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Abstract—This paper presents actual experience in the conversion and development of a SystemC code generator 

alongside the project using it. The baseline was an existing generator for a different code generation framework using 

a different data model. Thus the chosen approach to create a working solution in a relatively short time had also to 

reuse as much as possible of existing generator code. Our solution to address these requirements uses a layered setup 

of data preparation and code generation functionality, which turned out to be well suited for fast generator creation 

and efficient maintenance. This approach can be considered general beyond the initial scope of the SystemC target. 
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I.  INTRODUCTION 

Virtual Prototypes (executable models of hardware) are a successful way to improve a classic SoC development 

process as they allow for a shift-left of the Software development before the RTL is available (in contrast to FPGA-

based solutions). In this process, the Virtual Prototype appears as one further deliverable in parallel to RTL and 

Software. A comparison between a sequential SoC development process and a process using a VP is shown in 

Figure 1. 

 

Figure 1. Sequential and parallel SoC development process 

The crucial part of this process is a mandatory consistency of the HW/SW interface between the involved 

collaterals. This means that the description (names, types, addresses,...) of the Control Registers must match 

between the VP model, the final Hardware (represented by RTL collateral) and the Software (typically represented 

by access macros). So in order to achieve this shift left, an efficient development methodology is needed which is 

tightly coupled to the overall SoC process. Typically, a machine-readable form of the register descriptions in 

combination with automatic code generation is employed. 

Such a flow puts up the additional need for a powerful code generation methodology. Whenever new 

requirements to the actual design occur in the specification phase (like a new type of register, a new side effect 
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when a field is written, new requirements regarding width of registers, etc.) the code generation for all collaterals 

must be adapted in a reasonable time. So an approach is needed for efficient generator development. 

The work described in this paper originated from the following scenario: For a running project we needed to 

provide a generation flow using register descriptions in SystemRDL [1] and requiring SystemC [2] collaterals 

compliant to an internal SystemC register library. A flow to do this was available using an existing XML-based 

solution as an intermediate format (together with an according SystemC generator), i.e., the flow included 

conversion from SystemRDL to this format and then the actual SystemC generation. However, it turned out that 

some customer requirements regarding specific elements (in this case: specific types of registers and bus interfaces) 

could not be met by the data model of the intermediate format. However, a new intermediate format and a path 

from SystemRDL to this new format was available, but no generator for SystemC. 

This paper describes our approach to provide a native SystemC generator and at the same time create a reusable 

basis for future generators. In order to get fast results we had also to reuse as much as possible from the old 

generator. This paper discusses our experiences with this work. 

In the following, we will motivate a general Single-Source Flow as a basis for our approach. We will then 

describe our generator architecture. The paper is concluded by results achieved and an outlook to future work. 

II. SINGLE-SOURCE FLOW 

A major issue to be addressed for VP development is the need to ensure consistency of the VP model with the 

actual hardware. While the functional equivalence has to be ensured by e.g., Co-Verification, the consistency of 

specification information (like register names and offsets, base addresses, interface names and types, etc.) can be 

ensured during development by a Single-Source Flow as shown in below Figure 2.  

 

Figure 2. Single-Source flow 

The basic concept of a Single-Source flow is to capture the specification information in a formalized way (XML 

files) and create according collateral for the design tasks through automated code generation. 

It should be noted that a Single-Source Flow does not only contain a code generation tooling but also an efficient 

handling and release process for the formalized XML files. It must be ensured that: 

 All necessary data is captured by architects and the data is correct. 

 There is a well-known place for the formalized specs and all project members take it from that place. A 

well-defined release process for the formalized specs must be established, including a build system which 

automatically propagates changes to collaterals throughout the project. 

 While local copies are allowed for debugging, any persistent changes to the formalized spec must be 

integrated into the Single-Source XML files, and the Single-Source files are the only ones to be propagated 

to the whole project. 
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It can be seen, that such a process needs significant discipline and more effort at the specification side 

(architects), but the advantages justify this effort, especially if a VP with an essential demand for consistency to the 

hardware is developed: 

 Consistency between hardware, VP, software, verification and documentation. This includes reducing 

unpleasant bugs found typically towards the end of the project. Possible problems without a Single-Source 

process include teams using different versions of the specification, or even that the written specification 

differs from the hardware. 

 Fast propagation of spec changes (especially: fast propagation of bug fixes in the specification) 

III. FLEXIBLE GENERATOR DEVELOPMENT SHOWN BY SYSTEMC GENERATOR 

Once a formalized specification is available, it can be used to generate a wide variety of collaterals. Regarding 

these generators it has turned out that there is the need for both "standardized" generators (e.g., documentation, 

RTL) as well as for user-defined generators. While the first type of generators is typically handled by central support 

teams (who also provide the underlying methodology) the second type requires a convenient way for end-users to 

write their own generators.  

To fulfill this requirement, one approach having proven to be quite successful in the original framework of the 

SystemC generator is the combination of a high-level API to retrieve the needed information and a template engine 

supporting a scripting language (an approach known from content management systems). The use of a scripting 

language is already a major convenience for both end-users and central generator writers. A template engine adds 

a further productivity boost as it allows to represent the target collateral in a markup-style way, i.e., fixed text does 

not change and special constructs allow for retrieval of data elements, traversing over lists, conditional text or 

embedding of scripts for more sophisticated calculations. 

The approach shown here thus uses a binding of the API of the target framework to the Python scripting 

language, a high-level API in Python to prepare the data and an open-source template engine (which is also written 

in Python). 

This approach is exemplified by the SystemC generator shown in Figure 3: 

 

Figure 3. Architecture of SystemC Generator 

A. Low-Level-API 

The low-level API provides only the basic functions for handling of the XML files containing the formalized 

description like opening of these files, setting up the environment and getting/setting arbitrary properties stored in 
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the files. This API level is oblivious of a specific data model. It provides the same interfacing functionality to e.g. 

register descriptions and pin lists. 

It should be noted that both XML formats involved in the task described are proprietary formats to describe 

design data in a formal way. We are aware that standard solutions like IP-XACT [3] describe similar data. However, 

while IP-XACT targets IP-packaging and focuses on information needed to integrate existing IPs, the proprietary 

formats target (in-house) code generation for IPs. Thus these formats carry more information and feature advanced 

mechanisms to foster the reuse of these formalized descriptions as a part of the IP specification. 

B. High-Level-API:  

Based on the low-level functionality, the next layer contains general higher-level functions for a specific "topic" 

or type of data which is in this case register descriptions as well as port information. Functions typically include 

traversal of the description tree and calculating common register attributes (e.g., the effective address) as well as 

handling of sequencing information, preparing hierarchical names and others. An important property of this level 

is its agnosticism of any target collateral. 

In the following some example high-level-api functions are described. We will illustrate the functions by their 

relation to SystemC although this API level is target-independent: 

 Return a list of "physical" registers of a module: As one specific register of a module may be visible on one 

or more SystemC sockets, a list of the actually existing registers (independent of the socket visibility) is 

needed to create the instances. 

 Return a list of registers visible on a certain socket: When it comes to actual registration of registers at a 

SystemC socket, a second view on the set of registers is needed showing the subset visible on a specified 

socket. It should be noted, that this function is also needed for collaterals like Software header files (in 

contrast to the above function retutning the list of all physical registers) as Software can only access registers 

through a bus interface. 

 Return a list of bit fields in a register: Depending on the collateral, reserved bitfields or bit field gaps may 

or may not be filtered out automatically. For SystemC typically both reserved fields and gaps are removed. 

 Return a list of sockets and ports: While a bus interface (which may comprise lots of RT-level ports) is 

modeled in Transaction-Level SystemC as one socket element, individual ports (like clock, reset, IP-specific 

ports like TxD, RxD for a serial interface,...) need to be handled separately so the API has to take care of 

handling both types of perimeter connections. 

C. SystemC Context 

While simple generators may directly run on the High-level API, more sophisticated ones may also need 

collateral-specific processing. For the SystemC generator this additional information is prepared by a layer called 

SystemC Context. We use Aspect Oriented Programming to add language-specific information to the existing 

elements received from the High-Level API. In this sense, the SystemC Context does a Model-to-Model 

transformation from the original data model prepared by the High-Level API to a language-specific model which 

contains all information needed for the output collateral. Examples for such information are described in the 

following: 

 Element naming: For the generation of SystemC elements (for registers, ports, .sockets,...) a specific naming 

convention has to be followed and needed datatypes have to be calculated. Names may also depend on the 

type of element and its position in the hierarchy. 

 Class information: The element properties have to be mapped to the correct class of the underlying SystemC 

library. As this information is needed several times, it is prepared once and stored at the element. 
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D. Mako Files 

 After all needed information is available, the actual format of the output files (in this case C++ source and 

header files) needs to be manifested. It has shown that a template engine (e.g., the Mako engine [4]) known from 

application in Content Management Systems gives significant benefits in describing the output format over a pure-

code implementation with explicit print statements.  

The Mako files do not perform large calculation tasks (although it is possible through embedded Python code) 

but contain templates for the generation of code parts. The template engine approach allows for structuring the 

generator according to the output file instead of the data model which makes development and maintenance more 

convenient than pure scripting code. 

IV. RESULTS 

The previous flow from SystemRDL to SystemC was using a proprietary framework which inherited limitations 

based on its data model. This lead to the need for workarounds and loss of information during the (multiple) 

conversion flows. 

In comparison, the target framework for our approach is by itself better suited for this flow due to the following 

reasons: 

 The conversion path from SystemRDL is much more streamlined than to the old framework, so that we had 

a clearer data basis to work on without inherent workarounds for unsupported features. 

 The data model of the target framework is a superset of the old framework, so we did not have additional 

migration problems caused by needed new workarounds. In this sense, the actual migration effort could 

focus on code rewrite and optimizing the reuse of existing code. 

The selected approach therefore consisted of these steps: 

 First get a working version of the new generator, reusing as much from the old one as possible. This version 

would of course have the restrictions of the old generator. 

 Based on the first version we would enhance the generator step by step with requirements from the running 

project. 

The first step could be done by rewriting and adapting existing Python/template code for the High-Level-API, 

the SystemC Context and the template files in a reasonably short time of four weeks (the low-level Python binding 

was already available). Most work went as expected into the High-Level-API while the SC-Context and the 

template files needed mostly only refactoring of names. Being able to mostly reuse the template files proved 

especially useful as we could get compilable output files in an early stage. 

In the second phase, the extension of the base generator, the actual focus of development effort into the different 

layers depended on the actual requirement and is more heterogeneous. However, the chosen layering of the 

generator functionality proved efficient and reasonable, as we could clearly put new functionality to a specific layer 

without needing to touch any other one, thus keeping the development effort for each new feature low. As we could 

release some feature enhancements within few days we consider our approach very well suited for maintainability 

of generators. 

We are aware that the real value of our approach needs to be proven in the future for the migration of more 

generators from the old framework to the new one. Our primary objective was to create a reusable baseline for 

generator development and the actual reuse factor will be verified not before more generator migrations are done. 

A general drawback of our approach - caused by the high reuse of existing Python code - is the long runtime of 

generation (~ 15 min. for a complex system with 9.3k registers). However, this is mainly caused by a "straight-

forward", non-optimized data access to the Low-level API. We expected this as we bought the quick availability of 

a working solution with a suboptimal runtime. This drawback can be addressed by optimizing the code towards the 

new API as well as implementing according caching techniques. 
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V. FUTURE WORK 

The SystemC generator described in this paper will still being enhanced. So we expect a further solidification 

of the lower layers, making them more robust for reuse. In parallel, a streamlining of the code (High-level API up 

to Mako files) will take place in order to improve the runtime of the generation.  

For the long-term, the conversion of further generators from the old framework using this methodology is 

planned based on the work described here, which will enable use of the more advanced solution and also the 

replacement of the obsoleted framework. 

VI. SUMMARY 

We presented an approach to generally implement code generators building on a Low-level API, using multiple 

layers of functionality. In our approach we tried to focus on these requirements:  Allowing for migration of existing 

code, getting quickly to a working solution, building a reuseable infrastructure for future generators and ease the 

generator maintenance. We found that our approach does satisfy these requirements due to the use of Python for 

the main functionality and a template engine to describe the collateral format. Future work includes hardening of 

the lower levels in order to reduce runtime as well as verifying the concept for future generators. 
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