
BRINGING CONTINUOUS DOMAIN INTO SYSTEMVERILOG 
COVERGROUPS  

 

Prabal K Bhattacharya 
Cadence Design Systems 

2655 Seely Avenue, 
San Jose, USA 

1-408-894-2508 
prabal@cadence.com

Swapnajit Chakraborti 
Cadence Design Systems 

57 A&B, NSEZ,  
Noida, India 

+91-1203984000 
swapnaj@cadence.com  

Scott Little 
Intel Corporation 

2111 NE 25th Avenue, 
Hillsboro, USA 
1-503-696-8080 

scott.little@intel.com   

Donald O’Riordan 
Cadence Design Systems 

2655 Seely Avenue, 
San Jose, USA 

1-408-428-5794 
riordan@cadence.com 

 

Vaibhav Bhutani 
Cadence Design Systems 

57 A&B, NSEZ, 
Noida, India 

+91-1203984000 
vbhutani@cadence.com

ABSTRACT 
This paper proposes a set of requirements for specifying 
functional coverage on an analog or mixed-signal block. We 
explain how the real number data type can be introduced in the 
SystemVerilog coverpoint specification and how it can enable a 
complete coverage specification for a mixed-signal verification 
environment. In discussing the requirements, we explore the 
challenges in partitioning the infinite continuum of real numbers 
during bin creation, precisely representing and comparing real 
numbers, naming automatically created bins, scoring real valued 
covergroups and managing duplicate values within a coverpoint. 
We also illustrate how existing functional coverage language 
aspects such as scalar bins, vector bins, ignore bins, and cross 
coverage can be extended to real data types. Finally we show a 
design example where we illustrate how support for the real data 
type in SystemVerilog covergroups helps realize the verification 
goals for a complete mixed-signal system. 

1. INTRODUCTION 
Functional coverage is the process of determining how much 
functionality of the design has been exercised by the verification 
environment. It is a well established component of a modern day 
verification environment for measuring the completeness of a 
given verification test suite. 

Two notable characteristics of functional coverage are that it is 
user-specified and based on the design intent. Regardless of the 
actual design code, the functional coverage goals and 
specification can be developed so long as it accurately captures 
the high-level design intent. The SystemVerilog functional 
coverage feature facilitates such user specification of design intent 
by providing language constructs that can conveniently express 
functional coverage models. When a standard SystemVerilog 
simulator executes such a coverage specification, it enables the 
user to perform coverage analysis in the same breath as design 
verification and paves the way to develop high quality tests in less 
time. Such coverage driven verification has become fairly well 
understood and is an established practice in the digital functional 
verification world. 

Let us now turn our attention to the world of mixed-signal 
verification. A complete mixed-signal SOC verification suite 
usually involves a complex integration of blocks created in 
different languages and at different levels of abstraction. Such 
integration choices are influenced by both performance and 
accuracy concerns. The verification engineer must continue to 
change the representation of the key blocks in his SOC system 
from a digital or functional representation to a more accurate 
transistor level representation and vice versa. As the complexity 
of the analog grows, it becomes more challenging to exhaust the 

complete state space of the analog system(s) in the SOC 
comprising of operating modes, process variation, corners 
analysis and so forth using simple circuit simulation techniques. 
This leads to the thought of applying traditional digital 
verification techniques such as constrained random stimulus 
generation and functional coverage to the continuous domain. 
Furthermore, from a coverage model reuse point of view, it is 
important that coverage specifications written with a discrete 
event driven system in mind continue to work when the 
representation of that system is changed to one of continuous 
values. 

The combination of these two requirements has led to a multitude 
of analyses in the EDA verification tool space relating to the 
extension of functional coverage to the analog or mixed-signal 
parts of the design. With an overwhelming majority of the 
verification systems being written using SystemVerilog, it 
becomes a requirement to provide a formal definition of mixed-
signal functional coverage in the language. Since mixed-signal 
design behavior can only be effectively expressed using a floating 
point representation, it is mandatory that the SystemVerilog 
standard be extended to support functional coverage using real 
numbers.  This paper describes such an extension. 

2. CURRENT STATE OF COVERAGE 
POINT SUPPORT IN SYSTEMVERILOG 
SystemVerilog functional coverage, as described in Chapter 19 of 
IEEE P1800 SystemVerilog Language Reference Manual [1], 
enables design and verification engineers to create functional 
coverage models using the covergroup construct. A typical 
coverage model contains coverpoints and cross declarations with 
user-defined or implicit bins for sampling and scoring. Primarily, 
two types of bins can be specified with any coverpoint 
declaration, namely, scalar bins and vector bins. Scalar bins score 
all the values/ranges specified by the bin definition within a single 
bin. In contrast, a vector bin declaration creates individual bins for 
each of the integral values specified by the bin definition. The 
current syntax of the covergroup construct allows only integral 
expressions for both coverpoints and bin values and hence users 
are restricted to integral domain coverage models. Besides its 
coverage model specification, the current language standard 
provides various built-in methods for runtime coverage collection 
and control for users. The IEEE P1800 SystemVerilog Language 
Reference Manual standard provides a mechanism to specify a 
sampling event with each covergroup declaration for triggering 
coverage collection. A covergroup declaration is considered to be 
a type declaration and hence the current standard mandates its 
instantiation for enabling coverage collection. In general, design 
and verification engineers analyze both type-based and instance-
based coverage data generated by covergroup declarations and 



their instances during simulation. The IEEE P1800 SystemVerilog 
Language Reference Manual provides well-defined artifacts to 
generate such reports enabling post-simulation ‘hole-analysis’ of 
coverage models. Overall, the current SystemVerilog covergroup 
syntax addresses several requirements for enabling Coverage-
Driven-Verification flows which are essential for constrained-
random based simulation.  

3. PROPOSAL TO INTRODUCE REAL 
VALUED COVERAGE POINTS IN 
SYSTEMVERILOG 
 

3.1 BASIC PREMISE 
A covergroup can contain one or more coverage points. As part of 
providing support for functional coverage in an analog or mixed-
signal design block, we propose that a coverage point can be an 
integral or real variable or an integral or real expression. Each 
coverage point includes a set of bins associated with its sampled 
values or its value transitions. The bins can be explicitly defined 
by the user or automatically created by SystemVerilog. 

Given that the set of real numbers represents a continuum, then in 
order to associate a set of bins to the real-valued coverage point, 
we propose the following basic requirement that such coverage 
points must satisfy. 

A coverpoint of type real must be a range or a finite set of real 
numbers. In other words, the following coverpoint declaration is 
illegal when var is real: 

covergroup g1 @(posedge clk); 

  c: coverpoint var; // not legal if var is real 

endgroup 

Another way to state the above is that automatic bin declaration 
(either implicitly, or explicitly by specifying a value for the 
auto_bin_max coverage option) will not be allowed for any real 
valued coverpoint without a range or finite value specification. 
Along the same lines, cross coverage for such real valued 
coverpoint will also not be allowed. 

coverpoint a; // Not legal if a is of type real 

coverpoint b; // Not legal if b is of type real 

cross a, b; // Not legal if a or  b is of type 
real 

3.2 SCALAR BINS WITH REAL VALUED 
COVERPOINTS 
A scalar bin with a real numbered coverpoint is legal and can 
contain either a singleton value or a range. In case of an absolute 
value specification, the bin score gets incremented when the value 
of the coverpoint ‘exactly’ matches (see section 4.1.2) with the 
absolute value. In case of a range specification, the bin score gets 
incremented when the value of the coverpoint satisfies the range 
expression as outlined in Section 5. The following is an example 
of a scalar bin with real valued coverpoints. 

coverpoint c  {  

    bins b = {0, [0.5:0.8], 1.0}; 

} 

It will be an error to declare a integer valued coverpoint to have 
bin specification involving real numbers. 

3.3 RANGE SPECIFICATION FOR REAL 
VALUED COVERPOINTS 
The range of a bin for real valued coverpoints shall be of the 
following types 

 Open 

 Closed 

 Half Open/Half Closed 

A range is called Open, when it is of the form (a:b) where for 
any r completely contained in the range, a < r < b 

A range is called Closed, when it is of the form [a:b] where for 
any r completely contained in the range, a ≤ r ≤ b 

A range is called Half Open or Half Closed, when it is of the form 
[a:b) or (a:b] where for any r completely contained in the 
range, a ≤ r < b or a < r ≤ b respectively. 

3.4 BIN CREATION AND 
RANGE_PRECISION 
When a coverage point is declared for a real variable or 
expression, the size of its vector bin will be determined with the 
help of a new per instance covergroup option called 
range_precision. This option shall have the following 
properties: 

 The syntax for the range_precision option will be 
of the form option.range_precision=value 
where value can be any positive real number. The 
range_precision option will have no default value and 
not specifying this option will result in an error. 

 Setting the range_precision option on the entire 
covergroup will apply to all real valued coverpoints in 
the covergroup. 

 For integral type coverpoints, specifying 
range_precision will have no effect. 

 For  scalar bins, the range_precision option is not 
needed. 

The range_precision value will be used to divide the specified 
range and create automatic bins. The process of division will start 
from the left bound of each range and will add the range precision 
value to the left bound to create the right bound of the new bin. 
The range of the new bin thus created will be open on the right 
bound. This is explained with a relevant example in the next 
section. 

3.4.1 BIN CREATION FOR VECTOR BINS 
If a vector bin has range ۃa:bۄ and its range_precision is set 
to r, where a, b and r are SystemVerilog real numbers, the new 
bins will be created as follows: 

 ,where m=n‐1 ۄa : a+r), [a+r : a+2r), …, [a+m*r : bۃ
n=number of bins created 

where ۃ and ۄ are left and right bounds and can be either 
open, i.e. “(“ or “)” or closed, i.e. “[“ or “]”. 

 



Consider the following example of a user-defined vector bin b1 
with no explicit size. Here a is one SystemVerilog real type 
variable. 
 
coverpoint a { 

    option.range_precision=0.1; 

    bins b1[] = {[3.5:3.8]} 

} 

In the above case, after applying the bin creation formula as 
described earlier using range_precision, n=3 bins will be 
created as shown below: 

b1[3.5:3.6)   [3.5:3.6) 

b1[3.6:3.7)   [3.6:3.7) 

b1[3.7:3.8]   [3.7:3.8] 

If the size of a vector bin is explicitly specified, the 
range_precision option will be used to divide any range 
expression into sub-ranges and then the possible bin values will be 
uniformly distributed among the specified bins. Consider the 
following example: 

coverpoint a { 

  option.range_precision=0.1; 

  bins a1[10] = {0.0, [3.5:10.5], 127.0, 255.0}; 

} 

For the above declaration, after applying the range_precision 
option, we get 73 sub ranges. Since the bin size is 10, bins a1[0] 
to a1[8] will get 7 values each and bin a1[9] will get 10 values. 
The mappings of the bins to values will look like: 

a1[0]  { 0.0, [3.5:4.1) } 

a1[1]  { [4.1:4.8) } 

… 

a1[9]   { [9.7:10.5), 127.0, 255.0 } 

The algorithm used here for distributing the values to various bins 
is similar to the behavior of sized vector bins for integral 
coverpoints as described in Section 19.5 of the P1800 
SystemVerilog Language Reference Manual. 

As mentioned in section 3.1, automatic vector bins are not 
supported with real coverpoints. It will be illegal to specify 
auto_bin_max for real valued coverpoints with an explicit user-
defined bin declaration, namely scalar, vector (fixed size, un-
sized) bins, etc.  

Once the vector bins are created based upon the 
range_precision option, the bin definitions need to be 
reported to users as well. The naming of the vector bins for real 
type based coverpoints and related challenges are described in 
detail in section 4.1.1. 

Although the necessity of transition bin support for real based 
coverpoints is appreciated, it is currently kept outside the realm of 
this paper. This activity may be carried out as an extension of this 
work. 

  

3.4.2 END POINT DEFINITION FOR REAL 
VALUED COVERPOINTS 
As per the current IEEE P1800 SystemVerilog Language 
Reference Manual, the user can specify ‘$’ as an endpoint of bin 
ranges. This happens to be a common practice among coverage 
model developers during initial phases of model creation. The 
same syntax will be applied for real type coverpoints. The value 
of ‘$’ – when appearing in the left bound of a range – will be –
DBL_MAX. It will be +DBL_MAX when appearing in the right bound 
of a range. The values of –DBL_MAX and +DBL_MAX may have 
some hardware dependency based upon the OS and architecture. 
For integral coverpoints, the values of the endpoints are decided 
by the size of the variable or expression specified with 
coverpoints. In case of real based coverpoint ranges, the value of 
endpoints are fixed i.e. –DBL_MAX and +DBL_MAX. 

The presence of ‘$’ in the range expression of a vector bin may 
lead to an error condition when the range value exceeds the 
maximum value that can be represented in a floating point number 
system. Such a condition may arise when for a range [a:b], abs(a-
b) > DBL_MAX. In such cases, an implementation is free to choose 
its desired behavior. The use of ‘$’ is allowed in the case of scalar 
bins and will not cause any overflow related issue as in vector 
bins. 

When a bin range inside a vector bin involving a real valued 
coverpoint contains ‘$’, the construction of bin ranges will 
continue to follow the general rule laid out in section 3.4.1. For a 
vector bin with fixed size, the range will be divided into equal 
parts by the specified size. Because of the issue related to range 
value exceeding the maximum real value (abs(a‐b)  > 
DBL_MAX), the results may not match user expectation and will be 
tool dependent.  For a vector bin with unspecified size, the range 
will be divided into equal parts by the value of the 
range_precision option. 

4. CHALLENGES ASSOCIATED WITH 
FLOATING POINT SPECIFICATION 
As discussed in section 3.4.1, one of the challenges of allowing 
coverpoints for real data types is the visualization of the vector 
bin names. For integral coverpoints, the names of vector bins 
include the value. The nomenclature of real value based vector 
bins is also done in similar manner. As the representation of the 
real value and its formatting has significant impact on the 
displayed value, those two factors are very important for 
visualization. This is described in the following section.  

4.1.1 Naming of vector bins 
In case of a vector bin, the name of a bin is determined from the 
value of the range. Consider the following example of a user-
defined vector bin where singleton real values are used: 

bins b1[] = {2.3, 2.499}; 

For the above bin declaration, a user would expect two bins, 
namely, b1[2.3] and b1[2.499] to be created, sampled and 
reported by relevant tools. It is a known fact that current IEEE 
754 standard [2] for representing floating point numbers 
(henceforth we have used “real” and “floating point” numbers 
interchangeably) does not ensure that exact value specified by the 
user will be stored always. The problem is that floating point 
numbers are represented by binary fractions and only those 
floating point numbers which are multiples of power of 2 can be 
represented exactly within a given precision. For all other 



numbers, approximate values are stored and thus in most cases we 
will find round-off errors in the representation.  For example, 
storing the value 0.1 requires an infinite number of binary digits to 
represent it exactly. The point to note here is that the amount of 
such round-off errors will depend on number of precision digits 
available for representation which, again, may be 
architecture/OS/compiler dependent. It is possible that these 
round-off errors may impact the digits within the precision of 
interest to the user. In that case, the value specified by the user 
may not match exactly the value reported.  Now creating the bin 
names of vector bins using the real values will require the 
formatting of that value and it is obvious that formatting precision 
will have a role to play regarding how the bin names are reported. 
The implementation may choose to use a default standard double 
format precision for creating the vector bin name. However, the 
user may also require some capability to control the precision of 
digits while formatting the bin names. Providing such capability 
will also ensure that users are aware of such issues although they 
may not arise frequently. In the future, it may be necessary to 
introduce a new covergroup level option to handle such user 
configurability. 

Another area which is prone to round-off errors is when the range 
for a particular vector bin is computed by applying the 
range_precision value to the left and right bounds [section 
3.4.1].  It is possible that floating point round-off errors arising as 
a result of arithmetic operations in such cases may impact the 
digits of precision within a user’s interest.  For example, if bin 
range is specified as [62.2:64] and range_precision = 0.62, the 
first sub-range as per user expectation will be [62.2:62.2+0.62) or 
[62.2:62.82). But due to round-off error involved in floating point 
addition 62.2+0.62, the right bound of computed sub-range will 
not be exactly 62.82 as expected by user. This will cause 
mismatch of sampling as well as of the bin names with user 
expectation. 

Apart from the above two scenarios, another possibility is that the 
user specifies a floating point number which has more digits than 
the available precision. In that case also, round-off errors may 
lead to unpredictable behavior that does not match with user 
expectations.  For example, a user specifies a range value as 
“2.99999999999999999999999999999999999999999999999999
9999”. Now this will be treated as “3” and sampling and reporting 
will be based on 3. Although this is somewhat of a corner case, it 
is mentioned to clarify the potential mismatch with user 
expectations. In such cases, users should be warned accordingly. 
Similar issue exists for the following declaration as well. 

bins b1[] = 

  {0.100000000000000001: 

   0.100000000000000003} 

with the range_precision option set to 
0.000000000000000001 

With the precision limit set to 16 bits, all the sub-ranges would 
now evaluate to 0.1 and therefore the bin names for the ranges 
would not be unique anymore.  

With all the examples shown above, we raise the question if it 
makes sense for the user to be able to set a floating point precision 
such that round-off errors like the above can be avoided in some 
cases if not all. This idea involves the introduction of a new 
global option that would control the precision of printing a 

floating point value which in turn would influence how the names 
of bin ranges would be represented.  

Users should also be sensitized towards issues related to round-off 
errors occurring because of floating point arithmetic operations 
involving real bin values. For example, if a user specifies a bin 
declaration as: “bins b1[] = {0.9};”  for a real variable “a” 
and expects that when “a” takes a value 0.3*3 then there will be a 
match, this expectation will be incorrect. The reason is that  0.9 is 
not exactly equal to 0.3*3 due to round-off errors involved in 
arithmetic operation (*).  This issue is discussed in detail in the 
next section. 

4.1.2 Applying a ‘fudge factor’ or ‘tolerance’ 
During simulation, the real type bin values are compared with the 
coverpoint values to determine a match. There is a well-known 
matching algorithm proposed by Knuth [3] for matching “double 
precision” numbers which can be used for SystemVerilog real 
based coverpoint matching as well. This matching algorithm 
works on the principle of matching two double precision numbers 
using a tolerance (epsilon) value rather than doing an exact match. 
SystemVerilog real value matching during sampling of 
covergroups will work based on this same principle. A new 
covergroup option will be added for enabling user configuration 
of such tolerance in the future. It should be noted that real value 
comparison based on such tolerances will help address the issue of 
mismatch due to round-off errors during floating point operations. 
Hence, the two values “0.3*3” and “0.9” will now match as 
expected by the user. 

5. SCORING BINS FOR REAL VALUED 
COVERPOINTS 
The process of scoring integral bins is described in 19.5 of the 
IEEE P1800 SystemVerilog Language Reference Manual. The 
score or count for a given bin is initialized to zero and 
incremented every time the coverage point matches one of the 
values contained in the set defined for a given bin.   Evaluation of 
the coverage point expression  takes place when the covergroup is 
sampled. The sampling process is independent of whether the 
coverpoint is of real or integral type.  The example below 
illustrates the sampling of a real valued coverpoint. 
 
c: coverpoint c { 

  option.range_precision=0.1; 

  bins b[] = {0,[3:5],8}; 

} 

If the coverage event for the given covergroup generates n events 
at which a value of c is sampled, n will remain the same even if c 
is of type real. In absence of a clocking event, the behavior of the 
built-in sample() method will also remain the same if c is of type 
real. 
 
Given a coverpoint of integral values, each value in the bin can be 
enumerated.  This is not the case for real valued coverpoints.  A 
bin for a real valued coverpoint may contain a range of real 
numbers which cannot be explicitly enumerated.  As a result the 
rules for scoring a real valued coverpoint are slightly different, but 
are generally what the user would expect. The following example 
illustrates the scoring rules for real valued coverpoints. 
 
c: coverpoint c { 



  option.range_precision=0.1; 

  bins b[] = {0,[0.5:0.8),8} 

} 

Based on the range specification and the range_precision 
option, the following bin mappings will be created: 
 
b[0] ‐> 0.0 

b[0.5:0.6) 

b[0.6:0.7) 

b[0.7:0.8) 

b[8] ‐> 8.0 

For the five bins created in this example, using the given range 
precision 0.1, we will examine how various sample points would 
be scored. A number of example sample points and their scoring 
are shown in the table below. 
 

Value Condition satisfied Bin scored 
0.001 NONE NONE 

0 c == 0 c.b[0] 

0.2 NONE NONE 

0.55 0.5 ≤ c < 0.6 c.b[0.5:0.6) 

0.6 0.6 ≤ c < 0.7 c.b[0.6:0.7) 

0.79 0.7 ≤ c < 0.8 c.b[0.7:0.8) 

8.000001 NONE NONE 

 
The above table emphasizes the point that given a range 
specification, scoring a real valued number works much like an 
integral expression.  As noted above, when a range specification is 
not present, a real numbered coverpoint object can generate values 
that would not satisfy numerical equality due to the floating point 
precision characteristics of real numbers.  Until a tolerance-based 
matching scheme (as described in 4.1.2) is introduced, we propose 
that this aspect of real numbers must be dealt with by the user.  It 
is therefore expected that users will normally create range 
specifications suitable for capturing the ranges of interest. We also 
expect that scalar real valued bins will be the exception as they 
may feel ‘unreliable’ to the user, behave differently across 
implementations, etc 

5.1 Ignoring Bins 
The following summarizes the current behavior of bin ignore 
process per the IEEE P1800 SystemVerilog Language Reference 
Manual (Sec. 19.5.4). 
 
“All values or transitions associated with ignore bins are 
excluded from coverage. For state bins, each ignored value is 
removed from the set of values associated with any coverage bin. 
... The removal of ignored values shall occur after the distribution 
of values to the specified bins. ... 
 
The above may result in a bin that is associated with no values or 
sequences.  Such empty bins are excluded from coverage (see 
19.11).” 
 
For vector bins with real numbered coverpoints, the process of 
ignoring bins shall start with the creation of bin ranges according 

to the range_precision  option (unless the vector bin is 
explicitly sized). Once the bin ranges are created, the ranges that 
fall completely under the ignore_bins range shall be removed 
since such ranges would be rendered empty after the ignored 
values are removed from the state of values associated with that 
bin range.  The ranges whose values are not completely covered 
within in the range of ignored values shall be retained, but inside 
that range the ignored values shall not be scored. 
 
The following examples illustrate the above rule.  We consider 
three separate coverpoint definitions below and look at how 
ignore bins work for real numbers when the ignored value is a 
specific number, a range, or a mix thereof. 
 
option.range_precision = 0.1; 

coverpoint a { 

  bins b1[] = {[2.4:2.8]}; 

  ignore_bins ig = {2.5}; 

} 

coverpoint b { 

  bins b1[] = {[2.4:2.8]}; 

  ignore_bins ig = {[2.5:2.6]}; 

} 

coverpoint c { 

  bins b1 = {[2.4:2.8]}; 

  ignore_bins ig = {[2.59:2.63],2.79}; 

} 

For each of the coverpoints the bins of b1 are divided as shown 
below. 
 
(1) b1[2.4:2.5) 

(2) b1[2.5:2.6) 

(3) b1[2.6:2.7) 

(4) b1[2.7:2.8] 

For coverpoint a , the value of 2.5 must be ignored when scoring.  
This is done by modifying (2) to be b1(2.5:2.6).  For 
coverpoint b an entire range [2.5:2.6] is ignored.  This 
requires the complete removal of (2) and the modification of (3) 
to b1(2.6:2.7).  Coverpoint c ignores a range as well as a 
point.  This results in changes to several bins as well as a splitting 
of the range in (4).  The changes to (2) are b1[2.5:2.59) and 
the change to (3) is b1(2.63:2.7).  The changes to (4) result in 
the split range of {[2.7:2.79),(2.79:2.8]}. 

5.2 Duplicate values across bins 
For a vector bin, once the bin ranges are constructed (either from 
the explicitly specified size or from the range_precision 
option), if duplicate values or ranges of values exist across bin 
ranges then a point matching both bins will be scored multiple 
times. This example illustrates how duplicate bins are handled. 
 
real a; 

option.range_precision = 0.2; 

coverpoint a { 



  bins b1[] = {[2.4:2.8], [2.5:3.0]}; 

} 
In this case the bins are: 
 
b1[2.4:2.6) 

b1[2.6:2.8] 

b1[2.5:2.7) 

b1[2.7:2.9) 

b1[2.9:3.0] 

 
A value of 2.65 would be therefore scored in both the bins 
b1[2.6:2.8] and b1[2.5:2.7). Duplicates are also allowed 
for fixed size vector bins. 

6. PUTTING IT ALL TOGETHER 
To illustrate the utility of the real valued coverpoints, we use real 
valued covergroups to help quantify the quality of random test 
generation for a voltage detector circuit.  This voltage detector 
produces both warning and error detection events when the input 
voltage crosses a trip point.  The trip points for the warning and 
error events can be independently configured to four different 
values.   
 
The coverpoints are setup to capture when the input signal is in 
various regions of operation.  Ideally, the ranges would be half-
open, but this representation allows for cases where the 
implementation does not yet support half-open intervals. 
 

 
 

Figure 1 Block diagram of voltage detector with testbench 

6.1 Top Level Testbench 
 
The source code for the top level testbench is shown below and a 
block diagram of the testbench is shown in Figure 1.  The 
testbench contains a driver, the voltage detector, and the coverage 
collection module.  The driver generates random stimulus for the 
voltage detector and the coverage collection module observes and 
captures what is generated. 
 
Coverpoints are created to capture values of vDetect based on 
the possible trip points.  These coverpoints are then crossed with 
the trim values.  This coverage will help us understand if the 
voltage is moving through the important ranges while the design 
is configured for the different trim settings. Functional checks 
would be expected to complete a proper testbench but are omitted 
here for brevity. 

 

`timescale 1ns / 10ps 
 
module top(); 
 
  logic clk; 
  always #1 clk = ~clk; 
 
  initial  
  begin 
     clk = 0; 
     #10000 $finish; 
  end 
 
  wire [1:0] lvw_trim; 
  wire [1:0] lvd_trim; 
 
  tbDriver dr1(.*); 
  voltageDetector voltD(.lowVwarn(lowVwarn), 
                        .lowVdet (lowVdet ), 
                        .vDetect (vDetect ), 
                        .lvw_trim(lvw_trim), 
                        .lvd_trim(lvd_trim)); 
  realCov rc1(.*); 
endmodule 
 
module tbDriver ( 
  output var real       vDetect, 
  output logic [1:0] lvw_trim, 
  output logic [1:0] lvd_trim, 
  input logic        clk 
); 
  class c; 
    rand real v_detect; 
    rand integer lvw_trim_val; 
    rand integer lvd_trim_val; 
  constraint  c1  {  v_detect  inside  { 
[0.0:3.3] } ; } 
  constraint  c2  {  lvw_trim_val  inside  { 
[0:3] } ; } 
  constraint  c3  {  lvd_trim_val  inside  { 
[0:3] } ; } 
  constraint  c4  {  lvd_trim_val  <= 
lvw_trim_val; } 
  function void self_print(); 
    $display("v_detect=%f, lvw_trim_val=%d, 
lvd_trim_val=%d\n",  v_detect,  lvw_trim_val, 
lvd_trim_val); 
    endfunction 
  endclass : c 
 
  c c_inst; 
 
  initial begin 
    c_inst = new(); 
  for(int i = 0; i < 2000; i++) begin 
    assert (c_inst.randomize()); 
    vDetect = c_inst.v_detect; 
    lvw_trim = c_inst.lvw_trim_val; 
    lvd_trim = c_inst.lvd_trim_val; 
    #10 c_inst.self_print(); 
    end 



  end 
 
endmodule 
 
module realCov ( 
  input logic       clk, 
  input real        vDetect, 
  input logic [1:0] lvw_trim, 
  input logic [1:0] lvd_trim  
); 
 
covergroup lvdLvwCombos @(posedge clk); 
 
option.per_instance = 1; 
 
//Capture the various ranges for LVW 
lvwValues: coverpoint vDetect { 
  bins uLow  = {[$:1.97]}; 
  bins low   = {[1.98:1.99]}; 
  bins med   = {[2.0:2.69]}; 
  bins high  = {[2.7:2.99]}; 
  bins uHigh = {[3.0:$]}; 
} 
 
//Capture the various ranges for LVD 
lvdValues: coverpoint vDetect { 
  bins uLow  = {[$:1.87]}; 
  bins low   = {[1.88:1.89]}; 
  bins med   = {[1.9:2.59]}; 
  bins high  = {[2.6:2.89]}; 
  bins uHigh = {[2.9:$]}; 
} 
 
lvwCombos: cross lvw_trim, lvwValues; 
 
lvdCombos: cross lvd_trim, lvdValues; 
endgroup 
 
lvdLvwCombos cg1 ; 
 
initial 
begin 
   cg1 = new; 
   cg1.set_inst_name("cg1_inst"); 
end 
 
endmodule 
 

6.2 Voltage Detector Module 
`include "constants.vams" 
`include "disciplines.vams" 
`timescale 1ns / 10ps 
 
module voltageDetector ( 
  lowVwarn, 
  lowVdet, 
  vDetect, 
  lvw_trim, 
  lvd_trim 
); 

 
  output      lowVwarn, lowVdet; 
  logic       lowVwarn, lowVdet; 
  reg         lowVwarn, lowVdet; 
 
  input       vDetect; 
  input [1:0] lvw_trim; 
  input [1:0] lvd_trim; 
 
  wreal       vDetect; 
  logic [1:0] lvw_trim; 
  logic [1:0] lvd_trim; 
 
  real lvw_val, lvd_val; 
 
  initial begin 
    lowVwarn <= 1'b0; 
    lowVdet  <= 1'b1; 
  end 
 
  always @(lvw_trim) begin 
    case(lvw_trim) 
      2'b00 : lvw_val = 1.98; 
      2'b01 : lvw_val = 2.0; 
      2'b10 : lvw_val = 2.7; 
      2'b11 : lvw_val = 3.0; 
    endcase 
  end 
 
  always @(lvd_trim) begin 
    case(lvd_trim) 
      2'b00 : lvd_val = 1.88; 
      2'b01 : lvd_val = 1.9; 
      2'b10 : lvd_val = 2.6; 
      2'b11 : lvd_val = 2.9; 
    endcase 
  end 
 
  always @(vDetect < lvw_val) 
    lowVwarn <= 1'b1; 
 
  always @(vDetect < lvd_val) begin 
    $display("vDetect  inside  voltagedetector  = 
%g\n", vDetect); 
    lowVdet  <= 1'b1; 
  end 
 
endmodule 
 

6.3 Coverage Results 
A simulation is run and coverage data is collected using the 
Cadence Incisive Enterprise Simulator [4].  We would expect one 
hundred percent coverage for such a simple coverage model.  
However, there are two bins (see Figure 2) that do not show any 
coverage.  Upon on closer analysis we discover that these ranges 
are very narrow and are more difficult to hit.  If we increase the 
number of iterations we eventually hit these missing points 
although it is likely easier to write a small number of directed tests 
to hit these narrow bins. 



Figure 2 Coverage Chart showing some Empty Bins 

 

7. REFERENCES 
 [1] IEEE P1800 SystemVerilog Language Reference Manual 
2009 

[2] IEEE 754 Standard Floating Point Numbers 

[3] The Art of Computer Programming, volume 2: 
Seminumerical Algorithms, Donald E. Knuth, 3rd edition, 
1998. 

[4] Cadence Incisive Enterprise Simulator, 
http://www.cadence.com/products/fv/enterprise_simulator 

 


