
Building Portable Stimulus Into
your IP-XACT Flow

Petri Karppa, Lauri Matilainen – Nokia Networks
Matthew Ballance – Mentor, A Siemens Company

SoC Creation and Validation Challenges

• Assembling an SoC by hand is time-consuming
– Labor-intensive processes lead to bugs
– IP is characterized by separate documentation

• Creating SoC-level tests is time consuming as well
– Bare-metal software-driven environments are complex
– Tests are typically hand-coded (low-productivity)

Making IP Reusable with IP-XACT

• IP-XACT usage goals
– Standardized building blocks for SoCs
– Vendor neutrality (EDA tools & IP/SoC designs)
– Design automation & generation

• IP-XACT component content
– Ports/BusInterfaces – characterize block interfaces
– Views/FileSets – specify associated files (HDL, HVL, C/C++)
– MemoryMaps – capture addressable elements inside the block
– ModelParameters – capture parameterizable aspects

Making IP Reusable with IP-XACT

• IP-XACT enables SoC assembly at a higher level
– Connect IPs at the interface (vs signal) level
– Automatically validate connection correctness

• Automate generation of correct-by-construction
– HDL netlist
– Compilation scripts
– System memory map

SoC Design Flow at Nokia

• Capture IP register models in Excel
• Generate VHDL register model
• Source of memory map meta-data

SoC Design Flow at Nokia

• Package IP with IP_XACT meta-data
– Bus interfaces
– Memory maps
– File sets and view

• Packaging tool automates process

SoC Design Flow at Nokia

• Designs composed from IP-XACT IP
• IP-XACT tooling derives

– Top-level RTL
– Makefiles and compilation scripts
– UVM register model
– C header files
– Register documentation

SoC Design Flow at Nokia

• Generated files undergo checks
– Linting
– CDC checking
– Synthesis
– Sanity simulation

• Some customization may be needed
– Tailor-made user-specific releases

Test Reuse Challenges
• Different tests used throughout a project

– Wastes Time
– Error Prone

• UVM constrained-random
– High value at IP level
– Limited value for SoC-level testing

• C tests usually directed
– Hard to create
– Miss corner cases EMULATIONSIMULATION FPGA PROTO

FULL SYSTEMIP BLOCK SUBSYSTEM

UVM C

PSS Enables Test Intent Reuse
• Single specification of test intent
• Defines "scenario space“ by capturing:

– interactions
– dependencies
– resource contention

• Tool automates generation
– Multiple targets
– Target-specific customization

UVM C

Portable Stimulus

IP BLOCK SUBSYSTEM FULL SYSTEM

EMULATIONSIMULATION FPGA PROTO

PSS Actions
Capture behavioral intent

• Behaviors captured as actions
– Simple actions map directly to target implementation
– Compound actions modeled via activity

• Actions are modular
– Reusable
– Interact with other actions
– Inputs and Outputs define dataflow requirements
– Claim system resources subject to target constraints

• Activity defines scheduling of critical actions
– Define scheduling constraints
– Flow objects and resources constrain scenarios

buffer mem_seg_b {
rand bit[31:0] addr;
rand bit[31:0] size;

}

resource dma_channel_r { }

action dma_mem2mem_xfer_a {
input mem_seg_b src;
output mem_seg_b dst;
lock dma_channel_r channel;

constraint size_match {
src.size == dst.size;

}

// Target implementation left unspecified
}

PSS Elements - Components

• Components are type namespaces

• Reusable groupings of
– Actions
– Pools of objects and resources

• Pools capture available resources
– Used by actions running in the component

component dma_c {
buffer mem_seg_b {

rand bit[31:0] addr;
rand bit[31:0] size;

}

resource dma_channel_r { }

pool dma_channel_r channels[16];

action dma_mem2mem_xfer_a {
// . . .

}
}

PSS Component Tree

• Component Tree captures system resources
– Component instances available in the system
– Shared resource pools at the SoC level

• Actions run in the component tree context
– Use available resources
– Parallel action execution limited by available resources

component sys_c {
cpu_c core_cluster_0;
cpu_c core_cluster_1;

dma_c dma0;
dma_c dma1;

}

PSS Elements – Test Realization

• Test intent must be mapped to an implementation
• PSS supports

– Calls to external methods
– Mapping to string templates

• Type extension provides flexibility
– Package each mapping
– Select target-specific mapping

• UVM sequence
• Embedded software

package dma_c_pkg {

import void dmac_start_xfer(
bit[31:0] channel,
bit[31:0] src_addr,
bit[31:0] dst_addr,
bit[31:0] size

);

extend action dma_c::dma_mem2mem_xfer_a {
exec body {

dmac_start_xfer(
channel.instance_id,
src.addr,
dst.addr,
src.size

);
}

}
}

Embedding PSS in IP-XACT

• Reference IP-XACT files
• Collect per-IP in a fileset

• Collect per-languages files
– UVM implementation
– C implementation

Embedding PSS in IP-XACT

• Identify key PSS elements
– Component
– Top-level actions

-Automation can help
- Identify relevant PSS files
- Identify root component and actions

IP-XACT and PSS
Automate Component-Tree Creation

• PSS component tree often mirrors design hierarchy
– Component instances correspond to IP and subsystem instances

• An IP-XACT tool can automate component tree creation
– Create a PSS component instance for each IP-XACT component

component simple_soc_c {

cpu_c C0;
cpu_c C1;

codec_c codec;
crypto_c crypto;

dma_c DMA;
}

IP-XACT and PSS
Automated Simple Test Creation

• Verification engineers will design most scenarios
• But… simple bring-up tests can be created automatically

– Create scenarios that run one of the top-level actions
– Create scenarios that run a set of the top-level actions

component dma_smoke_test_c extends simple_soc_c {

action dma_test_a {
repeat (10) {

do dma_c::dma_mem2mem_xfer_a;
}

}
}

component dma_smoke_test_c extends simple_soc_c {

action dma_test_a {
repeat (10) {

schedule {
do dma_c::dma_mem2mem_xfer_a;
do dma_c::dma_mem2mem_xfer_a;
do crypto_c::encrypt_a;
do crypto_c::encrypt_a;
do crypto_c::decrypt_a;
do crypto_c::decrypt_a;
do codec_c::encode_a;
do codec_c::encode_a;
do codec_c::decode_a;
do codec_c::decode_a;

}
}

}
}

IP-XACT and PSS
Bootstrap test scenario creation

• Automatically-generated PSS structure accelerates test creation
– Aggregates available action and data types
– Identifies root actions which are most useful to test writers

• Generated component tree saves user time and effort

• Automatically-generated memory map is always current with design

• Selected IP-XACT “view” drives appropriate test realization

IP-XACT and PSS
Better Together

• Combining IP-XACT and PSS boosts SoC-level test creation
– IP-XACT boosts design composition productivity
– PSS boosts test-creation productivity

• Combined, test infrastructure can be created from design structure
– Generated PSS component tree based on IPs in the design
– Collection of available data types and actions
– Automated creation of simple test scenarios

	Building Portable Stimulus Into your IP-XACT Flow
	SoC Creation and Validation Challenges
	Making IP Reusable with IP-XACT
	Making IP Reusable with IP-XACT
	SoC Design Flow at Nokia
	SoC Design Flow at Nokia
	SoC Design Flow at Nokia
	SoC Design Flow at Nokia
	Test Reuse Challenges
	PSS Enables Test Intent Reuse
	PSS Actions�Capture behavioral intent
	PSS Elements - Components
	PSS Component Tree
	PSS Elements – Test Realization
	Embedding PSS in IP-XACT
	Embedding PSS in IP-XACT
	IP-XACT and PSS�Automate Component-Tree Creation
	IP-XACT and PSS�Automated Simple Test Creation
	IP-XACT and PSS�Bootstrap test scenario creation
	IP-XACT and PSS�Better Together

