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Abstract—Today’s verification projects are responsible for 

verifying some of the largest and most complex designs we have 

ever seen.  Accordingly, the gathering and tracking of 

development and verification metrics, including coverage and 

test results, is more important than ever to project success.  From 

figuring out what files are necessary in building a DUT (Design 

Under Test) and Testbench to knowing what development and 

verification metrics need to be gathered and tracked, the task can 

be significant.  Like many others, teams at Cypress traditionally 

had created verification management environments to meet a 

specific project need.  Scripts were either borrowed from other 

projects or created from scratch and tweaked for the targeted 

project.  Over time this ad-hoc script management often 

transformed verification environments into an unintelligible 

mass of interconnected files.  Managing such environments 

requires dedicated resources for each individual project, thus 

wasting scarce time and money as verification demands 

continued to grow.  This paper will focus on an infrastructure 

created at Cypress to abstract away file list and metric gathering 

by providing a uniform front-end shell and back-end database, 

boosting predictability of testbench creation and metric tracking 

across multiple projects.  Additionally, this paper will discuss 

various metrics collected and the use of Mentor’s Verification 

Run Manager (VRM) toolset in gathering metrics, tracking 

coverage and reducing test suites to quickly and efficiently obtain 

coverage goals.   

Keywords—functional verification; verification management; 

verification metrics; verification coverage; test ranking 

I. INTRODUCTION 

For years verification management environments within 
Cypress have been tailored to suit a given project‟s needs.  
This lead to largely diverging variations of scripts, each of 
which had to be managed by dedicated resources.  Maintaining 
these multiple management environments quickly became an 
overwhelming task given increasing complexity and other 
demands on verification environments.  Additionally, having to 
interface with multiple management environments created a 
drag on efficiency, making both resources and projects less 
portable and eliminating opportunities for shared learning and 
project reuse.  A standard methodology for managing 
verification was required to provide a uniform interface to 
users and promote IP reuse.  Over time, as enhancements to 
this standard methodology were made, the entire company 
benefitted, instead of pockets within the company making 
improvements.  Ideally, each project can benefit from 
performance enhancements or efficiency improvements, as 

well as metrics collection, progress tracking and reporting 
changes.  Furthermore, with consistent metric collection, 
project regressions can be compared both within and across 
projects company-wide.    

This paper will discuss the verification management 
infrastructure which includes the following: 

 division of labor between Ruby scripts and Questa‟s 
Verification Run Manager (VRM) 

 design and testbench tree and file list gathering 

 test tree infrastructure and test lists   

This paper will also discuss metrics and report generation 
which includes: 

 metrics gathering 

 test-level output and reports 

 regression-level output and reports 

 trending of data 

Finally, efficient coverage through ranking, including 
automated seed generation and test ranking with Questa‟s 
Verification Management tool, will be discussed.   

II. VERIFICATION MANAGEMENT SYSTEM 

INFRASTRUCTURE 

A. Division of Labor 

Cypress‟ VMS, or Verification Management System, is 
divided between gathering information about the design and 
testbench through Ruby scripts, and launching tasks through 
Questa VRM (Verification Run Manager).   While Questa 
VRM was used for launching jobs, it was not required.  A 
suitable tool could be created to schedule, launch and manage 
jobs in a server grid.  Questa VRM was selected to take 
advantage of its job-management capabilities as well as its 
automated features such as coverage merging. 

The Ruby script handles all front-end tasks and parses 
through user created files, including design configuration files; 
testbench files; and tests, compilation and simulation 
arguments.  These user-created files are named dut.files, 
tb.files, and vms.cfg and will be discussed in detail later.  
Configuration information can also be passed through a test list 
and command line arguments as needed.  



Once configuration data is gathered it is compiled and 
placed into intermediate files to be read by Questa VRM.  
Questa VRM executes based on a RMDB (Run Management 
DataBase) file.  For the purpose of this project the RMDB was 
designed to be generic; the database configured Questa VRM 
to read in two separate files.  Both files are a set of TCL arrays 
representing tasks to be executed by VRM.  The first file 
contains compilation tasks while the second file contains 
simulation tasks.  Each task consists of TCL array elements 
providing detailed information about the task such as design or 
testbench element name, compilation arguments, test name and 
simulation arguments, among others.  The RMDB is primarily 
an XML file with TCL constructs.  This drove the decision to 
utilize TCL arrays within the intermediate compilation and 
simulation task files.  

B. Design Tree and File List Gathering 

Design networks or trees are described with simple 
embedded file lists within each design that define what is 
needed for its inclusion.  A design is typically a collection of 
components or IP that build a subsystem or chip.  Within VMS 
a design is considered to follow this premise, where an IP will 
be a tree of prerequisite designs making up the whole.  With 
this in mind, an IP will declare what prerequisite designs and 
extra HDL files are necessary to build its intended function.  

VMS standardizes on design description using a file titled 
dut.files.  This file consists of commands with arguments that 
can be various things. The commands within dut.files will be 
interpreted by VMS and used hierarchically to build a design 
tree which will be flattened to create a design compilation list 
for verification.  An additional VMS requirement is to ensure 
the DUT is what will be synthesized.  Therefore, VMS is used 
in synthesis list generation, as well.  One dut.files for an IP will 
be used to drive all downstream tools, including verification 
and synthesis, with the appropriate flattened file list.  To 
hierarchically enable VMS, all IPs must have a dut.files 
present.  Once they are in place, gathering the necessary files 
for a given IP is as simple as referencing the design by 
name.  For example, consider the following diagram: 
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Figure 1: Design Subsystem Tree 

 
In this example Subsystem has three prerequisite 

designs.  They are Design1, Design2, and Design3.  Note that 

Design1 and Design2 both have the prerequisite design 
Design4.  When dut.files is created for Subsystem it will only 
need to list Design1, Design2, and Design3 as dependencies.  If 
there are HDL files unique to Subsystem, then those would be 
listed, as well.       

Cypress has a defined directory structure that all designs 
must follow.  All designs must be at the same directory level 
within a workspace and the directory structure for each design 
must match what has been specified.  This provides an 
expectation that all tools can rely on in finding information.  
Part of this requirement is that all designs have dut.files created 
and placed in a specific folder for VMS to find.  For our 
example in Figure 1, it is required that each design have an 
activity folder named rtl (i.e. workspace/design_name/rtl).  In 
rtl will be dut.files.  Therefore, Subsystem has dut.files in rtl 
(WS/Subsystem/rtl/dut.files).  For the other designs, it would be 
WS/Design1/rtl/dut.files, WS/Design2/rtl/dut.files and so on.  
The contents of dut.files for Subsystem are given below: 

ddc Design1 

ddc Design2 

ddc Design3 

rtl subsystem.v 

Here dut.files in Subsystem declares through the command 
“ddc” that Design1, Design2, and Design3 are prerequisites 
containing their own dut.files to be parsed.  Additionally, an 
HDL file, subsystem.v, has been declared with command “rtl”.  
The significance of “ddc” and “rtl” commands will be 
discussed more in a moment.  Taking the example further, 
Design1 has its own dut.files with the following contents: 

ddc Design4 

rtl something.v 

rtl design1_top.v 

Here dut.files in Design1 declares that Design4 is a prerequisite 
and HDL files something.v and design1_top.v are needed.  
While this is a simple example, it becomes obvious that 
complex systems can be created through simple reference to 
less complex designs. 

VMS has been designed to support multiple commands.  At 
this point “ddc” and “rtl” have been introduced.  The command 
“ddc” stands for Design Data Container and tells VMS to look 
in a specified design‟s rtl folder for another dut.files.  The 
command “rtl” tells VMS to locate an HDL file based on 
relative location.  For instance, if “rtl design1_top.v” is given, 
then VMS will look in the current folder for design1_top.v.  
However, this command has more significance than just 
identifying an HDL file.  It also tells VMS that the specified 
file will be used for synthesis.  This is necessary because VMS 
has been configured to build downstream file lists for both 
verification and synthesis, ensuring that the design verified is 
what will be synthesized.  Another command, “behave,” is 
used to identify files that are not intended for synthesis but 
should be included for verification.  For a full list of commands 
supported in dut.files see Table 1. 

 



Command Arg1 Arg2 Purpose 

behave <filename>  The filename provided will be 
included while building a design 
verification file list but not a 
synthesis file list. 

ddc <design> <arg> Specifies a prerequisite design.  
Directs the tool to look in 
prerequisite design‟s rtl folder for 
dut.files.  If Arg2 is specified then 
dut.files.arg will be targeted.  If 
dut.files.arg is not found then 
rtl/arg/dut.files will be targeted.  

gate <filename>  The filename provided will be 
included while building a design 
verification file list but not a 
synthesis file list. 

include <include 
path> 

 Specifies an include path where 
include files may be located.  
Translates to „+incdir‟ option. 

rtl <filename>  The filename provided will be 
included while building both a 
verification compilation file list and 
a synthesis file list. 

subdir <dir 
name> 

<arg> Specifies a sub-directory based on 
the current location where a dut.files 
can be found.  If Arg2 is provided 
then dut.files.arg is processed 
instead. 

Table 1: Command List for dut.files 

 

C. Testbench Tree and File List Gathering 

Testbench networks or trees are described with simple 
embedded file lists in the same way that designs are with 
dut.files.  For a testbench, the file list is named tb.files and is 
required to exist in the functional verification folder fnv under 
the activity folder tb for each design.  Much like a design, a 
complex testbench is a compilation of multiple simple 
testbench components.  Looking again at Figure 1, each design 
could have testbench information necessary to build the 
subsystem testbench.   If so, then tb.files for Subsystem might 
look like the following: 

ddc Design1 

ddc Design2 

ddc Design3 

While the “ddc” commands are the same as those of Subsystem 
dut.files, they have a different meaning when found in tb.files 
and cause VMS to search in tb/fnv of a design for tb.files. 

For VMS, a testbench is described with a set of commands 
in tb.files that are almost identical to those used for a design.  
However, there are differences.  For instance, “rtl” as used for 
designs has no meaning with testbenches.  Instead, “tb” is 
given to refer to HDL files.  Additionally, as testbenches 
sometimes utilize C/C++ files, the command “c” is also 
provided to identify C files intended for C compilation.  What 
type of C compilation (ARM, g++, or gcc) will be further 
determined based on VMS configuration settings as given 

through vms.cfg.  This will be discussed further in the next 
section.  For a full list of tb.files commands see Table 2.  

 

Command Arg1 Arg2 Purpose 

c <filename>  Specifies C code that needs to be 
compiled.  VMS will use armcc, 
g++, or gcc depending on vms.cfg 
settings. 

ddc <design> <arg> Specifies a prerequisite testbench.  
Directs the tool to look in 
prerequisite testbench‟s tb/fnv 
folder for tb.files.  If Arg2 is 
specified then tb.files.arg will be 
targeted.  If tb.files.arg is not found 
then tb/fnv/arg/tb.files will be 
targeted.  

include <include 
path> 

 Specifies an include path where 
include files may be located.  
Translates to „+incdir‟ option. 

subdir <dir name> <arg> Specifies a sub-directory based on 
the current location where a tb.files 
can be found.  If Arg2 is provided 
then tb.files.arg is processed 
instead. 

subsystem <name>  Specifies a subsystem.  This 
command will direct the tool to 
fetch testbench files for this sub-
system from tb.files.name targeted 
in the current directory. 

tb <filename>  The filename provided will be 
included while building a testbench 
verification compilation file list.  
The directory of filename will 
automatically be added to the file 
list with „+incdir‟. 

Table 2: Command List for tb.files 

 

D. Verification Management Configuration 

The file vms.cfg is used to provide compilation arguments 
for design and testbench files.  It also provides simulation 
arguments for tests.  The default location of this file is in 
tb/fnv/tests for a given design.  Simulation mode information 
can also be found in vms.cfg as compilation and simulation 
arguments are appended with arbitrary mode keys.  
Additionally, there can be multiple vms.cfg files within a 
testbench‟s test tree.  More will be discussed on test trees later.  
Table 3 lists most of the vms.cfg parameters and their intended 
uses.  Note that all parameters can have <_mode> appended.  
As stated before, this key is used to identify which arguments 
should be used for specific modes.  A mode can be specified 
either through the command line or in a user-created test list 
with the option “-sim_mode”. An example might be “-
sim_mode RTL,” which tells VMS to select vms.cfg arguments 
appended with “_RTL”.  

 

Parameter Description 

C_COMPILE_ARGS<_mode> Arguments to be used when compiling 
C files found through tb.files. 



C_COMPILE_TYPE<_mode> Specifies what compiler to use when 
compiling C files found in tb.files.  
Options are ARM, g++, and gcc.  For 
ARM, ctest.elf will be created for each 
test.  For g++ and gcc, ctest.so will be 
created and shared by all tests through 
–sv_lib.  VMS will automatically add 
–sv_lib to simulation arguments for all 
tests. 

C_LINK_ARGS<_mode> Arguments to be used when linking 
ARM compiled object files.  
Compiling and linking is done in one 
step for g++ and gcc.   

COMPILE_ARGS<_mode> Arguments to be used when compiling 
files found through dut.files.  

FILELIST<_mode> Declaration of dut.files if the default, 
rtl/dut.files is not desired.  This will be 
the first dut.files targeted.  Multiple 
dut.files can be listed. 

OPT_COMPILE_ARGS<_mode> Arguments to be used when optimizing 
a design or testbench before 
simulation. 

SIM_ARGS<_mode> Arguments to be used when launching 
a simulation. 

TB_FILIEST<_mode> Declaration of tb.files if the default, 
tb/fnv/tb.files is not desired.  This will 
be the first tb.files targeted.  Multiple 
tb.files can be listed. 

TB_COMPILE_ARGS<_mode> Arguments to be used when compiling 
HDL files found through tb.files. 

Table 3: vms.cfg Parameters 
   

Sometimes it is necessary to further specify or override the 
vms.cfg parameters for given verification runs.  This is 
provided through VMS command line arguments.  For most 
parameters, there is a companion command line option.  For 
instance, “-comp_args” can be used on the command line to 
give more arguments for DES_COMPILE_ARGS or override 
them as necessary.  Table 4 lists vms.cfg parameters and 
companion command line options.  Note that <_mode> is not 
appended to command line options.  This is because mode is 
specified via command line through “–sim_mode”.  Simulation 
mode can be targeted at run time using this option. 

 

Parameter Command Line Option 

C_COMPILE_ARGS<_mode> -c_comp_args 

C_LINK_ARGS<_mode> -c_link_args   

DES_COMPILE_ARGS<_mode> -comp_args  

SIM_ARGS<_mode> -sim_args 

TB_COMPILE_ARGS<_mode> -tb_comp_args 

Table 4: vms.cfg Parameters and Command Line Options 

 

E. Test Tree Infrastructure and Test Lists  

VMS is designed to automatically determine which tests to 
execute without being provided a test list.  That is to say, if 

configured properly, VMS can figure out what tests to execute.  
This is accomplished through building a test tree in a format 
that VMS understands.  A test tree is created with inheritance 
of information throughout branches and leafs to fully describe 
test arguments unique to each test.  Each branch or leaf will 
have a vms.cfg file with information specific to the branch or 
leaf.  Information is inherited down through branches to other 
branches or leafs.  Priority is given to lower levels, meaning 
that a leaf has priority over a branch with conflicting 
arguments.  If given, command line options will take priority 
over all levels.  Consider Figure 2 below: 
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Figure 2: Subsystem with Test Tree 
 

Shown here is Subsystem with a simple test tree under the 
folder “tests”.  There are three tests.  Test1 and test2 are 
grouped under group1.  They will both inherit arguments from 
the vms.cfg files above them in “tests” and “group1” for 
simulation and compilation.  Furthermore, test1 and test2 can 
have unique arguments as defined by vms.cfg under the folders 
test1 and test2.  Test3 does not share group1 arguments but 
does inherit from the “tests” vms.cfg arguments.  At execution, 
VMS will search the test tree and identify test1, test2 and test3 
as available tests, build arguments properly and launch each.   

Before execution, VMS will create a test list of what it 
thinks should be executed.  This test list can be used to target 
tests within the test tree as desired.  For instance, the test list 
for all tests would look like: 

group1/test1 

group1/test2 

test3 

Arguments can be provided in the test list, as well. For 
example, one could change definitions without modifying 
vms.cfg files to try out certain configurations.  Below is an 
example test list where only test1 is desired with a new or 
changed parameter: 

 group1/test1 –sim_args ‘ –GCLK_FREQ=64’  

 



F. Launching VMS  

VMS execution is enabled through a Ruby function named 
vms_run at a Unix prompt.  VMS is part of the Cypress CAD 
flow and can be accessed anywhere throughout the company 
for any given project.  If a test tree is configured properly to 
represent a suite of tests, then a user can simply type vms_run 
and VMS will automatically build a test list from the test tree 
and start execution.  If needed, a user can provide a test list 
with –tl test_list on the command line.  In either the test list or 
via the command line, a user can further configure execution 
using command line options as shown in Table 4.  

Once invoked, VMS will gather information from user 
input through command line arguments, the design and 
testbench, and test list command line arguments if they exist 
and create two intermediate files as discussed before.  While 
processing these intermediate files, Questa‟s Verification Run 
Manager will launch jobs accordingly and generate reports as 
specified through the RMDB file. 

Status messages about launched jobs are printed to the Unix 
terminal.  Messages are also stored in a log file to view once a 
regression has completed (vms.log).  Additionally, a CSV file, 
Status.csv, is created that will provide tests listed with status 
and metrics for each listed.   An example of a vms.log is given 
in Figure 3 below.  Also, an example of Status.csv loaded in a 
spreadsheet editor is given in Figure 4. 

 

 

Figure 3: Example vms.log 
 

 

 

 

Figure 4: Example Status.csv 

 

III. METRICS GATHERING, OUTPUT GENERATION AND 

REPORTING 

During simulation, several coverage metrics are gathered 
for each test.  This information is stored in the Unified 
Coverage Database (UCDB).  For verification engineers this is 
a well known practice that will not be discussed in further 
detail here.  In this section, what will be discussed is the use of 
test UCDBs to hold additional test metrics.  Additionally, the 
standard placement of test- and regression-level output and 
reports will be discussed.  This section will close with trending 
reports over multiple regressions. 

A. Metrics 

VMS captures multiple metrics after a test has finished and 
stores them in the test UCDB.  A list of metrics is given in 
Table 5 with a short description of each.  While these metrics 
will not appear automatically in Questa-generated reports, they 
can be accessed at any time from a UCDB through Questa 
commands or APIs.  Further work for VMS is to consolidate 
regression-gathered metrics into a centralized database making 
regression data accessible to anyone within Cypress on an as-
needed basis.  This effort should be complete by midyear 2014.  

 

Metric Description 

Number of Unique 
Tests 

Number of unique tests in test tree.  No 
duplicates due to seeds or argument differences 
in test list. 

Total Number of Tests Total number of tests for current regression.  
Includes all seeds and argument variations. 

Simulation Mode The simulation mode or sim_mode “key” 
specified for each test. 

Maximum Runtime The maximum runtime as specified by the user 
for each test. 

Passing Tests Total number of passing tests for current 
regression. 

Warning Tests Total number of tests with a warning for current 
regression. 

Failing Tests Total number of failing tests for current 
regression. 

Contributing Tests Total number of contributing tests to coverage 
for current regression. 

Non-contributing Tests Total number of non-contributing tests to 
coverage for current regression. 



Total CPU Hours Total number of CPU hours used by current 
regression. 

Test CPU Hours The CPU hours for each test. 

Total Questa Licenses 
Used 

Total number of licenses used by current 
regression.   

Average Resource Wait 
Time 

The average time that tests are waiting on 
resources.  This is the pending state for LSF 
launch. 

Table 5: Metrics Captured by VMS 

 

B. Test Level Output and Reports 

In a previous section, the VMS test tree was discussed.  
VMS uses this tree to gather information about tests and 
determine what tests to launch.  VMS is designed to always be 
launched from tb/fnv/run.  Under the run folder, VMS will 
replicate the test tree found under “tests”.  All tests will be 
executed from the replicated test tree and all output and report 
information for each test can be found in its tree branch.  For 
each test, a simulation log file, UCDB file, waveform file 
(.wlf), debug file (.dbg) and HTML report is generated.  
Waveforms, debug files and HTML are optionally enabled.  
The HTML report will have all coverage information for a 
given test gathered during simulation.  Figure 5 below shows a 
test-level HTML report generated by Questa after finishing a 
test. 

 

 

Figure 5: Individual Test HTML Report 

 
For debugging purposes, a file named rerun is created in 

each test folder.  This rerun file can be used to see exactly what 
command was used to launch a test.  Additionally, it can be 
used to rerun a test without using VMS, if needed.     

C. Regression-Level Output and Reports 

During a regression run, each test UCDB is automatically 
merged into a regression UCDB by Questa‟s Verification Run 
Manager and the merged UCDB is placed under the run folder 

in the “output” directory.  If selected, VMS will also create a 
regression-level HTML report from this merged UCDB and 
place it in “report” under the run folder.  The HTML report 
will have all regression-level coverage information as well as 
regression-level metrics gathered during the regression.  Figure 
6 below shows a regression-level HTML report generated by 
Questa after a regression has finished. 

 

 

Figure 6: Regression Level HTML Report 
 

D. Trending 

Some metrics such as coverage, failing tests, and CPU 
hours (and many others) are trendable over multiple 
regressions.  It is desirable to see how verification data is 
converging over time to make predictions on closure and 
resource planning.  When enabled, VMS will generate a trend 
UCDB and place it in run/output.  Additionally, it will create a 
trend HTML report and place it in run/report.  Figure 7 shows 
an example trend HTML report. 

 



 

Figure 7: Trend HTML Report 

 
In this example, there were two regressions executed.  In 

the first regression there were 2,622 tests.  The last regression 
was executed after ranking tests and identifying only tests that 
contribute to coverage.  More on this will be discussed later.  
For now note that coverage did not change between regressions 
but the total number of tests was reduced from 2,622 to 306.  

In Figure 8 the CPU time trend is shown.  Here we can see 
that total CPU time between regressions decreased from 67,855 
sec to 8,173 sec. 

   

Figure 8: CPU Time Trend 
 

IV. EFFICIENT COVERAGE THROUGH RANKING 

A. Automated Seed Generation 

VMS provides automation in generating random seeds with 
multiple options for individual tests.  As stated before, VMS 
utilizes a test tree where specific information about individual 
tests can be stored.  For instance, test arguments such as 
sv_seed can be stored as needed.  Within vms.cfg VMS 
provides a parameter named SEED.  SEED can have a list of 
numbers or number pairs separated by “,” or “;”.  If a single 
number is given, then it will be applied as sv_seed in 
simulation command line arguments.  If a number pair is given, 
then the first number will seed a random number generator and 
the second number will indicate how many numbers to pull 
from the random number generator.  Each random number will 
be applied as sv_seed in simulation command line arguments.  
Additionally, “random” can be given as an argument in SEED.  
If so, then the current time will seed the random number 
generator before pulling a random number.  Consider the 
following example: 

SEED = [1, 5 6, random 20] 

In this example, there are 27 total tests to be created with 
different sv_seed values.  One test will have sv_seed = 1, 6 
tests will have random seeds where 5 was used to seed the 
random number generator before pulling out 6 sv_seed values, 
and 20 tests will have random seeds where the current time was 
used to seed the random number generator.   

 In addition to vms.cfg SEED, command line options or test 
list command line options can be used to configure seeding.  In 
Table 6 are additional seed control switches that can be applied 
either through VMS command line arguments or in a user-
created test list. 

  

Option Description 

-randseq Generate sequential sv_seeds starting at a random 
number. 

-rand_seed Use the argument to seed the random number generator.   

-num_seeds Generate then number of sv_seeds specified.  

-sv_seed Set simulation sv_seed directly with the argument 
provided. 

Table 6: Command Line Options for sv_seed Generation 
  

Using “-randseq” allows control over creating sequential 
random seeds.  For instance, the first sv_seed will be randomly 
generated as described before.  However, additional seeds will 
be generated by incrementing the initial randomly generated 
number.  The options “-rand_seed” and “-num_seeds” are the 
same as number pairs in parameter SEED within a vms.cfg file.  
The use of “-sv_seed” is obvious, however, if combined with 
“-num_seeds”, additional seeds will be generated by 
incrementing the value given in “-sv_seed”. 

Given this automation, random seeds can be targeted 
through multiple ways.  Once seeds are found that contribute to 
coverage, they can be stored in individual tests through SEED 



in vms.cfg files.  This provides an efficient mechanism to 
randomly test a design and eliminate seeds that do not 
contribute to coverage that would otherwise waste precious 
resources.   

B. Test Ranking with Questa’s Verification Management 

The end goal of verification is to catch all design issues 
before fabrication.  Historically, verification continues long 
after fabrication as engineers never feel like everything has 
been covered or they feel that something could possibly have 
been missed.  However, in reality the goal is to cover as much 
as possible in the shortest amount of time while efficiently 
utilizing limited resources.  Often this effort is aided by 
leveraging constrained random verification.  VMS provides 
automation in seed generation to address the random goal, 
though a way to determine what randomly generated seeds are 
valuable is needed.  Mentor‟s Questa Verification Management 
tool suite meets this need. 

Test ranking is part of the Questa Verification Management 
suite and is quite useful in pointing out tests that contribute to 
coverage.  Taking advantage of this tool provides a closed loop 
between generating random seeds, identifying important seeds 
and storing them through VMS automation to quickly and 
efficiently achieve coverage goals.  As an example, consider 
one of Cypress‟s internal designs.  Before using VMS and 
Questa‟s test ranking feature, we created 2,622 tests to achieve 
100% coverage.  The seeds were manually picked and 
replicated for multiple tests.  By using Questa‟s test ranking 
feature it was shown that only 306 tests were needed to achieve 
100% coverage.  Running a regression for 2,622 tests was 
consuming 18.88 CPU hours to complete.  For the 306 tests 
identified, only 2.27 CPU hours was required, thus allowing 
Cypress to realize a savings of nearly 90%.  Further, the wall 
clock time reduced from 4 hr 14 min to 49 min.  Table 7 is 
provided below showing results for several designs and the 
savings realized. 

 

 Original Results Ranked Results CPU Perf 
Savings 

 No. 
Tests 

cvg CPU(T) No. 
Tests 

cvg CPU(T) 

Des1 25 99.7% 4 hr 16 99.7% 2 hr 50% 

Des2 2622 99.9% 22.4 hr 306 99.9% 2.2 hr 90% 

Des3 146 97.4% 16.4 hr 41 97.4% 8.94 hr 46% 

Des4 45 99.9% 3.6 hr 28 99.9% 2 hr 46% 

Table : Test Ranking Results 

 

Currently, test ranking and seed storage are manual steps 
that a user must complete.  Future additions to VMS will 
include automating the test ranking process and creating a 
VMS test list from ranking results.   

V. SUMMARY 

The Verification Management System developed within 
Cypress provides a standard methodology for all verification 
engineers in managing verification.  A uniform interface is 
provided promoting reuse and allowing each project to benefit 
from performance enhancements or efficiency improvements, 
as well as metrics collection, progress tracking and reporting 
changes.  Furthermore, with consistent metric collection, 
project regressions can be compared both within and across 
projects company-wide.  This will position Cypress well for 
handling the growing complexity and demands of verification 
environments over time. 
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