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SoC Creation and Validation Challenges

• Assembling an SoC by hand is time-consuming
– Labor-intensive processes lead to bugs
– IP is characterized by separate documentation

• Creating SoC-level tests is time consuming as well
– Bare-metal software-driven environments are complex
– Tests are typically hand-coded (low-productivity)



Making IP Reusable with IP-XACT

• IP-XACT usage goals
– Standardized building blocks for SoCs
– Vendor neutrality (EDA tools & IP/SoC designs)
– Design automation & generation

• IP-XACT component content
– Ports/BusInterfaces – characterize block interfaces
– Views/FileSets – specify associated files (HDL, HVL, C/C++)
– MemoryMaps – capture addressable elements inside the block
– ModelParameters – capture parameterizable aspects 



Making IP Reusable with IP-XACT

• IP-XACT enables SoC assembly at a higher level
– Connect IPs at the interface (vs signal) level
– Automatically validate connection correctness

• Automate generation of correct-by-construction
– HDL netlist
– Compilation scripts
– System memory map



SoC Design Flow at Nokia

• Capture IP register models in Excel
• Generate VHDL register model
• Source of memory map meta-data



SoC Design Flow at Nokia

• Package IP with IP_XACT meta-data
– Bus interfaces
– Memory maps
– File sets and view

• Packaging tool automates process



SoC Design Flow at Nokia

• Designs composed from IP-XACT IP
• IP-XACT tooling derives

– Top-level RTL
– Makefiles and compilation scripts
– UVM register model
– C header files
– Register documentation



SoC Design Flow at Nokia

• Generated files undergo checks
– Linting
– CDC checking
– Synthesis 
– Sanity simulation

• Some customization may be needed
– Tailor-made user-specific releases



Test Reuse Challenges
• Different tests used throughout a project

– Wastes Time
– Error Prone

• UVM constrained-random 
– High value at IP level
– Limited value for SoC-level testing

• C tests usually directed
– Hard to create
– Miss corner cases EMULATIONSIMULATION FPGA PROTO

FULL SYSTEMIP BLOCK SUBSYSTEM

UVM C



PSS Enables Test Intent Reuse
• Single specification of test intent
• Defines "scenario space“ by capturing:

– interactions 
– dependencies
– resource contention

• Tool automates generation
– Multiple targets
– Target-specific customization

UVM C
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PSS Actions
Capture behavioral intent

• Behaviors captured as actions
– Simple actions map directly to target implementation
– Compound actions modeled via activity

• Actions are modular
– Reusable
– Interact with other actions
– Inputs and Outputs define dataflow requirements
– Claim system resources subject to target constraints

• Activity defines scheduling of critical actions
– Define scheduling constraints
– Flow objects and resources constrain scenarios

buffer mem_seg_b {
rand bit[31:0] addr;
rand bit[31:0]  size;

}

resource dma_channel_r { }

action dma_mem2mem_xfer_a {
input mem_seg_b src;
output mem_seg_b dst;
lock dma_channel_r channel;

constraint size_match {
src.size == dst.size;

}

// Target implementation left unspecified
}



PSS Elements - Components

• Components are type namespaces

• Reusable groupings of
– Actions
– Pools of objects and resources

• Pools capture available resources
– Used by actions running in the component

component dma_c {
buffer mem_seg_b {

rand bit[31:0] addr;
rand bit[31:0] size;

}

resource dma_channel_r { }

pool dma_channel_r channels[16];

action dma_mem2mem_xfer_a {
// . . . 

}
}



PSS Component Tree

• Component Tree captures system resources
– Component instances available in the system
– Shared resource pools at the SoC level

• Actions run in the component tree context
– Use available resources
– Parallel action execution limited by available resources

component sys_c {
cpu_c core_cluster_0;
cpu_c core_cluster_1;

dma_c dma0;
dma_c dma1;

}



PSS Elements – Test Realization

• Test intent must be mapped to an implementation
• PSS supports

– Calls to external methods
– Mapping to string templates

• Type extension provides flexibility
– Package each mapping
– Select target-specific mapping

• UVM sequence
• Embedded software

package dma_c_pkg {

import void dmac_start_xfer(
bit[31:0] channel,
bit[31:0] src_addr,
bit[31:0] dst_addr,
bit[31:0] size

);

extend action dma_c::dma_mem2mem_xfer_a {
exec body {

dmac_start_xfer(
channel.instance_id, 
src.addr, 
dst.addr,
src.size

);
}

}
}



Embedding PSS in IP-XACT

• Reference IP-XACT files
• Collect per-IP in a fileset

• Collect per-languages files
– UVM implementation
– C implementation



Embedding PSS in IP-XACT

• Identify key PSS elements
– Component
– Top-level actions

-Automation can help
- Identify relevant PSS files
- Identify root component and actions



IP-XACT and PSS
Automate Component-Tree Creation

• PSS component tree often mirrors design hierarchy
– Component instances correspond to IP and subsystem instances

• An IP-XACT tool can automate component tree creation
– Create a PSS component instance for each IP-XACT component

component simple_soc_c {

cpu_c C0;
cpu_c C1;

codec_c codec;
crypto_c crypto;

dma_c DMA;
}



IP-XACT and PSS
Automated Simple Test Creation

• Verification engineers will design most scenarios
• But… simple bring-up tests can be created automatically

– Create scenarios that run one of the top-level actions
– Create scenarios that run a set of the top-level actions

component dma_smoke_test_c extends simple_soc_c {

action dma_test_a {
repeat (10) {

do dma_c::dma_mem2mem_xfer_a;
}

}
}

component dma_smoke_test_c extends simple_soc_c {

action dma_test_a {
repeat (10) {

schedule {
do dma_c::dma_mem2mem_xfer_a;
do dma_c::dma_mem2mem_xfer_a;
do crypto_c::encrypt_a;
do crypto_c::encrypt_a;
do crypto_c::decrypt_a;
do crypto_c::decrypt_a;
do codec_c::encode_a;
do codec_c::encode_a;
do codec_c::decode_a;
do codec_c::decode_a;

}
}

}
}



IP-XACT and PSS
Bootstrap test scenario creation

• Automatically-generated PSS structure accelerates test creation
– Aggregates available action and data types
– Identifies root actions which are most useful to test writers

• Generated component tree saves user time and effort

• Automatically-generated memory map is always current with design

• Selected IP-XACT “view” drives appropriate test realization



IP-XACT and PSS
Better Together

• Combining IP-XACT and PSS boosts SoC-level test creation
– IP-XACT boosts design composition productivity
– PSS boosts test-creation productivity

• Combined, test infrastructure can be created from design structure
– Generated PSS component tree based on IPs in the design
– Collection of available data types and actions
– Automated creation of simple test scenarios
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