
February 28 – March 1, 2012

BRINGING CONTINUOUS DOMAIN INTO
SYSTEMVERILOG COVERGROUPS

by

Prabal K Bhattacharya,
Swapnajit Chakraborti, Donald

O’Riordan, Vaibhav Bhutani

Scott Little

Cadence Design Systems Intel Corporation

2 of 21

Agenda
• Introduction to Functional Coverage
• Challenges posed by Analog and Mixed-Signal Verification
• Proposal for mixed-signal functional coverage

– Based on SystemVerilog P1800 standard
• Real Valued coverage point

– Language extension
– Challenges and open issues

• Putting things together: a Voltage Detector Example
• Conclusion

Prabal K Bhattacharya et al., Cadence Design Systems. Scott Little, Intel Corporation

Prabal K Bhattacharya et al., Cadence Design Systems. Scott Little, Intel Corporation 3 of 21

Functional Coverage Basics
• Measure of “How Much”?

– Of Design Functionality exercised by Verification
Environment

• An expression of design intent, but can be developed
independent from the design

• Coverage measurement can be done in the same breath as
design verification
– High Quality tests in less time

• SystemVerilog P1800 standard provides rich support for
expressing and measuring such intent

• Well understood, established practice in digital verification
world

4 of 21

What about Analog/Mixed-Signal?
• Think Mixed-Signal SoC
• Complex integration of both discrete domain and

continuous domain signals
• Analog verification

– State space exhaustion problem
• Operating modes
• Process variation
• Corners analysis

– Verify all this in context of the SoC
• Need to extend traditional metric-driven verification

techniques to continuous domain objects

Prabal K Bhattacharya et al., Cadence Design Systems. Scott Little, Intel Corporation

5 of 21

Functional Coverage for Mixed-Signal

• Two primary drivers
– Analog effects must be captured in the coverage analysis
– Functional coverage model must be reusable as design

configurations change
• Need formal definition of mixed-signal functional coverage
• Choice of language

– SystemVerilog represents an overwhelming majority
• Choice of data type

– Floating point for representing continuous domain
behavior

• Proposal to extend SystemVerilog coverage point to support
real data type

Prabal K Bhattacharya et al., Cadence Design Systems. Scott Little, Intel Corporation

6 of 21

Real Valued Coverage Point
• We propose to extend a SystemVerilog coverage point

specification to be
– An integral or real valued expression

• Addressing the real number continuum challenge
– Coverpoint of type real must have user-defined bins

having
• A range, or
• A finite set of real numbers

– Automatic bin declaration is disallowed
covergroup g1 @(posedge clk);
c: coverpoint var;

endgroup
Not legal if var is

real

Prabal K Bhattacharya et al., Cadence Design Systems. Scott Little, Intel Corporation

7 of 21

Real Valued Coverpoint: Building Blocks

• Range specification

• How to slice a range into bins: range_precision
– A new option introduced to divide a given range and

create automatic bins
– Instance-specific covergroup option
– Positive real number
– Only needed for vector bins

Open Closed Half Open/Half Closed
Example (a:b) [a:b] [a:b) (a:b]
For any r completely
inside the range: a < r < b a ≤ r ≤ b a ≤ r < b a < r ≤ b

Prabal K Bhattacharya et al., Cadence Design Systems. Scott Little, Intel Corporation

8 of 21

Real Valued Coverpoints: Scalar Bins

• Contains either a singleton value or a range
• For a singleton value, value of the coverpoint must exactly

match
– More on this later

• For range specification, value of coverpoint needs to satisfy
the range expression
– Range can be (half-)open or (half-)closed

covergroup g1 @(posedge clk);
bins b = {0, [0.5:0.8], 1.0};

endgroup

Prabal K Bhattacharya et al., Cadence Design Systems. Scott Little, Intel Corporation

9 of 21

Real Valued Coverpoints: Vector Bins

• A vector bin with
– Range <a:b>

• a, b are real
• < and > are left and right bounds

– Can be open ((or)) or closed ([or])
– range_precision option set to r

• Will result in bins
<a : a+r), [a+r : a+2r), … [a+m*r : b>
m=n-1, where n=number of bins created

Prabal K Bhattacharya et al., Cadence Design Systems. Scott Little, Intel Corporation

10 of 21

Real Valued Coverpoints: Vector Bins

• Let’s now look at a simple example

• Applying the rules set forth, following bins will be created

covergroup g1 @(posedge clk);
option.range_precision = 0.1;
bins b1[] = {[3.5:3.8]};

endgroup

Bin Name Range for scoring
b1[3.5:3.6) [3.5:3.6)
b1[3.6:3.7) [3.6:3.7)
b1[3.7:3.8] [3.7:3.8]

Prabal K Bhattacharya et al., Cadence Design Systems. Scott Little, Intel Corporation

Prabal K Bhattacharya, Cadence Design Systems 11 of 21

Real Valued Coverpoints: End Point

• Follows SystemVerilog $ syntax
– Left range: -DBL_MAX
– Right range: +DBL_MAX

• Hardware/OS dependent
• Overflow possible for vector bins

– [a:b] where abs(a-b) > DBL_MAX
– Implementation may choose to error

• Construction of bin ranges will be done in the same way
– Fixed size: range will be divided into equal parts
– Unspecified size: range will be divided using
range_precision option

Real Valued Coverpoints: Ignoring Bins

12 of 21

option.range_precision = 0.1;
coverpoint a {
bins b1[] = {[2.4:2.8]};
ignore_bins ig = {2.5};

}

b1[2.4:2.5)
b1[2.5:2.6)
b1[2.6:2.7)
b1[2.7:2.8]

option.range_precision = 0.1;
coverpoint b {
bins b1[] = {[2.4:2.8]};
ignore_bins ig = {[2.5:2.6]};

}

b1[2.4:2.5)
b1[2.5:2.6)
b1[2.6:2.7)
b1[2.7:2.8]

option.range_precision = 0.1;
coverpoint c {
bins b1 = {[2.4:2.8]};
ignore_bins ig =

{[2.59:2.63],2.79};
}

b1[2.4:2.5)
b1[2.5:2.6)
b1[2.6:2.7)
b1[2.7:2.8]

b1[2.4:2.5)
b1(2.5:2.6)
b1[2.6:2.7)
b1[2.7:2.8]

b1[2.4:2.5)
b1(2.6:2.7)
b1[2.7:2.8]

b1[2.4:2.5)
b1[2.5:2.59)
b1[2.63:2.7)
b1[2.7:2.79)
b1(2.79:2.8)

Prabal K Bhattacharya et al., Cadence Design Systems. Scott Little, Intel Corporation

Real Valued Coverpoints: Duplicate
Values Across Bins

13 of 21

option.range_precision = 0.2;
coverpoint a {
bins b1[] = {[2.4:2.8], [2.5:3.0]};
}

b1[2.4:2.6)
b1[2.6:2.8]
b1[2.5:2.7)
b1[2.7:2.9)
b1[2.9:3.0]

a=2.65

b1[2.4:2.6)
b1[2.6:2.8]
b1[2.5:2.7)
b1[2.7:2.9)
b1[2.9:3.0]

Prabal K Bhattacharya et al., Cadence Design Systems. Scott Little, Intel Corporation

14 of 21

Real Valued Coverpoints: Challenges
and Open Issues
• Numerical difficulties with floating point numbers

– Floating point numbers are specified using binary
fractions

– Round-off error expected dependent on available
precision

– Therefore name of a bin may not correspond to the
exact value of the coverpoint

– Round-off error in floating point arithmetic
• Applying range_precision may yield unexpected results

Prabal K Bhattacharya et al., Cadence Design Systems. Scott Little, Intel Corporation

Real Valued Coverpoints: Fudge Factor
• Idea is to use a tolerant numerical match rather than an

exact match
– Using a fudge factor as a new covergroup option
– Use well-known floating point comparison algorithm such

as approximatelyEqual (Knuth)

15 of 21

bool approximatelyEqual(float a, float b, float fudge)
{

return fabs(a - b) <= ((fabs(a) < fabs(b) ? fabs(b) : fabs(a)) * fudge);
}

Prabal K Bhattacharya et al., Cadence Design Systems. Scott Little, Intel Corporation

Illustrating Real Valued Coverpoint

• Voltage detector circuit with SystemVerilog testbench
• Warning and error events when input signal crosses

threshold
• Coverage measurement to monitor regions of operation for

the input signal
• Constrained random real numbered stimulus
• Voltage detection performed using Verilog-AMS with wreal

16 of 21Prabal K Bhattacharya et al., Cadence Design Systems. Scott Little, Intel Corporation

Illustrating Real Valued Coverpoint

17 of 21

Driver

Voltage Detector

Coverage

Prabal K Bhattacharya et al., Cadence Design Systems. Scott Little, Intel Corporation

Illustrating Real Valued Coverpoint

18 of 21Prabal K Bhattacharya et al., Cadence Design Systems. Scott Little, Intel Corporation

module top();

logic clk;
always #1 clk = ~clk;

initial
begin

clk = 0;
#10000 $finish;

end

wire [1:0] lvw_trim;
wire [1:0] lvd_trim;

tbDriver dr1(.*);
voltageDetector voltD(.lowVwarn(lowVwarn),

.lowVdet (lowVdet),

.vDetect (vDetect),

.lvw_trim(lvw_trim),

.lvd_trim(lvd_trim));
realCov rc1(.*);

endmodule

covergroup lvdLvwCombos @(posedge clk);

//Capture the various ranges for LVW
lvwValues: coverpoint vDetect {
bins uLow = {[$:1.97]};
bins low = {[1.98:1.99]};
bins med = {[2.0:2.69]};
bins high = {[2.7:2.99]};
bins uHigh = {[3.0:$]};

}

//Capture the various ranges for LVD
lvdValues: coverpoint vDetect {
bins uLow = {[$:1.87]};
bins low = {[1.88:1.89]};
bins med = {[1.9:2.59]};
bins high = {[2.6:2.89]};
bins uHigh = {[2.9:$]};

}

lvwCombos: cross lvw_trim, lvwValues;

lvdCombos: cross lvd_trim, lvdValues;
endgroup

Coverage Results

19 of 21

//Capture the various ranges
for LVW
lvwValues: coverpoint vDetect
{

bins uLow = {[$:1.97]};
bins low = {[1.98:1.99]};
bins med = {[2.0:2.69]};
bins high = {[2.7:2.99]};
bins uHigh = {[3.0:$]};

}

Too narrow bin – requires
longer simulation to
improve coverage

Prabal K Bhattacharya et al., Cadence Design Systems. Scott Little, Intel Corporation

Next Steps
• Future work to support real data type

– Complete analysis of Functional Coverage Section of
P1800 SystemVerilog Language Reference Manual

• Coverpoint expression having both real and integral variables
• Transition/Wildcard bins with real valued coverpoints
• Other items

– Formal treatment of tolerance or “fudge factor” and
naming of vector bins

• Plan for standardization of the proposal and work with the
SV-EC committee

20 of 21Prabal K Bhattacharya et al., Cadence Design Systems. Scott Little, Intel Corporation

Conclusions
• Mixed-signal Verification is getting more complex than ever
• Analog effects need to be accounted for in the verification

metrics
• Functional coverage for objects belonging to continuous

domain is a key part of extending metric driven verification
to mixed-signal

• Proposal considers extending SystemVerilog standard to
support real valued coverpoint

• Most SystemVerilog coverage constructs and semantics
extend naturally for real data type
– Vector binning requires introducing a precision factor

• Overview of open challenges and next steps
21 of 21Prabal K Bhattacharya et al., Cadence Design Systems. Scott Little, Intel Corporation

	BRINGING CONTINUOUS DOMAIN INTO SYSTEMVERILOG COVERGROUPS
	Agenda
	Functional Coverage Basics
	What about Analog/Mixed-Signal?
	Functional Coverage for Mixed-Signal
	Real Valued Coverage Point
	Real Valued Coverpoint: Building Blocks
	Real Valued Coverpoints: Scalar Bins
	Real Valued Coverpoints: Vector Bins
	Real Valued Coverpoints: Vector Bins
	Real Valued Coverpoints: End Point
	Real Valued Coverpoints: Ignoring Bins
	Real Valued Coverpoints: Duplicate Values Across Bins
	Real Valued Coverpoints: Challenges and Open Issues
	Real Valued Coverpoints: Fudge Factor
	Illustrating Real Valued Coverpoint
	Illustrating Real Valued Coverpoint
	Illustrating Real Valued Coverpoint
	Coverage Results
	Next Steps
	Conclusions

