -parallelization

– Splitting and fusing of Neural Network layers

– Memory layout optimization across layers

– Optimized code generation to utilize available
hardware accelerators

Deep Learning Accelerator optimizations

– Schedule workload on parallel hardware engines

– Optimize and reduce data transfers
to and from memory

AI
SoC

Neural
Network
Compiler

Neural
Network

Deep
Learning

Accelerator
Multi-core

CPU
IO
IO
IO

SRAM

DDR/
HBM

SRAMIn
te

rc
o

n
n

ec
t

• Choosing the right algorithm and architecture: CPU, GPU, FPGA, vector DSP, ASIP

– CNN graphs evolving fast, need short time to market, cannot optimize for one single graph

– Joint design of algorithm, compiler, and target architecture

– Joint optimization of power, performance, accuracy, and cost

• Highly parallel compute drives memory requirements

– High on-chip and chip to chip bandwidth at low latency

– High memory bandwidth requirements for parameters and layer to layer communication

• Performance analysis requires realistic workloads to consider dynamic effects

– Scheduling of AI operators on parallel processing elements

– Unpredictable interconnect and memory access latencies

Brute-force Processing of Huge Data Sets

AI SoC Design Challenges

Large Design Space drives Differentiation by
AI Algorithm & Architecture

Agenda

• Deep Learning Market and Technology Trends

• How to Design a Deep Learning Accelerator (DLA)

• Analytical Performance Modeling

• Shift Left Architecture Analysis and Optimization with Virtual Prototyping

• Example

• Importing Network Algorithms as prototxt + generate analytical model spreadsheet

• Find suited configuration and scaling parameters in analytical model

• Validate first results, and explore architecture for dynamic and power aspects using

Virtual Platforms

• Summary

+ Good first order

+ Results within minutes

- Omits dynamic effects

How to design a DLA?

Analytical Models

+ Perfect accuracy

- High computational needs

- High turn-around costs

RTL Simulation

validate

back-annotate

+ Good for SW development

+ Simulations in minutes/hours

+ Trace Ops, Memory accesses

- Low Timing Accuracy

Functional LT Model (VDK)

Refine

Refine

Refine

+ Good for hardware exploration

+ Simulations in minutes/hours

~ Varying Accuracy

High-Level Architecturevalidate

back-annotate

validate

back-annotate

Analytical Performance Models
Simple Example: Amdahl’s Law [1]

• Simple insightful formula, with restricted applicability, though.

• “All models are wrong but some are useful” (George Box, 1978)

[1] Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities (1967)

Analytical Models – Roofline Models (1)

2 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

8 𝑏𝑦𝑡𝑒𝑠 𝑓𝑒𝑡𝑐ℎ𝑒𝑑
= 0.25

𝑜𝑝𝑠

𝑏𝑦𝑡𝑒

observed
performance

Theoretical maximum
compute power

Roofline: an insightful visual performance model for multicore architectures (Williams, Waterman, Patterson,2009)

𝑝𝑝(𝑓𝑟𝑒𝑞𝑐𝑙𝑘, #𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠)

Only Thread-Level Parallelism

ILP or SIMD

Analytical Models – Roofline Models (2)

Theoretical maximum
compute power

𝑜𝑝𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ⋅ 𝑚𝑒𝑚_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑝𝑒𝑎𝑘

slope =
maximum
memory
bandwidth 2 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

8 𝑏𝑦𝑡𝑒𝑠 𝑓𝑒𝑡𝑐ℎ𝑒𝑑
= 0.25

𝑜𝑝𝑠

𝑏𝑦𝑡𝑒

Roofline: an insightful visual performance model for multicore architectures (Williams, Waterman, Patterson,2009)

Analytical Models – Roofline Models (3)

compute bound

memory bound

Roofline: an insightful visual performance model for multicore architectures (Williams, Waterman, Patterson,2009)

Analytical Models – Roofline Models

Roofline: an insightful visual performance model for multicore architectures (Williams, Waterman, Patterson,2009)

Example: Analytical Model for CNN Convolutional Layer (1)
Conv1 of AlexNet

𝑛𝑀𝐴𝐶 = 𝑜ℎ ⋅ 𝑜𝑤 ⋅ 𝑜𝑐 ⋅ 𝑘𝑤 ⋅ 𝑘ℎ ⋅ 𝑖𝑐

= 55 ⋅ 55 ⋅ 96 ⋅ 11 ⋅ 11 ⋅ 3

= 105,415,200

for(row=0; row<oh; row++){

for(col=0; col<ow; col++){

for(k=0; k<oc; k++){

for(ti=0; ti<ic; t i ++){

for(i=0; i<kh; i++){

for(j=0; j<kw; j++){

L : outputfm [k] [row] [col] +=

kernels[k][ti][i][j]∗

inputfm[ti][sw∗row+i][sh∗col+j];

}}}}}}

Maths Textbook

Convolution algorithm

Example: Analytical Model for CNN Convolutional Layer (2)
Conv1 of AlexNet

𝑑𝑀𝐴𝐶 = 𝑑𝑖𝑓𝑚𝑎𝑝 + 𝑑𝑘𝑒𝑟𝑛𝑒𝑙= (𝑖𝑤⋅ 𝑖ℎ ⋅ 𝑖𝑐 + 𝑘𝑤⋅ 𝑘ℎ ⋅ 𝑖𝑐 ⋅ 𝑘) ⋅ 𝐵𝑖 ≈ 0.38𝑀𝑖𝐵

𝑛𝑀𝐴𝐶 = 𝑜ℎ ⋅ 𝑜𝑤 ⋅ 𝑜𝑐 ⋅ 𝑘𝑤 ⋅ 𝑘ℎ ⋅ 𝑖𝑐 = 55 ⋅ 55 ⋅ 96 ⋅ 11 ⋅ 11 ⋅ 3 = 105,415,200

⇒ 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝐼 =
𝑛𝑀𝐴𝐶

𝑑𝑀𝐴𝐶
≈ 278 𝑜𝑝𝑠/𝐵

But: here we assume unlimited

amount of local memory

Example: Analytical Model for CNN Convolutional Layer (3)
Conv1 of AlexNet

𝑛𝑀𝐴𝐶 = 𝑜ℎ ⋅ 𝑜𝑤 ⋅ 𝑜𝑐 ⋅ 𝑘𝑤 ⋅ 𝑘ℎ ⋅ 𝑖𝑐 = 55 ⋅ 55 ⋅ 96 ⋅ 11 ⋅ 11 ⋅ 3 = 105,415,200

⇒ 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝐼 =
𝑛𝑀𝐴𝐶

𝑑𝑀𝐴𝐶
≈

1

4
𝑜𝑝𝑠/𝐵

Opposite extreme: we assume no

local memory

𝑑𝑀𝐴𝐶 = 2 ⋅ 𝑛𝑀𝐴𝐶 ⋅ 𝐵𝑖 ≈ 420𝑀𝑖𝐵

Example: Analytical Model for CNN Convolutional Layer (4)
Conv1 of AlexNet

Practical setup: limited amount

of local memory

 for(row=0; row<oh; row++){

for(col=0; col<ow; col++){

for(k=0; k<oc; k++){

for(ti=0; ti<ic; t i ++){

for(i=0; i<kh; i++){

for(j=0; j<kw; j++){

L : outputfm [k] [row] [col] +=

kernels[k][ti][i][j]∗inputfm[ti][sw∗row+i][sh∗col+j];

}}}}}}

Maths Textbook

Convolution algorithm

Example: Analytical Model for CNN Convolutional Layer (5)
Conv1 of AlexNet – with very simple tiling

Practical setup: limited amount

of local memory

Width + Height

+ Channel

+ Kernel Tiling

Example: Analytical Model for CNN Convolutional Layer (6)
Conv1 with tiling

Source: Optimizing FPGA-based Accelerator Design for Deep
Convolutional Neural Networks, Cheng Zhang, 2015

Example: Analytical Model for CNN Convolutional Layer (6)
Conv1 with tiling

Now it gets more tricky: Taking into acount non-integer

relations of tiling parameters and channel dimensions:

Tiling also brings the operational intensity

closer to the optimum HW utilization point

Example: Analytical Model, Mapping Conv to HW Resources

Tiling parameters and MAC Cell number and depth should

match tiling parameters

#MAC cells can be configured to scale

up/down peak performance

Roofline model

Operational Intensity (Operations/Byte)

Roofline model

Operational Intensity (Operations/Byte)

Analytical Model as Python Generated Spreadsheet
Expressions represent both Algorithmic and HW -> calculate attainable performance

Exploring different numbers of MAC cells and their depth

Analytical Model Summary
What is achieved and what comes next?

What we have seen:
+ Good first order analysis of static effects
+ Results within minutes
~ Requires deep understanding of

both algorithm and architecture

What is not covered
- Implementation overhead is hard
to predict and not ‚priced in‘ in
first round

- Omits dynamic effects
- Joint performance and power
is difficult

+ Good first order

+ Results within minutes

- Omits dynamic effects

How to design a DLA?

+ Perfect accuracy

- High computational needs

- High turn-around costs

+ Good for hardware exploration

+ Simulations in minutes/hours

~ Varying Accuracy

High-Level Architecture

Analytical Models RTL Simulation

validate

back-annotate

+ Good for SW development

+ Simulations in minutes/hours

+ Trace Ops, Memory accesses

- Low Timing Accuracy

Functional LT Model (VDK)

Refine

Refine

Refine

validate

back-annotate

validate

back-annotate

AI
SoC

Neural
Network
Compiler

Shift Left Architecture Analysis and Optimization

Deep
Learning

Accelerator

Multi-core
CPU

IO
IO
IO

SRAM

DDR/
HBM

SRAM

Neural
Network

In
te

rc
o

n
n

e
ct

AI
SoC

Model

Deep
Learning

Accelerator
Multi-core

CPU
IO
IO
IO

SRAM

DDR/
HBM

SRAMIn
te

rc
o

n
n

ec
t

NN Workload Model

Power,

Performance

explore

translate

map
results

explore

Capture Workload Model

Platform Architect Ultra
Providing a Comprehensive Library of Generic and Vendor Specific Models

Interconnect Models

Generic:
•SBL-TLM2-FT (AXI)
•SBL-GCCI (ACE, CHI)

IP Specific:
•Arteris FlexNoC & Ncore
•Arm AHB/APB
•Arm PL300
•Arm SBL-301
•Arm SBL-400
•Synopsys DW AXI

Memory Subsystems

• Generic multiport
memory controller
(GMPMC)
• DesignWare uMCTL2

memory controller
• DesignWare LPDDR5

memory controller
• Co-simulate with RTL

User Traffic,

Scenarios for

Exploration

Traffic, Processors, RTL

• Task-based and trace-based
workload models
• Cycle accurate processor for

ARM, ARC, Tensilica, CEVA
• RTL Co-simulation/emulation

Capture Architecture Model

Analyze Power & Performance

https://www.google.de/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjk_fj1isLgAhXCaVAKHbTwBakQjRx6BAgBEAU&url=https://github.com/foss-for-synopsys-dwc-arc-processors&psig=AOvVaw0jsFxqxK3GUhCwVrlSyrA0&ust=1550469437436507

Workload Modeling and Mapping

• Workload Model
– Task level parallelism and dependencies

– Characterized with processing cycles and
memory accesses

• SoC Platform Model
– Accurate SystemC Transaction level models of

processing elements, interconnect and memory

• Map workload to platform

• Analyze performance metrics
– End-to-end constraints

– Workload activity

– Utilization of resources

– Interconnect metrics
• Latency, Throughput, Contention

• Outstanding transactions

• …

Virtual Prototype

ACC

Task D
(proc conv)Task A

DMA

Task B
(read image)

Memory
subsystem

in
te

rc
o

n
n

ec
t

cycles: 0

rd_bytes: 0x200

wr_bytes: 0

Task C
(read kernel)

record

cycles: 2000

rd_bytes: 0

wr_bytes: 0

System Level Power Modeling

• Workload Model
– Task level parallelism and dependencies
– Characterized with processing cycles

and memory accesses

• SoC Platform Model
– Accurate SystemC Transaction level

models of processing elements,
interconnect and memory

• System-level Power Overlay Model
– Define power state machine per

component
– Bind power models to

Virtual Prototype
– Measure power and

performance based
on real activity and utilization

Virtual Prototype

ACC

Task D
(proc conv)Task A

DMA

Task B
(read image)

Memory
subsystem

in
te

rc
o

n
n

ec
t

Task C
(read kernel)

IP Power Models

idlesleep

active

idle

active

sleep

idle

page
hit

page
miss

Energy/Power

recording

records

• Automated generation of workloads from AI
frameworks
– AI Operator Library for Neural Network modeling

• E.g. Convolution, Matmul, MaxPool, BatchNorm etc.

– Example workload model of ResNet50 Neural Network

– Utility to convert prototxt description to workload model
using AI operator library

• AI centric HW architecture model library
– VPUs configured to represent AI compute and DMA engines

– Interconnect and memory subsystem models

– Example performance model of
NVIDIA Deep Learning Accelerator (NVDLA)

• AI centric analysis views: memory + processing
utilization

Exploration & optimization of AI designs

Platform Architect Ultra AI Exploration Pack (XP)

Operator Library

NVDLA Performance
Model Example

CNN
workload model

Workload Model of One Convolution Layer

read
input

read
coefficients

calculate
convolutions

write output
feature maps

AI algorithm params Mapping params

Workload params

Scaling parameters reflect
the DLA architecture – can
be taken from analytical
model.

Agenda

• Deep Learning Market and Technology Trends

• How to Design a Deep Learning Accelerator (DLA)

• Analytical Performance Modeling

• Shift Left Architecture Analysis and Optimization with Virtual Prototyping

• Example

• Importing Network Algorithms as prototxt + generate analytical model spreadsheet

• Find suited configuration and scaling parameters in analytical model

• Validate first results, and explore architecture for dynamic and power aspects using

Virtual Platforms

• Summary

Resnet18
Neural

Network

Example: Resnet-18 (Inference) with NV-DLA

Resnet18 task graph

NVDLA platform

Goals:

 100 ms latency, minimize power, minimize energy

Optimize Hardware configuration:

–SIMD width

–Burst size, outstanding transactions

– speed of DDR memory and of data path

map

Import prototxt

ResNet-18 Workload model generated with AI-XP

Example: Brief Overview of NVDLA

Convolution Engine (CONV_CORE)
• Works on two sets of data: offline-trained kernels (weights) and input

features (images)
• configurable MAC units and convolutional buffer (RAM)
• Executes operations such as tf.nn.conv2d

Single Data Point Processor (SDP)
• Applies linear and non-linear (activation) functions onto individual data points.
• Executes e.g. tf.nn.batch_normalization, tf.nn.bias_add, tf.nn.elu, tf.nn.relu,

tf.sigmoid, tf.tanh, and more.

Planar Data Processor (PDP)
• Applies common CNN spatial operations such as min/max/avg pooling
• Executes e.g. tf.nn.avg_pool, tf.nn.max_pool, tf.nn.pool.

Cross-channel Data Processor (CDP)
• Processes data from different channels/features, e.g. local response normalization

(LRN) function
• Executes e.g. tf.nn.local_response_normalization

Data Reshape Engine (RUBIK)
• Performs data format transformations (splitting, slicing, merging, …)
• Executes e.g. tf.nn.conv2d_transpose, tf.concat, tf.slice, etc.

VP Simulation Results of Initial Configuration

Performance limited by processing, use wider SIMD data path

DDR utilization

Resource utlization

Throughput

Outstanding
transactions

Task trace

Transaction trace

AlexNet (Norm1):
Expected: 580,800 Bytes
Measured: 654,720 Bytes

Inflation by ~12.72%

Simulation Reveals Implementation Effects… (1)
Differences between calculated and measured data read/write amount

 “Dark Bandwidth”

Simulation Reveals Implementation Effects… (2)
Differences between calculated and measured execution time

Convolutional Layers 1&2 of LeNet on NVDLA

Back-Annotate Simulation Findings To Analytical Model

Platform Architect / Simulation Model Spreadsheet / Analytical Model

Caffe .prototxt

Impact of SIMD Width on Performance
Resource Utilization of CONV Datapath (yellow), CONV DMA (red) and other components

p
ro

ce
ss

in
g

b
o

u
n

d

memory
bandwidth

bound

D
im

in
is

h
in

g
p

er
fo

rm
an

ce

ga
in

s

CONV PE load

CONV DMA loadSIMD
128

SIMD
64

SIMD
32

SIMD
16

SIMD
8

DDR Memory Bandwidth and Power Improvement

SI
M

D
-

1
2

8
SI

M
D

-
6

4R
es

o
u

rc
e

U
ti

liz
at

io
n

Po
w

er
 c

o
n

su
m

p
ti

o
n

25% faster

20% lower
average power

DMA

Conv PE Power

SI
M

D
-1

2
8

SI
M

D
-6

4

10% lower
total energy

DDR Power

Conv PE

Resnet 18 Example Sweep
Goal: 100 ms latency, minimize power & energy

Sweep parameters

– Burst size: 16, 32

– Outstanding transactions: 4, 8

– DDR memory speed: DDR4-1866, DDR4-2400

– Clock frequency of data path: 1, 1.33, 2GHz

– SIMD width: 64, 128 operations per cycle
Sensitivity

Root-Cause
Analysis

Sweep Over Hardware Parameters, Latency

DDR4 speed

GHz

SIMD

Burst size

Outstanding
transactions

Power/Performance/Energy Trade-off Analysis

Optimal
solution

Datapath GHz

DDR

SIMD

Burst size

Outstanding Tx

Resnet18
Neural

Network

Example: Resnet-18 with NV-DLA

NVDLA platform

Goal:

– 100 ms latency, minimize energy

Optimize Hardware configuration:

– SIMD width: 128 operations per cycle

– Burst size: 32 bytes

– outstanding transactions: 8

– speed of DDR memory: DDR4-1866

– speed of data path: 1GHz

map

generate

Resnet18 task graph

Summary
• Be fast and get it right!

• Shift Left with Virtual Prototyping

• Joint Optimization of Algorithm,
Architecture, and Compiler

Power/Performance

Task graph

Virtual HW Platform

map

analyze

Neural
Network

Sensitivity

Analytical Model
generate

Explore & Refine

Thank You

Questions

© Accellera Systems Initiative 49

