
Bridging the gap between TLM-2.0 AT models and RTL – Experiments and
Opportunities

Zhu Zhou, Atul Kwatra, Rajesh Gadiyar, Paul Heraty

Intel Corporation
5000 Chandler Blvd., Chandler, AZ U.S.A

zhu.zhou@intel.com
atul.kwatra@intel.com

rajesh.gadiyar@intel.com
paul.heraty@intel.com

ABSTRACT
As the transaction level modeling methodology gets widely adopted,
the fidelity of TLM accuracy becomes the key in the performance
assurance process. This paper details one approach that reuses the
TLM test environment to exercise both TLM and RTL DUT to
ensure their consistency. Some additional opportunities of filling the
gap between TLM and RTL models are suggested.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Contructs and
Features – abstract data types, polymorphism, control structures.

General Terms
Performance, Design, Standardization, Verification.

Keywords
Performance Modeling, TLM-2.0, Approximately-Timed

1. INTRODUCTION
As design complexity keeps increasing, improving system
performance within a certain power envelope mandates platform
architecture exploration at a higher abstraction level in the early
design stages. Performance modeling has been successfully used for
early architectural studies. The OSCI TLM-2.0 standard further
accelerated the adoption of SystemC based transaction level
modeling methodology by enabling interoperability and reusability.
However, assuring performance projections (throughput and latency)
through the process of RTL implementation remains a big challenge.

In this paper, a mixed TLM-2.0 AT style model and RTL simulation
infrastructure is introduced with the goal to validate performance
aspects and to identify RTL performance bugs earlier. Most
commercial simulators support mixed SystemC and HDL simulation
thus enabling reuse of the SystemC test bench developed during the
performance modeling phase to verify RTL implementation within
the platform context. The simulated throughput and/or latency
discrepancy between SystemC and RTL can result in either earlier
RTL bug fixes or micro-architecture modifications (along with
corresponding modifications to the TLM model). Performance
analysis can be done at the system level to justify the design impact.

It is worth noting that we are referring to consistency from a
performance perspective here; throughput and latency. Functional
equivalence checking between SystemC and RTL is a separate issue
that is not addressed in this paper.

We also further discuss other opportunities to bridge the gap between
TLM models and RTL implementations.

2. PERFORMANCE MODELING STAGES
Performance modeling plays different roles during the whole design
process (Figure 1). At the early architecture definition stage,
performance modeling serves as a sand box for architects to weigh
different options such as software/hardware partition, interconnect
protocol, IP choices, etc. Once the overall platform architecture is
defined, modeling the detailed micro-architecture of each block can
often refine/optimize the system performance. The Approximated-
timed coding style defined in TLM-2.0 standard suits very well for
these two tasks given its timing granularity, flexibility and
simulation performance. Processes in the AT coding style run in
lock-step with simulation time in order to provide the accuracy
needed for throughput/latency projections.

Today, most of the implementation starts with hand written RTL
(e.g. SystemVerilog). The purpose of pre-silicon RTL performance
validation is to ensure that no bugs are introduced to negatively
impact the projected throughput/latency. Note that the refinement to
the models continues as the design proceeds to the next level. The
detailed information goes back to validate early assumptions and
change the performance projections if needed. This includes
correlating post-silicon performance measurement with high level
performance models that is not shown in the diagram.

Correlating TLM-2.0 AT models and RTL implementations is
difficult and time-consuming because they are created independently
by different teams. On the other hand, it is crucial to fill the gap and
ensure two set of modules are consistent.

Figure 1. Performance Modeling Stages

Platform Architecture Study
SystemC TLM-2.0 AT

Block Level Micro-Architecture Study
SystemC TLM-2.0 AT

Pre-silicon RTL Performance Validation
SystemVerilog, Verilog, VHDL

GAP

3. PERFORMANCE CORRELATION
BETWEEN TLM-2.0 AND RTL
A real project is used to prove the reusability of the whole SystemC
test environment for newly developed IP and correlate the TLM-2.0
AT model with the RTL implementation. There are certain
challenges with integrating TLM-2.0 models with RTL. The chosen
approach is described and the resulting impact on simulation speed is
summarized.

3.1 TLM-2.0 AT Style Performance Model
Figure 2 (except the light yellow area) shows a performance test
platform to ensure that newly developed IP can support required
throughput and latency under the system context. All modules were
developed using the TLM-2.0 AT style. The detailed pipeline, buffer
size and arbitration scheme are modeled to predict actual
performance under various configurations. Traffic generators are
configured to issue memory accesses representing certain real usage
scenarios. The platform has been simulated extensively to identify
bottlenecks and optimize the platform level configuration.

The high level performance study is conducted before RTL coding
gets started and the models/configurations continue to be refined
during the RTL development.

Figure 2. Mixed TLM-2.0 and RTL test platform

3.2 RTL Performance Assurance
Once the RTL code reaches a certain level of stability, it is important
to validate the predicted throughput/latency by applying the same
test scenarios from TLM-2.0 test platform. As shown in figure 2, the
transaction flows through the lower path to exercise RTL
implementation. In order to interface TLM models with RTL,
transactors (shown as TR in the figure) are needed to translate the
high level function calls into RTL level signals and vice versa.
Transactors can be coded in either SystemC or RTL (Verilog,
VHDL, and SystemVerilog). In our case, SystemC is used and a
commercial RTL simulator provides a SystemC wrapper for the RTL
DUT so that it can be connected with the transactor in the top-level
netlist.

TLM-2.0 transaction objects are created in the traffic generator and
passed on to other modules along the memory path using reference
pointers. One issue with this is that when TLM-2.0 transaction
crosses the transactor into RTL, the pointer to the TLM-2.0
transaction object is lost. This means that a new TLM-2.0 transaction
needs to be created in the transactor that connects to the memory
system using the information passed out from the RTL. Also for
memory reads, the transaction pointer needs to be stored within the
transactor. When the associated completion comes back, it can be
retrieved to model the path that goes back to the original initiator.

Memory management of TLM-2.0 transaction objects needs to be
carefully designed to handle such situations.

The TLM-2.0 based modeling infrastructure is not intended to be
used as the comprehensive functional test environment. However, the
RTL coders did find this platform based environment useful for
running quick unit level tests before handing off code to the pre-
silicon validation team, particularly given the fact that it uses the
same RTL simulator and debug tool suite.

3.3 Debug RTL and TLM in Parallel
It is common to find performance discrepancies between pure TLM
platform and mixed TLM/RTL simulation. The causes can be bugs in
either the RTL or TLM models. To root cause the problem,
debugging TLM and RTL models simultaneously with same injected
traffic is desirable. Activating both paths in Figure 2 poses some
challenges in terms of handling TLM-2.0 transactions. For example,
the traffic generator (TG) creates a new TLM-2.0 read transaction. It
goes through the interconnect and splits into both the TLM and RTL
IP models. Likely the latency differs, so they arrive at the memory
system module at different times. The memory System module needs
to be modified to handle this situation. In addition, two data
completion paths have the same issue when they converge at the
interconnect. Even more challenging, the single extended TLM-2.0
payload object will likely be modified by two parallel paths at
different time.

To make things easier, the same set of test bench components is
instantiated twice to separately drive the TLM model and
corresponding RTL as shown in Figure 3. The traffic generators are
configured the same to ensure the same traffic gets injected into both
paths. The TLM-2.0 analysis ports are used to export information at
various points to a performance correlation module where various
checkers/monitors can be instantiated to log/report any performance
differences between the TLM and RTL paths.

Figure 3. Parallel TLM-2.0 and RTL test platforms

3.4 Simulation Speed Comparison
One main reason of moving to higher abstraction levels is to achieve
several magnitudes higher simulation speed. With that, extensive
architectural exploration can be conducted within a reasonable time

TG

TG

TG

TG

interconnect
New IP Memory

System
PCIE

TG

TG

TG

TG

interconnect New IP
TLM

Memory
System

PCIE

New IP
RTL

T
R

T
R

TG

TG

TG

interconnect

New
IP

Memory
System

PCIE
TG

T
R

T
R

Performance
Checkers/Monitors

frame. Table 1 shows the speed difference between pure SystemC
simulation and SystemC/RTL mixed simulation.

 Table 1. Simulation Speed Comparison
Platform Simulator Speed

(transactions/second)
Pure TLM-2.0 OSCI simulator 50, 000
Mixed TLM-2.0/RTL Commercial RTL

simulator
64

4. OTHER OPPORTUNITES
Similar to RTL design, validating TLM models is much more time
consuming than writing the model. In order for TLM modeling to
become part of the mainstream design flow, the gap between a TLM
model and its RTL implementation needs to be filled. Some other
potential approaches are discussed below.

4.1 High Level Synthesis (HLS)
High level synthesis tools have gained momentum in recent years.
The focus has been the quality of generated RTL code. There is a
potential opportunity in having the HLS tool generate an equivalent
TLM 2.0 AT model in addition to synthesizable RTL from the high-
level design description (Figure 4). This TLM model can then be
plugged into the platform level simulation environment to quickly
validate the performance of the implementation choice in the full
system context. The key technical challenge in generating the TLM
2.0 AT model would be to abstract away appropriate RTL
functionality and timing details to achieve faster simulation speeds.
Today most synthesis tools can generate signal level cycle accurate
SystemC representations. In order to plug this model back into the
TLM-2.0 platform, transactors need to be built and simulation
performance may be a concern given the extra detail included in the
cycle accurate model.

Additionally, the generated RTL can be synthesized for power
estimation. The power information can be fed back to the TLM
platform to do performance/power trade off analysis.

Figure 4. Ideal High Level Synthesis design flow

4.2 Handling Legacy RTL Modules
IP reuse has become a popular practice to improve time to market.
One critical task of SoC design is to properly assemble/configure
available IPs (include interconnects). Transaction level modeling has
been successfully applied for performance, power and area trade off
analysis. For existing RTL modules, it is time-consuming to hand
write and validate a corresponding TLM model.
Commercial solutions are available to plug existing RTL models into
a virtual platform by converting RTL into C/C++ code or by
abstracting the timing information required by the high level
platform. The challenge is to balance accuracy, visibility, and
simulation speed. Also additional effort is needed to handle the
interface through transactors.

4.3 Reuse of Transaction Level Checker and
Monitor
For a design flow that starts with TLM performance models,
transaction level protocol checking mechanisms have been used on
both interconnects and internal pipeline logic. It is desirable to
standardize/reuse/translate such high level checkers into RTL
assertions that can automate the correlation process and dynamically
check the correctness of certain protocols. Transaction level
visualization is another important tool to debug the performance
aspect of the platform behavior. Some form of correlation between
transaction view and RTL signals will certainly help quickly identify
discrepancies between TLM and RTL.

5. CONCLUSION
It becomes impossible to design a competitive chip architecture
using traditional spreadsheet based performance analysis. TLM
based performance modeling is a necessary tool for architects to
explore different design options at a very early design stage. Because
critical decisions are made based on the simulated platform, the TLM
models have to be validated against the specification and later serve
as a golden model for the RTL implementation. Correlating RTL
with TLM model is usually a huge effort. Since the TLM-2.0
standard is relatively new, there are almost no automation tools to
cross-check a TLM-2.0 model and its corresponding RTL
implementation from the performance perspective.

This paper has epitomized how we can implement both the TLM and
the RTL DUT within the system context to identify any
discrepancies. This helps to flush out any RTL bugs that impact the
system performance. In addition, several other techniques that have
potential to fill the gap between TLM-2.0 model and RTL are
discussed. Hopefully, some commercial tools will start to mature in
the near future to make the top down design flow smoother.

6. ACKNOWLEDGMENTS
We would like to thank the following co-workers at Intel who have
supported the related projects and provided valuable inputs in
defining the methodologies.
Qi Zhu, Trevor Wieman, Brian Mears, Asad Khan, Kaushik Bhatt,
Michael Kishinevsky

7. REFERENCES
 [1] OSCI TLM-2.0 User Manual, Open SystemC Initiative (OSCI), Version
JA22, June 2008.
[2] IEEE Std 1666-2005, IEEE Standard SystemC Language Reference
Manual. March 31, 2006
[3] OVM SystemVerilog User Guide, Version 2.0.2, June 2009.

[4] Frank Ghenassia. Transaction-Level Modeling with SystemC : TLM
Concepts and Applications for Embedded Systems. Springer, 2005.
[5] Thorsten Grotker, Grant Martin, Stan Liao, Stuart Swan. System Design
with SystemC, Kluwer Academic Publishers, 2003.

[6] SystemC Synthesizable Subset 1.3 draft. June 30, 2009 OSCI

