
Bringing Regression Systems into the 21
st
 Century

David Crutchfield

Cypress Semiconductor

New Product Development

Lexington, Kentucky

daac@cypress.com

Thom Ellis

Mentor Graphics Corporation

Design Verification Technology Division

Wilsonville, Oregon

thomas_ellis@mentor.com

Abstract—Today’s verification projects are responsible for

verifying some of the largest and most complex designs we have

ever seen. Accordingly, the gathering and tracking of

development and verification metrics, including coverage and

test results, is more important than ever to project success. From

figuring out what files are necessary in building a DUT (Design

Under Test) and Testbench to knowing what development and

verification metrics need to be gathered and tracked, the task can

be significant. Like many others, teams at Cypress traditionally

had created verification management environments to meet a

specific project need. Scripts were either borrowed from other

projects or created from scratch and tweaked for the targeted

project. Over time this ad-hoc script management often

transformed verification environments into an unintelligible

mass of interconnected files. Managing such environments

requires dedicated resources for each individual project, thus

wasting scarce time and money as verification demands

continued to grow. This paper will focus on an infrastructure

created at Cypress to abstract away file list and metric gathering

by providing a uniform front-end shell and back-end database,

boosting predictability of testbench creation and metric tracking

across multiple projects. Additionally, this paper will discuss

various metrics collected and the use of Mentor’s Verification

Run Manager (VRM) toolset in gathering metrics, tracking

coverage and reducing test suites to quickly and efficiently obtain

coverage goals.

Keywords—functional verification; verification management;

verification metrics; verification coverage; test ranking

I. INTRODUCTION

For years verification management environments within
Cypress have been tailored to suit a given project‟s needs.
This lead to largely diverging variations of scripts, each of
which had to be managed by dedicated resources. Maintaining
these multiple management environments quickly became an
overwhelming task given increasing complexity and other
demands on verification environments. Additionally, having to
interface with multiple management environments created a
drag on efficiency, making both resources and projects less
portable and eliminating opportunities for shared learning and
project reuse. A standard methodology for managing
verification was required to provide a uniform interface to
users and promote IP reuse. Over time, as enhancements to
this standard methodology were made, the entire company
benefitted, instead of pockets within the company making
improvements. Ideally, each project can benefit from
performance enhancements or efficiency improvements, as

well as metrics collection, progress tracking and reporting
changes. Furthermore, with consistent metric collection,
project regressions can be compared both within and across
projects company-wide.

This paper will discuss the verification management
infrastructure which includes the following:

 division of labor between Ruby scripts and Questa‟s
Verification Run Manager (VRM)

 design and testbench tree and file list gathering

 test tree infrastructure and test lists

This paper will also discuss metrics and report generation
which includes:

 metrics gathering

 test-level output and reports

 regression-level output and reports

 trending of data

Finally, efficient coverage through ranking, including
automated seed generation and test ranking with Questa‟s
Verification Management tool, will be discussed.

II. VERIFICATION MANAGEMENT SYSTEM

INFRASTRUCTURE

A. Division of Labor

Cypress‟ VMS, or Verification Management System, is
divided between gathering information about the design and
testbench through Ruby scripts, and launching tasks through
Questa VRM (Verification Run Manager). While Questa
VRM was used for launching jobs, it was not required. A
suitable tool could be created to schedule, launch and manage
jobs in a server grid. Questa VRM was selected to take
advantage of its job-management capabilities as well as its
automated features such as coverage merging.

The Ruby script handles all front-end tasks and parses
through user created files, including design configuration files;
testbench files; and tests, compilation and simulation
arguments. These user-created files are named dut.files,
tb.files, and vms.cfg and will be discussed in detail later.
Configuration information can also be passed through a test list
and command line arguments as needed.

Once configuration data is gathered it is compiled and
placed into intermediate files to be read by Questa VRM.
Questa VRM executes based on a RMDB (Run Management
DataBase) file. For the purpose of this project the RMDB was
designed to be generic; the database configured Questa VRM
to read in two separate files. Both files are a set of TCL arrays
representing tasks to be executed by VRM. The first file
contains compilation tasks while the second file contains
simulation tasks. Each task consists of TCL array elements
providing detailed information about the task such as design or
testbench element name, compilation arguments, test name and
simulation arguments, among others. The RMDB is primarily
an XML file with TCL constructs. This drove the decision to
utilize TCL arrays within the intermediate compilation and
simulation task files.

B. Design Tree and File List Gathering

Design networks or trees are described with simple
embedded file lists within each design that define what is
needed for its inclusion. A design is typically a collection of
components or IP that build a subsystem or chip. Within VMS
a design is considered to follow this premise, where an IP will
be a tree of prerequisite designs making up the whole. With
this in mind, an IP will declare what prerequisite designs and
extra HDL files are necessary to build its intended function.

VMS standardizes on design description using a file titled
dut.files. This file consists of commands with arguments that
can be various things. The commands within dut.files will be
interpreted by VMS and used hierarchically to build a design
tree which will be flattened to create a design compilation list
for verification. An additional VMS requirement is to ensure
the DUT is what will be synthesized. Therefore, VMS is used
in synthesis list generation, as well. One dut.files for an IP will
be used to drive all downstream tools, including verification
and synthesis, with the appropriate flattened file list. To
hierarchically enable VMS, all IPs must have a dut.files
present. Once they are in place, gathering the necessary files
for a given IP is as simple as referencing the design by
name. For example, consider the following diagram:

Design4

Design1 Design2 Design3

Subsystem

Figure 1: Design Subsystem Tree

In this example Subsystem has three prerequisite

designs. They are Design1, Design2, and Design3. Note that

Design1 and Design2 both have the prerequisite design
Design4. When dut.files is created for Subsystem it will only
need to list Design1, Design2, and Design3 as dependencies. If
there are HDL files unique to Subsystem, then those would be
listed, as well.

Cypress has a defined directory structure that all designs
must follow. All designs must be at the same directory level
within a workspace and the directory structure for each design
must match what has been specified. This provides an
expectation that all tools can rely on in finding information.
Part of this requirement is that all designs have dut.files created
and placed in a specific folder for VMS to find. For our
example in Figure 1, it is required that each design have an
activity folder named rtl (i.e. workspace/design_name/rtl). In
rtl will be dut.files. Therefore, Subsystem has dut.files in rtl
(WS/Subsystem/rtl/dut.files). For the other designs, it would be
WS/Design1/rtl/dut.files, WS/Design2/rtl/dut.files and so on.
The contents of dut.files for Subsystem are given below:

ddc Design1

ddc Design2

ddc Design3

rtl subsystem.v

Here dut.files in Subsystem declares through the command
“ddc” that Design1, Design2, and Design3 are prerequisites
containing their own dut.files to be parsed. Additionally, an
HDL file, subsystem.v, has been declared with command “rtl”.
The significance of “ddc” and “rtl” commands will be
discussed more in a moment. Taking the example further,
Design1 has its own dut.files with the following contents:

ddc Design4

rtl something.v

rtl design1_top.v

Here dut.files in Design1 declares that Design4 is a prerequisite
and HDL files something.v and design1_top.v are needed.
While this is a simple example, it becomes obvious that
complex systems can be created through simple reference to
less complex designs.

VMS has been designed to support multiple commands. At
this point “ddc” and “rtl” have been introduced. The command
“ddc” stands for Design Data Container and tells VMS to look
in a specified design‟s rtl folder for another dut.files. The
command “rtl” tells VMS to locate an HDL file based on
relative location. For instance, if “rtl design1_top.v” is given,
then VMS will look in the current folder for design1_top.v.
However, this command has more significance than just
identifying an HDL file. It also tells VMS that the specified
file will be used for synthesis. This is necessary because VMS
has been configured to build downstream file lists for both
verification and synthesis, ensuring that the design verified is
what will be synthesized. Another command, “behave,” is
used to identify files that are not intended for synthesis but
should be included for verification. For a full list of commands
supported in dut.files see Table 1.

Command Arg1 Arg2 Purpose

behave <filename> The filename provided will be
included while building a design
verification file list but not a
synthesis file list.

ddc <design> <arg> Specifies a prerequisite design.
Directs the tool to look in
prerequisite design‟s rtl folder for
dut.files. If Arg2 is specified then
dut.files.arg will be targeted. If
dut.files.arg is not found then
rtl/arg/dut.files will be targeted.

gate <filename> The filename provided will be
included while building a design
verification file list but not a
synthesis file list.

include <include
path>

 Specifies an include path where
include files may be located.
Translates to „+incdir‟ option.

rtl <filename> The filename provided will be
included while building both a
verification compilation file list and
a synthesis file list.

subdir <dir
name>

<arg> Specifies a sub-directory based on
the current location where a dut.files
can be found. If Arg2 is provided
then dut.files.arg is processed
instead.

Table 1: Command List for dut.files

C. Testbench Tree and File List Gathering

Testbench networks or trees are described with simple
embedded file lists in the same way that designs are with
dut.files. For a testbench, the file list is named tb.files and is
required to exist in the functional verification folder fnv under
the activity folder tb for each design. Much like a design, a
complex testbench is a compilation of multiple simple
testbench components. Looking again at Figure 1, each design
could have testbench information necessary to build the
subsystem testbench. If so, then tb.files for Subsystem might
look like the following:

ddc Design1

ddc Design2

ddc Design3

While the “ddc” commands are the same as those of Subsystem
dut.files, they have a different meaning when found in tb.files
and cause VMS to search in tb/fnv of a design for tb.files.

For VMS, a testbench is described with a set of commands
in tb.files that are almost identical to those used for a design.
However, there are differences. For instance, “rtl” as used for
designs has no meaning with testbenches. Instead, “tb” is
given to refer to HDL files. Additionally, as testbenches
sometimes utilize C/C++ files, the command “c” is also
provided to identify C files intended for C compilation. What
type of C compilation (ARM, g++, or gcc) will be further
determined based on VMS configuration settings as given

through vms.cfg. This will be discussed further in the next
section. For a full list of tb.files commands see Table 2.

Command Arg1 Arg2 Purpose

c <filename> Specifies C code that needs to be
compiled. VMS will use armcc,
g++, or gcc depending on vms.cfg
settings.

ddc <design> <arg> Specifies a prerequisite testbench.
Directs the tool to look in
prerequisite testbench‟s tb/fnv
folder for tb.files. If Arg2 is
specified then tb.files.arg will be
targeted. If tb.files.arg is not found
then tb/fnv/arg/tb.files will be
targeted.

include <include
path>

 Specifies an include path where
include files may be located.
Translates to „+incdir‟ option.

subdir <dir name> <arg> Specifies a sub-directory based on
the current location where a tb.files
can be found. If Arg2 is provided
then tb.files.arg is processed
instead.

subsystem <name> Specifies a subsystem. This
command will direct the tool to
fetch testbench files for this sub-
system from tb.files.name targeted
in the current directory.

tb <filename> The filename provided will be
included while building a testbench
verification compilation file list.
The directory of filename will
automatically be added to the file
list with „+incdir‟.

Table 2: Command List for tb.files

D. Verification Management Configuration

The file vms.cfg is used to provide compilation arguments
for design and testbench files. It also provides simulation
arguments for tests. The default location of this file is in
tb/fnv/tests for a given design. Simulation mode information
can also be found in vms.cfg as compilation and simulation
arguments are appended with arbitrary mode keys.
Additionally, there can be multiple vms.cfg files within a
testbench‟s test tree. More will be discussed on test trees later.
Table 3 lists most of the vms.cfg parameters and their intended
uses. Note that all parameters can have <_mode> appended.
As stated before, this key is used to identify which arguments
should be used for specific modes. A mode can be specified
either through the command line or in a user-created test list
with the option “-sim_mode”. An example might be “-
sim_mode RTL,” which tells VMS to select vms.cfg arguments
appended with “_RTL”.

Parameter Description

C_COMPILE_ARGS<_mode> Arguments to be used when compiling
C files found through tb.files.

C_COMPILE_TYPE<_mode> Specifies what compiler to use when
compiling C files found in tb.files.
Options are ARM, g++, and gcc. For
ARM, ctest.elf will be created for each
test. For g++ and gcc, ctest.so will be
created and shared by all tests through
–sv_lib. VMS will automatically add
–sv_lib to simulation arguments for all
tests.

C_LINK_ARGS<_mode> Arguments to be used when linking
ARM compiled object files.
Compiling and linking is done in one
step for g++ and gcc.

COMPILE_ARGS<_mode> Arguments to be used when compiling
files found through dut.files.

FILELIST<_mode> Declaration of dut.files if the default,
rtl/dut.files is not desired. This will be
the first dut.files targeted. Multiple
dut.files can be listed.

OPT_COMPILE_ARGS<_mode> Arguments to be used when optimizing
a design or testbench before
simulation.

SIM_ARGS<_mode> Arguments to be used when launching
a simulation.

TB_FILIEST<_mode> Declaration of tb.files if the default,
tb/fnv/tb.files is not desired. This will
be the first tb.files targeted. Multiple
tb.files can be listed.

TB_COMPILE_ARGS<_mode> Arguments to be used when compiling
HDL files found through tb.files.

Table 3: vms.cfg Parameters

Sometimes it is necessary to further specify or override the
vms.cfg parameters for given verification runs. This is
provided through VMS command line arguments. For most
parameters, there is a companion command line option. For
instance, “-comp_args” can be used on the command line to
give more arguments for DES_COMPILE_ARGS or override
them as necessary. Table 4 lists vms.cfg parameters and
companion command line options. Note that <_mode> is not
appended to command line options. This is because mode is
specified via command line through “–sim_mode”. Simulation
mode can be targeted at run time using this option.

Parameter Command Line Option

C_COMPILE_ARGS<_mode> -c_comp_args

C_LINK_ARGS<_mode> -c_link_args

DES_COMPILE_ARGS<_mode> -comp_args

SIM_ARGS<_mode> -sim_args

TB_COMPILE_ARGS<_mode> -tb_comp_args

Table 4: vms.cfg Parameters and Command Line Options

E. Test Tree Infrastructure and Test Lists

VMS is designed to automatically determine which tests to
execute without being provided a test list. That is to say, if

configured properly, VMS can figure out what tests to execute.
This is accomplished through building a test tree in a format
that VMS understands. A test tree is created with inheritance
of information throughout branches and leafs to fully describe
test arguments unique to each test. Each branch or leaf will
have a vms.cfg file with information specific to the branch or
leaf. Information is inherited down through branches to other
branches or leafs. Priority is given to lower levels, meaning
that a leaf has priority over a branch with conflicting
arguments. If given, command line options will take priority
over all levels. Consider Figure 2 below:

tb

group1

test1

tests
vms.cf

g

Subsystem

test2

vms.cf

g
vms.cf

g

vms.cf

g

fnv

test3 vms.cf

g

Figure 2: Subsystem with Test Tree

Shown here is Subsystem with a simple test tree under the
folder “tests”. There are three tests. Test1 and test2 are
grouped under group1. They will both inherit arguments from
the vms.cfg files above them in “tests” and “group1” for
simulation and compilation. Furthermore, test1 and test2 can
have unique arguments as defined by vms.cfg under the folders
test1 and test2. Test3 does not share group1 arguments but
does inherit from the “tests” vms.cfg arguments. At execution,
VMS will search the test tree and identify test1, test2 and test3
as available tests, build arguments properly and launch each.

Before execution, VMS will create a test list of what it
thinks should be executed. This test list can be used to target
tests within the test tree as desired. For instance, the test list
for all tests would look like:

group1/test1

group1/test2

test3

Arguments can be provided in the test list, as well. For
example, one could change definitions without modifying
vms.cfg files to try out certain configurations. Below is an
example test list where only test1 is desired with a new or
changed parameter:

 group1/test1 –sim_args ‘ –GCLK_FREQ=64’

F. Launching VMS

VMS execution is enabled through a Ruby function named
vms_run at a Unix prompt. VMS is part of the Cypress CAD
flow and can be accessed anywhere throughout the company
for any given project. If a test tree is configured properly to
represent a suite of tests, then a user can simply type vms_run
and VMS will automatically build a test list from the test tree
and start execution. If needed, a user can provide a test list
with –tl test_list on the command line. In either the test list or
via the command line, a user can further configure execution
using command line options as shown in Table 4.

Once invoked, VMS will gather information from user
input through command line arguments, the design and
testbench, and test list command line arguments if they exist
and create two intermediate files as discussed before. While
processing these intermediate files, Questa‟s Verification Run
Manager will launch jobs accordingly and generate reports as
specified through the RMDB file.

Status messages about launched jobs are printed to the Unix
terminal. Messages are also stored in a log file to view once a
regression has completed (vms.log). Additionally, a CSV file,
Status.csv, is created that will provide tests listed with status
and metrics for each listed. An example of a vms.log is given
in Figure 3 below. Also, an example of Status.csv loaded in a
spreadsheet editor is given in Figure 4.

Figure 3: Example vms.log

Figure 4: Example Status.csv

III. METRICS GATHERING, OUTPUT GENERATION AND

REPORTING

During simulation, several coverage metrics are gathered
for each test. This information is stored in the Unified
Coverage Database (UCDB). For verification engineers this is
a well known practice that will not be discussed in further
detail here. In this section, what will be discussed is the use of
test UCDBs to hold additional test metrics. Additionally, the
standard placement of test- and regression-level output and
reports will be discussed. This section will close with trending
reports over multiple regressions.

A. Metrics

VMS captures multiple metrics after a test has finished and
stores them in the test UCDB. A list of metrics is given in
Table 5 with a short description of each. While these metrics
will not appear automatically in Questa-generated reports, they
can be accessed at any time from a UCDB through Questa
commands or APIs. Further work for VMS is to consolidate
regression-gathered metrics into a centralized database making
regression data accessible to anyone within Cypress on an as-
needed basis. This effort should be complete by midyear 2014.

Metric Description

Number of Unique
Tests

Number of unique tests in test tree. No
duplicates due to seeds or argument differences
in test list.

Total Number of Tests Total number of tests for current regression.
Includes all seeds and argument variations.

Simulation Mode The simulation mode or sim_mode “key”
specified for each test.

Maximum Runtime The maximum runtime as specified by the user
for each test.

Passing Tests Total number of passing tests for current
regression.

Warning Tests Total number of tests with a warning for current
regression.

Failing Tests Total number of failing tests for current
regression.

Contributing Tests Total number of contributing tests to coverage
for current regression.

Non-contributing Tests Total number of non-contributing tests to
coverage for current regression.

Total CPU Hours Total number of CPU hours used by current
regression.

Test CPU Hours The CPU hours for each test.

Total Questa Licenses
Used

Total number of licenses used by current
regression.

Average Resource Wait
Time

The average time that tests are waiting on
resources. This is the pending state for LSF
launch.

Table 5: Metrics Captured by VMS

B. Test Level Output and Reports

In a previous section, the VMS test tree was discussed.
VMS uses this tree to gather information about tests and
determine what tests to launch. VMS is designed to always be
launched from tb/fnv/run. Under the run folder, VMS will
replicate the test tree found under “tests”. All tests will be
executed from the replicated test tree and all output and report
information for each test can be found in its tree branch. For
each test, a simulation log file, UCDB file, waveform file
(.wlf), debug file (.dbg) and HTML report is generated.
Waveforms, debug files and HTML are optionally enabled.
The HTML report will have all coverage information for a
given test gathered during simulation. Figure 5 below shows a
test-level HTML report generated by Questa after finishing a
test.

Figure 5: Individual Test HTML Report

For debugging purposes, a file named rerun is created in

each test folder. This rerun file can be used to see exactly what
command was used to launch a test. Additionally, it can be
used to rerun a test without using VMS, if needed.

C. Regression-Level Output and Reports

During a regression run, each test UCDB is automatically
merged into a regression UCDB by Questa‟s Verification Run
Manager and the merged UCDB is placed under the run folder

in the “output” directory. If selected, VMS will also create a
regression-level HTML report from this merged UCDB and
place it in “report” under the run folder. The HTML report
will have all regression-level coverage information as well as
regression-level metrics gathered during the regression. Figure
6 below shows a regression-level HTML report generated by
Questa after a regression has finished.

Figure 6: Regression Level HTML Report

D. Trending

Some metrics such as coverage, failing tests, and CPU
hours (and many others) are trendable over multiple
regressions. It is desirable to see how verification data is
converging over time to make predictions on closure and
resource planning. When enabled, VMS will generate a trend
UCDB and place it in run/output. Additionally, it will create a
trend HTML report and place it in run/report. Figure 7 shows
an example trend HTML report.

Figure 7: Trend HTML Report

In this example, there were two regressions executed. In

the first regression there were 2,622 tests. The last regression
was executed after ranking tests and identifying only tests that
contribute to coverage. More on this will be discussed later.
For now note that coverage did not change between regressions
but the total number of tests was reduced from 2,622 to 306.

In Figure 8 the CPU time trend is shown. Here we can see
that total CPU time between regressions decreased from 67,855
sec to 8,173 sec.

Figure 8: CPU Time Trend

IV. EFFICIENT COVERAGE THROUGH RANKING

A. Automated Seed Generation

VMS provides automation in generating random seeds with
multiple options for individual tests. As stated before, VMS
utilizes a test tree where specific information about individual
tests can be stored. For instance, test arguments such as
sv_seed can be stored as needed. Within vms.cfg VMS
provides a parameter named SEED. SEED can have a list of
numbers or number pairs separated by “,” or “;”. If a single
number is given, then it will be applied as sv_seed in
simulation command line arguments. If a number pair is given,
then the first number will seed a random number generator and
the second number will indicate how many numbers to pull
from the random number generator. Each random number will
be applied as sv_seed in simulation command line arguments.
Additionally, “random” can be given as an argument in SEED.
If so, then the current time will seed the random number
generator before pulling a random number. Consider the
following example:

SEED = [1, 5 6, random 20]

In this example, there are 27 total tests to be created with
different sv_seed values. One test will have sv_seed = 1, 6
tests will have random seeds where 5 was used to seed the
random number generator before pulling out 6 sv_seed values,
and 20 tests will have random seeds where the current time was
used to seed the random number generator.

 In addition to vms.cfg SEED, command line options or test
list command line options can be used to configure seeding. In
Table 6 are additional seed control switches that can be applied
either through VMS command line arguments or in a user-
created test list.

Option Description

-randseq Generate sequential sv_seeds starting at a random
number.

-rand_seed Use the argument to seed the random number generator.

-num_seeds Generate then number of sv_seeds specified.

-sv_seed Set simulation sv_seed directly with the argument
provided.

Table 6: Command Line Options for sv_seed Generation

Using “-randseq” allows control over creating sequential
random seeds. For instance, the first sv_seed will be randomly
generated as described before. However, additional seeds will
be generated by incrementing the initial randomly generated
number. The options “-rand_seed” and “-num_seeds” are the
same as number pairs in parameter SEED within a vms.cfg file.
The use of “-sv_seed” is obvious, however, if combined with
“-num_seeds”, additional seeds will be generated by
incrementing the value given in “-sv_seed”.

Given this automation, random seeds can be targeted
through multiple ways. Once seeds are found that contribute to
coverage, they can be stored in individual tests through SEED

in vms.cfg files. This provides an efficient mechanism to
randomly test a design and eliminate seeds that do not
contribute to coverage that would otherwise waste precious
resources.

B. Test Ranking with Questa’s Verification Management

The end goal of verification is to catch all design issues
before fabrication. Historically, verification continues long
after fabrication as engineers never feel like everything has
been covered or they feel that something could possibly have
been missed. However, in reality the goal is to cover as much
as possible in the shortest amount of time while efficiently
utilizing limited resources. Often this effort is aided by
leveraging constrained random verification. VMS provides
automation in seed generation to address the random goal,
though a way to determine what randomly generated seeds are
valuable is needed. Mentor‟s Questa Verification Management
tool suite meets this need.

Test ranking is part of the Questa Verification Management
suite and is quite useful in pointing out tests that contribute to
coverage. Taking advantage of this tool provides a closed loop
between generating random seeds, identifying important seeds
and storing them through VMS automation to quickly and
efficiently achieve coverage goals. As an example, consider
one of Cypress‟s internal designs. Before using VMS and
Questa‟s test ranking feature, we created 2,622 tests to achieve
100% coverage. The seeds were manually picked and
replicated for multiple tests. By using Questa‟s test ranking
feature it was shown that only 306 tests were needed to achieve
100% coverage. Running a regression for 2,622 tests was
consuming 18.88 CPU hours to complete. For the 306 tests
identified, only 2.27 CPU hours was required, thus allowing
Cypress to realize a savings of nearly 90%. Further, the wall
clock time reduced from 4 hr 14 min to 49 min. Table 7 is
provided below showing results for several designs and the
savings realized.

 Original Results Ranked Results CPU Perf
Savings

 No.
Tests

cvg CPU(T) No.
Tests

cvg CPU(T)

Des1 25 99.7% 4 hr 16 99.7% 2 hr 50%

Des2 2622 99.9% 22.4 hr 306 99.9% 2.2 hr 90%

Des3 146 97.4% 16.4 hr 41 97.4% 8.94 hr 46%

Des4 45 99.9% 3.6 hr 28 99.9% 2 hr 46%

Table : Test Ranking Results

Currently, test ranking and seed storage are manual steps
that a user must complete. Future additions to VMS will
include automating the test ranking process and creating a
VMS test list from ranking results.

V. SUMMARY

The Verification Management System developed within
Cypress provides a standard methodology for all verification
engineers in managing verification. A uniform interface is
provided promoting reuse and allowing each project to benefit
from performance enhancements or efficiency improvements,
as well as metrics collection, progress tracking and reporting
changes. Furthermore, with consistent metric collection,
project regressions can be compared both within and across
projects company-wide. This will position Cypress well for
handling the growing complexity and demands of verification
environments over time.

ACKNOWLEDGMENT

D. C. thanks Mark Glasser for his input over time while
creating VMS. He was a champion within Cypress for
building this environment when it initially wasn‟t received
well. Also D. C. thanks Thom Ellis for helping work through
various RMDB coding issues throughout development.

