_—)
7 <073 | February 25-28, 2013 (accellerd)
L ()} DoubleTree, San JOSE svsrens wmame

e —

Bringing Constrained Random into
SoC SW-driven Verification

Alberto Allara, alberto.allara@st.com
Fabio Brognara, fabio.brognara@st.com
STMicroelectronics - Italy

y - ‘ ’ l life.augmented
. y)
o

mailto:alberto.allara@st.com
mailto:fabio.brognara@st.com

Sponsored By:

Overview agcellerd)

SYSTEMS INITIATIVE

e SW-driven verification: benefits and drawbacks

e Verification Abstraction Layer (VAL)

e Randomizations in SW-driven SoC tests

e Example of usage model

e Conclusions

2 of (15)

Sponsored By:

SW-driven verification technique a@

SYSTEMS INITIATIVE

e Represents one of the most used technigues for System-
On-Chip verification

e Advantages:
— Easiness of use

— Reusability across levels
e Block level in simulation
e SoC level in simulation
e SoC level in co-emulation
e In the actual Silicon

e Drawbacks:
— Traditionally based on Direct tests

3 of (15)

Sponsored By:

Randomization in SoC verification a@

SYSTEMS INITIATIVE

e The EDA market is investing on Mode/-based test
generation tools

— The user models a system in terms of graphs (or other
models) and such tools randomize and pre-generate
C/C++ tests

e \We propose a lightweight technique based on
SystemVerilog UVM methodology

— enabled by a Verification Abstraction Layer (VAL)

4 of (15) <
D \ ”

Sponsored By:

Verification Abstraction Layer (VAL) a@
e VAL is an interface that exposes the components of a SoC
verification environment to an embedded CPU as Status
and Control registers

VAL enables verification engineers to
e Configure the verification components directly from software

e Generate expected results to external scoreboard for self-
checking capabilities
e Enable randomization in SW-driven verification

regl
reg2
reg3
regN

Verification
SoC Environment

5 of (15)

.|I _[_y 20?3 |I
| oo |
~ Sponsored By:

VAL Structure a@

VAL-BE1

A A A

6 of (15)

III _[_y ‘?073 I|
|) s |

) _Sponsored By:

How does the VAL work a@

SYSTEMS INITIATIVE

VAL TRIG . . .
- Each VAL-BE is associated to a virtual
Register file mapped on the
Embedded memory
Status and
Control
registers
Interconnect

VAL-BE2

Memory

7 of (15)
2a 94

J—

Sponsored By:

How does the VAL work a@

SYSTEMS INITIATIVE

Each memory transaction generated on a memory
connected to the VAL is captured and propagated
to the VAL-BE

Ints 1ect

Memory Transactions ‘AL-BE1

Memory

The data are moved from memory to VAL-BE g5ch VAL-BE is sensitive to a different

and vice versa through VAL_TRIG memory location
backdoor memory accesses

8 of (15) _a 99

Sponsored By:

The VAL Back-end component a@

SYSTEMS INITIATIVE

e Each VAL-BE is the specialization of a UVM object class called
val_component

e Includes the following knobs:
— Memory address of the VAL _TRIG the component is sensitive to
— Base memory address where the VAL-BE register map is located

e Supports the following APIs
e read_mem_word(bit[31:0] addr, output bit[31:0] data);
e read_mem_dword(bit[31:0] addr, output bit[63:0] data);
e write_mem_word(bit[31:0] addr, input bit[31:0] data);
e write_mem_dword(bit[31:0] addr, input bit[63:0] data);
e Defines the val op() callback
e Defines the connection between memories and backdoor API functions

9 of (15) <
D \ ”

Sponsored By:

VAL connectivity a@

-

\V/A I 2 = - Scoreboard

M
VAL-BE3 ‘-‘ﬂ

VAL

10 of (15)

Sponsored By:

Randomization with VAL a@

SYSTEMS INITIATIVE

e UVM object defined within a VAL-BE

e The CPU through VAL triggers the randomization of this
object

e The content of the randomized object is exported to the
system:
— serialized back to memory in order to be accessible by

SW

— sent outside VAL-BE through analysis port

11 of (15)

Sponsored By:

VAL randomization: an example a@

SYSTEMS INITIATIVE

e Randomization of a LCD configuration

VAL TRIG class val_lcd extends val_component;
— Icd_cfg_packet cfgp; Packet

Randomization

lcd_resolution

function void val _op(Q);
case(VAL_TRIG)
RAND_FRAME: begin
a = (mem_addr - base _mem_addr)+4;
read _mem_word(a,w); lcd resolution=w;
assert(cfgp.randomize() with {
LCD_FRAME res == lcd_resolution})
else "uvm fatal (““VAL_LCD”,”Unable to randomize™);
a += 4;
for(int 1=0;1 < cfgp.rows; i++)
for (int j=0; j<cfgp.columns; j++) begin
write_mem word(a,cfgp.datal[i][j]); at=4;

end
/

Data serialization and copy into
12 of (15) memory

iﬁ.“‘.k:il"'|

Sponsored By:

Constraining the Randomization a@

SYSTEMS INITIATIVE

e Two ways to control randomization: static and dynamic
e Static
— Based on UVM factory mechanism

— Replaces the object in the VAL-BE with a specialization
of the same object with different constraints

e Dynamic
— Relies on values passed from SW to control the
randomization constraints at run-time

13 of (15)

Example of VAL usage model

4) The LCD
controller transmits
the frame

1) Cpu
triggers the
VAL

14 of (15)

)

1
1

Naterconnect ”

III _[_y ‘?073 I.

. _Sponsored By:

SYSTEMS INITIATIVE

5) The frame collected is

sent to the SB for the
comparison

LGD
controller Scoreboard

3) The same data
IS sent to the
scoreboard

2) VAL randomizes
a LCD frame and
copy into mem

Sponsored By:

Conclusions and future works a@

SYSTEMS INITIATIVE

e Proposal of a methodology to bring Coverage Driven
Constrained Random capabilities within SW-driven Soc tests

— The key element of the approach is VAL

e Through VAL the embedded SW can trigger the
randomization of data for:

— VIP configuration
— IP configuration
— Payload data generation

e Next step: development of a synthesizable VAL-FE to bring
randomization into Co-Emulation environments

15 of (15) 0”

I|| _[_y 3 ‘?0?'3 ||\
| ~ 7 ptmccon & EaREn)

| . A

Sponsored B

accellera

BACKUP SLIDES

16 of (15)

VAL-BE design: the tube example

Sponsored By:

SYSTEMS INITIATIVE

e The VAL _TUBE implements the UVM reporting mechanisms

as well as the end-of-simulation mechanism

typedef enum
_uvm_severity {
UVM_INFO =0,
UVM_WARNING,
UVM_ERROR,
UVM_QUIT

} uvm_severity;

typedef struct
_val _tube registers {
uint32_t VAL _TRIG;

uint32_t STR_BUFF[50];

} val _tube_registers;

/

SW register map

17 of (15)

SW APIs

void uvm_error(const char* str) {
uvm_report(str, (uint32_t)UVM_ERROR) ;
+

void uvm_warning(const char* str) {
uvm_report(str, (uint32_t)UVM_WARNING) ;

}

void uvm_info(const char* str) {
uvm_report(str, (uint32_t)UVM_INFO);

}

void uvm_report(const char* str,uint32_t sev) {
volatile val _tube registers* p=(volatile
val tube registers*)VAL TUBE START;
strcpy((char*)p->STR_BUFF,str);
*(p->VAL_TRIG) = sev;

}

void global stop request(void) {
volatile val _tube registers* p=(volatile
val tube registers*)VAL TUBE START;
*(p->VAL_TRIG) = (uint32_t)UVM _QUIT;

’ _ a 919

Sponsored By:

VAL-BE design: the tube example a@

SYSTEMS INITIATIVE

e HVL side implementation

class val tube extends val_component;
string s;

virtual function void val op();
iIT (VAL_TRIG == 3) begin
“uvm_info(""'VAL_TUBE","stop activated from SW",UVM_NONE);
uvm_test _done.drop_objection(this,”Stop triggered by SW'™);
end
else begin
s=read_string_from _mem((mem _addr - base mem addr) + 4);
case(VAL_TRIG)
O: “uvm_info(*“VAL _TUBE”,s,UVM _NONE);
1: “uvm_warning(““VAL TUBE”,s);
2: “uvm_error(*“VAL _TUBE”,s);
endcase
end
endfunction : val _op
virtual function string read string from _mem(input bit[31:0] a);

endfunction - read_string_from_mem
endclass : val tube

18 of (15) 0”

	Bringing Constrained Random into �SoC SW-driven Verification
	Overview
	SW-driven verification technique
	Randomization in SoC verification
	Verification Abstraction Layer (VAL)
	VAL Structure
	How does the VAL work
	How does the VAL work
	The VAL Back-end component
	VAL connectivity
	Randomization with VAL
	VAL randomization: an example
	Constraining the Randomization
	Example of VAL usage model
	Conclusions and future works
	Backup Slides
	VAL-BE design: the tube example
	VAL-BE design: the tube example

