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Overview
• SW-driven verification: benefits and drawbacks

• Verification Abstraction Layer (VAL)

• Randomizations in SW-driven SoC tests

• Example of usage model

• Conclusions
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SW-driven verification technique
• Represents one of the most used techniques for System-

On-Chip verification
• Advantages:

– Easiness of use
– Reusability across levels 

• Block level in simulation
• SoC level in simulation
• SoC level in co-emulation
• In the actual Silicon

• Drawbacks:
– Traditionally based on Direct tests
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Randomization in SoC verification
• The EDA market is investing on Model-based test 

generation tools
– The user models a system in terms of graphs (or other 

models) and such tools  randomize and pre-generate 
C/C++ tests

• We propose a lightweight technique based on 
SystemVerilog UVM methodology
– enabled by a Verification Abstraction Layer (VAL)
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Verification Abstraction Layer (VAL)
• VAL is an interface that exposes the components of a SoC 

verification environment to an embedded CPU as Status 
and Control registers

• VAL enables verification engineers to
• Configure the verification components directly from software
• Generate expected results to external scoreboard for self-

checking capabilities
• Enable randomization in SW-driven verification
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VAL Structure
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How does the VAL work
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How does the VAL work

VAL-FE

Br
id

ge VAL-BE1

Interconnect

CPU

VAL-BE2Memory

Each memory transaction generated on a memory
connected to the VAL is captured and propagated

to the VAL-BE

Memory Transactions

Each VAL-BE is sensitive to a different 
VAL_TRIG memory location

The data are moved from memory to VAL-BE
and vice versa through

backdoor memory accesses



Sponsored By:

9 of (15)

The VAL Back-end component
• Each VAL-BE is the specialization of a UVM object class called 

val_component
• Includes the following knobs:

– Memory address of the VAL_TRIG the component is sensitive to
– Base memory address where the VAL-BE register map is located

• Supports the following APIs
• read_mem_word(bit[31:0] addr, output bit[31:0] data);
• read_mem_dword(bit[31:0] addr, output bit[63:0] data);
• write_mem_word(bit[31:0] addr, input bit[31:0] data);
• write_mem_dword(bit[31:0] addr, input bit[63:0] data);

• Defines the val_op() callback
• Defines the connection between memories and backdoor API functions
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VAL connectivity
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Randomization with VAL
• UVM object defined within a VAL-BE
• The CPU through VAL triggers the randomization of this 

object
• The content of the randomized object is exported to the 

system:
– serialized back to memory in order to be accessible by 

SW
– sent outside VAL-BE through analysis port
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VAL randomization: an example
• Randomization of a LCD configuration

class val_lcd extends val_component;
lcd_cfg_packet cfgp;

…
function void val_op();
case(VAL_TRIG)
RAND_FRAME: begin
a = (mem_addr - base_mem_addr )+4;
read_mem_word(a,w); lcd_resolution=w;
assert(cfgp.randomize() with { 

res == lcd_resolution} ) 
else `uvm_fatal(“VAL_LCD”,”Unable to randomize”);
a += 4;
for(int i=0;i < cfgp.rows; i++)
for (int j=0; j<cfgp.columns; j++) begin
write_mem_word(a,cfgp.data[i][j]); a+=4;

end
…

VAL_TRIG
lcd_resolution

LCD_FRAME

Data serialization and copy into 
memory

Packet 
Randomization
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Constraining the Randomization
• Two ways to control randomization: static and dynamic 
• Static

– Based on UVM factory mechanism
– Replaces the object in the VAL-BE with a specialization 

of the same object with different constraints
• Dynamic

– Relies on values passed from SW to control the 
randomization constraints at run-time
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Example of VAL usage model
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Conclusions and future works
• Proposal of a methodology to bring Coverage Driven 

Constrained Random capabilities within SW-driven Soc tests
– The key element of the approach is VAL

• Through VAL the embedded SW can trigger the 
randomization of data for:
– VIP configuration
– IP configuration
– Payload data generation
– …

• Next step: development of a synthesizable VAL-FE to bring 
randomization into Co-Emulation environments
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BACKUP SLIDES
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VAL-BE design: the tube example
• The VAL_TUBE implements the UVM reporting mechanisms 

as well as the end-of-simulation mechanism
typedef enum
_uvm_severity {
UVM_INFO =0,
UVM_WARNING,
UVM_ERROR,
UVM_QUIT
} uvm_severity;

typedef struct
_val_tube_registers {
uint32_t VAL_TRIG;
uint32_t STR_BUFF[50];
} val_tube_registers;

void uvm_error(const char* str) {
uvm_report(str,(uint32_t)UVM_ERROR);

}
void uvm_warning(const char* str) {
uvm_report(str,(uint32_t)UVM_WARNING);

}
void uvm_info(const char* str) {
uvm_report(str,(uint32_t)UVM_INFO);

}
void uvm_report(const char* str,uint32_t sev) {
volatile val_tube_registers* p=(volatile
val_tube_registers*)VAL_TUBE_START;
strcpy((char*)p->STR_BUFF,str);
*(p->VAL_TRIG) = sev;

}
void global_stop_request(void) {
volatile val_tube_registers* p=(volatile
val_tube_registers*)VAL_TUBE_START;
*(p->VAL_TRIG) = (uint32_t)UVM_QUIT;

}

SW register map

SW APIs
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VAL-BE design: the tube example
• HVL side implementation

class val_tube extends val_component;
string s;
…
virtual function void val_op();
if (VAL_TRIG == 3) begin
`uvm_info("VAL_TUBE","stop activated from SW",UVM_NONE);
uvm_test_done.drop_objection(this,"Stop triggered by SW");

end
else begin
s=read_string_from_mem((mem_addr - base_mem_addr ) + 4);
case(VAL_TRIG)
0: `uvm_info(“VAL_TUBE”,s,UVM_NONE);
1: `uvm_warning(“VAL_TUBE”,s);
2: `uvm_error(“VAL_TUBE”,s);

endcase
end

endfunction : val_op
virtual function string read_string_from_mem(input bit[31:0] a);
…

endfunction : read_string_from_mem
endclass : val_tube
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