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Agenda

• Deep Learning Market and Technology Trends

• How to Design a Deep Learning Accelerator (DLA)

• Analytical Performance Modeling 

• Shift Left Architecture Analysis and Optimization with Virtual Prototyping

• Example

• Importing Network Algorithms as prototxt + generate analytical model spreadsheet

• Find suited configuration and scaling parameters in analytical model

• Validate first results, and explore architecture for dynamic and power aspects using 

Virtual Platforms

• Summary



Increasing number of AI Accelerators

Source: Qualcomm AI Day Speaker Presentation 2019





Deep Learning Technology Trends

New Neural Network algorithms
– Higher accuracy, lower size and less processing

– But: less data re-use, less cycles per byte

Neural Network Compiler optimizations
– Loop-tiling, -unrolling, and -parallelization

– Splitting and fusing of Neural Network layers

– Memory layout optimization across layers

– Optimized code generation to utilize available 
hardware accelerators 

Deep Learning Accelerator optimizations

– Schedule workload on parallel hardware engines

– Optimize and reduce data transfers 
to and from memory

AI
SoC

Neural 
Network
Compiler

Neural 
Network

Deep 
Learning 

Accelerator
Multi-core 

CPU
IO
IO
IO

SRAM

DDR/
HBM

SRAMIn
te

rc
o

n
n

ec
t



• Choosing the right algorithm and architecture: CPU, GPU, FPGA, vector DSP, ASIP

– CNN graphs evolving fast, need short time to market, cannot optimize for one single graph 

– Joint design of algorithm, compiler, and target architecture

– Joint optimization of power, performance, accuracy, and cost

• Highly parallel compute drives memory requirements

– High on-chip and chip to chip bandwidth at low latency

– High memory bandwidth requirements for parameters and layer to layer communication

• Performance analysis requires realistic workloads to consider dynamic effects

– Scheduling of AI operators on parallel processing elements

– Unpredictable interconnect and memory access latencies

Brute-force Processing of Huge Data Sets

AI SoC Design Challenges

Large Design Space drives Differentiation by 
AI Algorithm & Architecture
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+ Good first order 

+ Results within minutes

- Omits dynamic effects

How to design a DLA?

Analytical Models

+ Perfect accuracy

- High computational needs

- High turn-around costs

RTL Simulation

validate

back-annotate

+ Good for SW development

+ Simulations in minutes/hours

+ Trace Ops, Memory accesses

- Low Timing Accuracy

Functional LT Model (VDK)

Refine

Refine

Refine

+ Good for hardware exploration

+ Simulations in minutes/hours

~ Varying Accuracy

High-Level Architecturevalidate

back-annotate

validate

back-annotate



Analytical Performance Models
Simple Example: Amdahl’s Law [1]

• Simple insightful formula, with restricted applicability, though.

• “All models are wrong but some are useful” (George Box, 1978)

[1] Validity of the Single Processor Approach to Achieving Large Scale Computing Capabilities (1967)



Analytical Models – Roofline Models (1)

2 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

8 𝑏𝑦𝑡𝑒𝑠 𝑓𝑒𝑡𝑐ℎ𝑒𝑑
= 0.25

𝑜𝑝𝑠

𝑏𝑦𝑡𝑒

observed
performance

Theoretical maximum
compute power 

Roofline: an insightful visual performance model for multicore architectures (Williams, Waterman, Patterson,2009)

𝑝𝑝(𝑓𝑟𝑒𝑞𝑐𝑙𝑘, #𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠)

Only Thread-Level Parallelism

ILP or SIMD



Analytical Models – Roofline Models (2)

Theoretical maximum 
compute power 

𝑜𝑝𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 ⋅ 𝑚𝑒𝑚_𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ𝑝𝑒𝑎𝑘

slope =
maximum 
memory 
bandwidth 2 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠

8 𝑏𝑦𝑡𝑒𝑠 𝑓𝑒𝑡𝑐ℎ𝑒𝑑
= 0.25

𝑜𝑝𝑠

𝑏𝑦𝑡𝑒

Roofline: an insightful visual performance model for multicore architectures (Williams, Waterman, Patterson,2009)



Analytical Models – Roofline Models (3) 

compute bound

memory bound

Roofline: an insightful visual performance model for multicore architectures (Williams, Waterman, Patterson,2009)



Analytical Models – Roofline Models

Roofline: an insightful visual performance model for multicore architectures (Williams, Waterman, Patterson,2009)



Example: Analytical Model for CNN Convolutional Layer (1) 
Conv1 of AlexNet

                                   

  

                           

𝑛𝑀𝐴𝐶 = 𝑜ℎ ⋅ 𝑜𝑤 ⋅ 𝑜𝑐 ⋅ 𝑘𝑤 ⋅ 𝑘ℎ ⋅ 𝑖𝑐

= 55 ⋅ 55 ⋅ 96 ⋅ 11 ⋅ 11 ⋅ 3

= 105,415,200

for(row=0; row<oh; row++){

for(col=0; col<ow; col++){

for(k=0; k<oc; k++){

for(ti=0; ti<ic; t i ++){

for(i=0; i<kh; i++){

for(j=0; j<kw; j++){

L : outputfm [ k ] [ row ] [ col ] += 

kernels[ k ][ ti ][ i ][ j ]∗

inputfm[ ti ][ sw∗row+i ][ sh∗col+j ];

}}}}}}

Maths Textbook 

Convolution algorithm 

                           

  

               



Example: Analytical Model for CNN Convolutional Layer (2) 
Conv1 of AlexNet

                                   

  

                           

    

   

    

𝑑𝑀𝐴𝐶 = 𝑑𝑖𝑓𝑚𝑎𝑝 + 𝑑𝑘𝑒𝑟𝑛𝑒𝑙= (𝑖𝑤⋅ 𝑖ℎ ⋅ 𝑖𝑐 + 𝑘𝑤⋅ 𝑘ℎ ⋅ 𝑖𝑐 ⋅ 𝑘) ⋅ 𝐵𝑖 ≈ 0.38𝑀𝑖𝐵

𝑛𝑀𝐴𝐶 = 𝑜ℎ ⋅ 𝑜𝑤 ⋅ 𝑜𝑐 ⋅ 𝑘𝑤 ⋅ 𝑘ℎ ⋅ 𝑖𝑐 = 55 ⋅ 55 ⋅ 96 ⋅ 11 ⋅ 11 ⋅ 3 = 105,415,200

⇒ 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝐼 =
𝑛𝑀𝐴𝐶

𝑑𝑀𝐴𝐶
≈ 278 𝑜𝑝𝑠/𝐵

But: here we assume unlimited 

amount of local memory



Example: Analytical Model for CNN Convolutional Layer (3) 
Conv1 of AlexNet

                                   

  

                           

𝑛𝑀𝐴𝐶 = 𝑜ℎ ⋅ 𝑜𝑤 ⋅ 𝑜𝑐 ⋅ 𝑘𝑤 ⋅ 𝑘ℎ ⋅ 𝑖𝑐 = 55 ⋅ 55 ⋅ 96 ⋅ 11 ⋅ 11 ⋅ 3 = 105,415,200

⇒ 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝐼 =
𝑛𝑀𝐴𝐶

𝑑𝑀𝐴𝐶
≈

1

4
𝑜𝑝𝑠/𝐵

Opposite extreme: we assume no 

local memory

    

   

𝑑𝑀𝐴𝐶 = 2 ⋅ 𝑛𝑀𝐴𝐶 ⋅ 𝐵𝑖 ≈ 420𝑀𝑖𝐵



Example: Analytical Model for CNN Convolutional Layer (4) 
Conv1 of AlexNet

                                   

  

                           

Practical setup: limited amount 

of local memory

    

   

    

 for(row=0; row<oh; row++){

for(col=0; col<ow; col++){

for(k=0; k<oc; k++){

for(ti=0; ti<ic; t i ++){

for(i=0; i<kh; i++){

for(j=0; j<kw; j++){

L : outputfm [ k ] [ row ] [ col ] += 

kernels[ k ][ ti ][ i ][ j ]∗inputfm[ti][sw∗row+i][sh∗col+j];

}}}}}}

Maths Textbook 

Convolution algorithm 



Example: Analytical Model for CNN Convolutional Layer (5) 
Conv1 of AlexNet – with very simple tiling

                                   

  

                           
                 

Practical setup: limited amount 

of local memory

    

   

    

 

Width + Height 

+ Channel 

+ Kernel Tiling



Example: Analytical Model for CNN Convolutional Layer (6) 
Conv1 with tiling

Source: Optimizing FPGA-based Accelerator Design for Deep
Convolutional Neural Networks, Cheng Zhang, 2015



Example: Analytical Model for CNN Convolutional Layer (6) 
Conv1 with tiling

Now it gets more tricky: Taking into acount non-integer 

relations of tiling parameters and channel dimensions:

Tiling also brings the operational intensity 

closer to the optimum HW utilization point



Example: Analytical Model, Mapping Conv to HW Resources 

 
 
  
  
 
 
 
  

    

    
   

         

       

        
         

          

          

          

        

   

        

        

     

   

   
        

        

        

        

        

           

   
    

   

         

Tiling parameters and MAC Cell number and depth should 

match tiling parameters

#MAC cells can be configured to scale 

up/down peak performance



Roofline model

Operational Intensity (Operations/Byte)



Roofline model

Operational Intensity (Operations/Byte)



Analytical Model as Python Generated Spreadsheet 
Expressions represent both Algorithmic and HW -> calculate attainable performance



Exploring different numbers of MAC cells and their depth



Analytical Model Summary
What is achieved and what comes next?

What we have seen:
+ Good first order analysis of static effects 
+ Results within minutes
~ Requires deep understanding of 

both algorithm and architecture  

What is not covered
- Implementation overhead is hard 
to predict and not ‚priced in‘ in 
first round

- Omits dynamic effects
- Joint performance and power
is difficult



+ Good first order 

+ Results within minutes

- Omits dynamic effects

How to design a DLA?

+ Perfect accuracy

- High computational needs

- High turn-around costs

+ Good for hardware exploration

+ Simulations in minutes/hours

~ Varying Accuracy

High-Level Architecture

Analytical Models RTL Simulation

validate

back-annotate

+ Good for SW development

+ Simulations in minutes/hours

+ Trace Ops, Memory accesses

- Low Timing Accuracy

Functional LT Model (VDK)

Refine

Refine

Refine

validate

back-annotate

validate

back-annotate
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Capture Workload Model

Platform Architect Ultra
Providing a Comprehensive Library of Generic and Vendor Specific Models

Interconnect Models

Generic:
•SBL-TLM2-FT (AXI)
•SBL-GCCI (ACE, CHI)

IP Specific:
•Arteris FlexNoC & Ncore
•Arm AHB/APB
•Arm PL300
•Arm SBL-301
•Arm SBL-400
•Synopsys DW AXI

Memory Subsystems

• Generic multiport 
memory controller 
(GMPMC)
• DesignWare uMCTL2 

memory controller
• DesignWare LPDDR5 

memory controller
• Co-simulate with RTL

User Traffic, 

Scenarios for 

Exploration

Traffic, Processors, RTL

• Task-based and trace-based 
workload models
• Cycle accurate processor for 

ARM, ARC, Tensilica, CEVA
• RTL Co-simulation/emulation

Capture Architecture Model

Analyze Power & Performance

https://www.google.de/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjk_fj1isLgAhXCaVAKHbTwBakQjRx6BAgBEAU&url=https://github.com/foss-for-synopsys-dwc-arc-processors&psig=AOvVaw0jsFxqxK3GUhCwVrlSyrA0&ust=1550469437436507


Workload Modeling and Mapping

• Workload Model
– Task level parallelism and dependencies

– Characterized with processing cycles and 
memory accesses

• SoC Platform Model
– Accurate SystemC Transaction level models of 

processing elements, interconnect and memory

• Map workload to platform

• Analyze performance metrics
– End-to-end constraints

– Workload activity

– Utilization of resources

– Interconnect metrics
• Latency, Throughput, Contention 

• Outstanding transactions

• …

Virtual Prototype

ACC

Task D
(proc conv)Task A

DMA

Task B
(read image)

Memory 
subsystem
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te
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cycles:       0

rd_bytes: 0x200

wr_bytes:     0

Task C
(read kernel)

record

cycles:    2000

rd_bytes:     0 

wr_bytes:     0 



System Level Power Modeling

• Workload Model
– Task level parallelism and dependencies
– Characterized with processing cycles 

and memory accesses

• SoC Platform Model
– Accurate SystemC Transaction level 

models of processing elements, 
interconnect and memory

• System-level Power Overlay Model
– Define power state machine per 

component
– Bind power models to 

Virtual Prototype
– Measure power and 

performance based 
on real activity and utilization

Virtual Prototype
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• Automated generation of workloads from AI 
frameworks 
– AI Operator Library for Neural Network modeling 

• E.g. Convolution, Matmul, MaxPool, BatchNorm etc.

– Example workload model of ResNet50 Neural Network

– Utility to convert prototxt description to workload model 
using AI operator library

• AI centric HW architecture model library
– VPUs configured to represent AI compute and DMA engines

– Interconnect and memory subsystem models

– Example performance model of 
NVIDIA Deep Learning Accelerator (NVDLA) 

• AI centric analysis views: memory + processing
utilization 

Exploration & optimization of AI designs

Platform Architect Ultra AI Exploration Pack (XP)

Operator Library

NVDLA Performance 
Model Example

CNN
workload model



Workload Model of One Convolution Layer

read
input

read 
coefficients

calculate 
convolutions

write output 
feature maps

AI algorithm params Mapping params

Workload params

Scaling parameters reflect 
the DLA architecture – can 
be taken from analytical 
model.
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Resnet18
Neural 

Network

Example: Resnet-18 (Inference) with NV-DLA

Resnet18 task graph

NVDLA platform

Goals: 

 100 ms latency, minimize power, minimize energy

Optimize Hardware configuration:

–SIMD width

–Burst size, outstanding transactions

– speed of DDR memory and of data path

map

Import prototxt



ResNet-18 Workload model generated with AI-XP



Example: Brief Overview of NVDLA 

 
 
  
  
 
 
 
  

    

    
   

         

       

        
         

          

          

          

        

   

        

        

     

   

   
        

        

        

        

        

           

   
    

   

         

Convolution Engine (CONV_CORE)
• Works on two sets of data: offline-trained kernels (weights) and input 

features (images)
• configurable MAC units and convolutional buffer (RAM)
• Executes operations such as tf.nn.conv2d

Single Data Point Processor (SDP)
• Applies linear and non-linear (activation) functions onto individual data points. 
• Executes e.g. tf.nn.batch_normalization, tf.nn.bias_add, tf.nn.elu, tf.nn.relu, 

tf.sigmoid, tf.tanh, and more.

Planar Data Processor (PDP)
• Applies common CNN spatial operations such as min/max/avg pooling
• Executes e.g. tf.nn.avg_pool, tf.nn.max_pool, tf.nn.pool.

Cross-channel Data Processor (CDP)
• Processes data from different channels/features, e.g. local response normalization 

(LRN) function 
• Executes e.g. tf.nn.local_response_normalization

Data Reshape Engine (RUBIK)
• Performs data format transformations (splitting, slicing, merging, …)
• Executes e.g. tf.nn.conv2d_transpose, tf.concat, tf.slice, etc.



VP Simulation Results of Initial Configuration

Performance limited by processing, use wider SIMD data path

DDR utilization

Resource utlization

Throughput

Outstanding 
transactions

Task trace

Transaction trace



AlexNet (Norm1):
Expected: 580,800 Bytes
Measured: 654,720 Bytes

Inflation by ~12.72%

Simulation Reveals Implementation Effects… (1)
Differences between calculated and measured data read/write amount

 “Dark Bandwidth”



Simulation Reveals Implementation Effects… (2)
Differences between calculated and measured execution time

          

          

    

          

          

    

  

  

          

          

Convolutional Layers 1&2 of LeNet on NVDLA



Back-Annotate Simulation Findings To Analytical Model

Platform Architect / Simulation Model Spreadsheet / Analytical Model 

Caffe .prototxt



Impact of SIMD Width on Performance
Resource Utilization of CONV Datapath (yellow), CONV DMA (red) and other components
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DDR Memory Bandwidth and Power Improvement
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Resnet 18 Example Sweep
Goal: 100 ms latency, minimize power & energy

Sweep parameters

– Burst size: 16, 32

– Outstanding transactions: 4, 8

– DDR memory speed: DDR4-1866, DDR4-2400 

– Clock frequency of data path: 1, 1.33, 2GHz

– SIMD width: 64, 128 operations per cycle
Sensitivity

Root-Cause
Analysis



Sweep Over Hardware Parameters, Latency

DDR4 speed

GHz

SIMD

Burst size

Outstanding 
transactions



Power/Performance/Energy Trade-off Analysis

Optimal 
solution

Datapath GHz

DDR

SIMD

Burst size

Outstanding Tx



Resnet18
Neural 

Network

Example: Resnet-18 with NV-DLA

NVDLA platform

Goal: 

– 100 ms latency, minimize energy

Optimize Hardware configuration:

– SIMD width: 128 operations per cycle

– Burst size: 32 bytes

– outstanding transactions: 8

– speed of DDR memory: DDR4-1866

– speed of data path: 1GHz

map

generate

Resnet18 task graph



Summary
• Be fast and get it right!

• Shift Left with Virtual Prototyping

• Joint Optimization of Algorithm, 
Architecture, and Compiler

Power/Performance

Task graph

Virtual HW Platform

map

analyze

Neural 
Network

Sensitivity

Analytical Model
generate

Explore & Refine



Thank You 

Questions
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