
Bringing Constrained Random into 
SoC SW-driven Verification

Alberto Allara, alberto.allara@st.com
Fabio Brognara, fabio.brognara@st.com

STMicroelectronics - Italy

mailto:alberto.allara@st.com
mailto:fabio.brognara@st.com


Sponsored By:

2 of (15)

Overview
• SW-driven verification: benefits and drawbacks

• Verification Abstraction Layer (VAL)

• Randomizations in SW-driven SoC tests

• Example of usage model

• Conclusions



Sponsored By:

3 of (15)

SW-driven verification technique
• Represents one of the most used techniques for System-

On-Chip verification
• Advantages:

– Easiness of use
– Reusability across levels 

• Block level in simulation
• SoC level in simulation
• SoC level in co-emulation
• In the actual Silicon

• Drawbacks:
– Traditionally based on Direct tests



Sponsored By:

4 of (15)

Randomization in SoC verification
• The EDA market is investing on Model-based test 

generation tools
– The user models a system in terms of graphs (or other 

models) and such tools  randomize and pre-generate 
C/C++ tests

• We propose a lightweight technique based on 
SystemVerilog UVM methodology
– enabled by a Verification Abstraction Layer (VAL)



Sponsored By:

5 of (15)

Verification Abstraction Layer (VAL)
• VAL is an interface that exposes the components of a SoC 

verification environment to an embedded CPU as Status 
and Control registers

• VAL enables verification engineers to
• Configure the verification components directly from software
• Generate expected results to external scoreboard for self-

checking capabilities
• Enable randomization in SW-driven verification

In
te

rc
on

ne
ct

CPU IP VIP

SoC Verification
Environment

reg1
reg2
reg3
regN



Sponsored By:

6 of (15)

VAL Structure

VAL-FE
Br

id
ge

VAL-BE1

VAL-BE2

VAL-BEN

VAL



Sponsored By:

7 of (15)

How does the VAL work

VAL-FE

Br
id

ge VAL-BE1

Interconnect

CPU

VAL-BE2

Memory

Each VAL-BE is associated to a virtual
Register file mapped on the 

Embedded memory 

Status and 
Control 
registers

VAL_TRIG



Sponsored By:

8 of (15)

How does the VAL work

VAL-FE

Br
id

ge VAL-BE1

Interconnect

CPU

VAL-BE2Memory

Each memory transaction generated on a memory
connected to the VAL is captured and propagated

to the VAL-BE

Memory Transactions

Each VAL-BE is sensitive to a different 
VAL_TRIG memory location

The data are moved from memory to VAL-BE
and vice versa through

backdoor memory accesses



Sponsored By:

9 of (15)

The VAL Back-end component
• Each VAL-BE is the specialization of a UVM object class called 

val_component
• Includes the following knobs:

– Memory address of the VAL_TRIG the component is sensitive to
– Base memory address where the VAL-BE register map is located

• Supports the following APIs
• read_mem_word(bit[31:0] addr, output bit[31:0] data);
• read_mem_dword(bit[31:0] addr, output bit[63:0] data);
• write_mem_word(bit[31:0] addr, input bit[31:0] data);
• write_mem_dword(bit[31:0] addr, input bit[63:0] data);

• Defines the val_op() callback
• Defines the connection between memories and backdoor API functions



Sponsored By:

10 of (15)

VAL connectivity

VAL-FE

Br
id

ge VAL-BE2

VAL-BE3

VAL-BE1 cfg M

DSeq

Scoreboard

M

DSeq
Analysis

FIFO
VAL



Sponsored By:

11 of (15)

Randomization with VAL
• UVM object defined within a VAL-BE
• The CPU through VAL triggers the randomization of this 

object
• The content of the randomized object is exported to the 

system:
– serialized back to memory in order to be accessible by 

SW
– sent outside VAL-BE through analysis port



Sponsored By:

12 of (15)

VAL randomization: an example
• Randomization of a LCD configuration

class val_lcd extends val_component;
lcd_cfg_packet cfgp;

…
function void val_op();
case(VAL_TRIG)
RAND_FRAME: begin
a = (mem_addr - base_mem_addr )+4;
read_mem_word(a,w); lcd_resolution=w;
assert(cfgp.randomize() with { 

res == lcd_resolution} ) 
else `uvm_fatal(“VAL_LCD”,”Unable to randomize”);
a += 4;
for(int i=0;i < cfgp.rows; i++)
for (int j=0; j<cfgp.columns; j++) begin
write_mem_word(a,cfgp.data[i][j]); a+=4;

end
…

VAL_TRIG
lcd_resolution

LCD_FRAME

Data serialization and copy into 
memory

Packet 
Randomization



Sponsored By:

13 of (15)

Constraining the Randomization
• Two ways to control randomization: static and dynamic 
• Static

– Based on UVM factory mechanism
– Replaces the object in the VAL-BE with a specialization 

of the same object with different constraints
• Dynamic

– Relies on values passed from SW to control the 
randomization constraints at run-time



Sponsored By:

14 of (15)

Example of VAL usage model

VAL

Interconnect

CPU

Mem

LCD
controller

LCD
UVC

Scoreboard

2) VAL randomizes 
a LCD frame and 
copy into mem

3) The same data 
is sent to the 
scoreboard 

1) Cpu
triggers the 

VAL

4) The LCD 
controller transmits 

the frame

5) The frame collected is 
sent to the SB for the 

comparison 



Sponsored By:

15 of (15)

Conclusions and future works
• Proposal of a methodology to bring Coverage Driven 

Constrained Random capabilities within SW-driven Soc tests
– The key element of the approach is VAL

• Through VAL the embedded SW can trigger the 
randomization of data for:
– VIP configuration
– IP configuration
– Payload data generation
– …

• Next step: development of a synthesizable VAL-FE to bring 
randomization into Co-Emulation environments



Sponsored By:

16 of (15)

BACKUP SLIDES



Sponsored By:

17 of (15)

VAL-BE design: the tube example
• The VAL_TUBE implements the UVM reporting mechanisms 

as well as the end-of-simulation mechanism
typedef enum
_uvm_severity {
UVM_INFO =0,
UVM_WARNING,
UVM_ERROR,
UVM_QUIT
} uvm_severity;

typedef struct
_val_tube_registers {
uint32_t VAL_TRIG;
uint32_t STR_BUFF[50];
} val_tube_registers;

void uvm_error(const char* str) {
uvm_report(str,(uint32_t)UVM_ERROR);

}
void uvm_warning(const char* str) {
uvm_report(str,(uint32_t)UVM_WARNING);

}
void uvm_info(const char* str) {
uvm_report(str,(uint32_t)UVM_INFO);

}
void uvm_report(const char* str,uint32_t sev) {
volatile val_tube_registers* p=(volatile
val_tube_registers*)VAL_TUBE_START;
strcpy((char*)p->STR_BUFF,str);
*(p->VAL_TRIG) = sev;

}
void global_stop_request(void) {
volatile val_tube_registers* p=(volatile
val_tube_registers*)VAL_TUBE_START;
*(p->VAL_TRIG) = (uint32_t)UVM_QUIT;

}

SW register map

SW APIs



Sponsored By:

18 of (15)

VAL-BE design: the tube example
• HVL side implementation

class val_tube extends val_component;
string s;
…
virtual function void val_op();
if (VAL_TRIG == 3) begin
`uvm_info("VAL_TUBE","stop activated from SW",UVM_NONE);
uvm_test_done.drop_objection(this,"Stop triggered by SW");

end
else begin
s=read_string_from_mem((mem_addr - base_mem_addr ) + 4);
case(VAL_TRIG)
0: `uvm_info(“VAL_TUBE”,s,UVM_NONE);
1: `uvm_warning(“VAL_TUBE”,s);
2: `uvm_error(“VAL_TUBE”,s);

endcase
end

endfunction : val_op
virtual function string read_string_from_mem(input bit[31:0] a);
…

endfunction : read_string_from_mem
endclass : val_tube


	Bringing Constrained Random into �SoC SW-driven Verification
	Overview
	SW-driven verification technique
	Randomization in SoC verification
	Verification Abstraction Layer (VAL)
	VAL Structure
	How does the VAL work
	How does the VAL work
	The VAL Back-end component
	VAL connectivity
	Randomization with VAL
	VAL randomization: an example
	Constraining the Randomization
	Example of VAL usage model
	Conclusions and future works
	Backup Slides
	VAL-BE design: the tube example
	VAL-BE design: the tube example

