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Abstract: The adoption of Portable test and Stimulus Standard (PSS) [1] enables function verification can create test intent 

at abstract level and generate different test scenarios for a specific simulation engine. Given that Universal Verification 

Methodology (UVM) [2] is by far the most popular verification framework used in the industry, by bridging PSS to UVM, the 

verification engineer can specify test intents in PSS Domain Specific Language (PSS DSL), and leverage the UVM verification 

sequence library underneath to create concreted tests. The paper describes a prototype of pss_uvm, the framework to compile 

and synthesize PSS script into to a simulation test based on UVM testbench. With the tool set in pss_uvm, a test case can be 

constructed in PSS DSL script, and converted into ruby, a dynamic program language, with which it can be run and interacted 

with a SystemVerilog HDL simulator through binding it to UVM testbench with SystemVerilog DPI. The verification framework 

helps adopting PSS seamlessly without major change in the simulation flow and testbench, as well as, augments the distinct 

capabilities to UVM such as dynamic programming and ease of debug. By using PSS script on top of UVM, the verification 

testcases can be specified in PSS and synthesized to UVM test, which improves the efficiency of verification. 

 

I.   INTRODUCTION  

With the portable test and stimulus standard, an abstract representation of test stimulus could be created and reused by a 

variety of users, across different levels of integration, or under different configurations. It enables different implementations of 

the same scenario that runs on various testing platforms such as simulation or emulation [1]. The adoption of PSS standards 

requires simulation tools to interpret inputs in PSS specification language, construct the test scenarios from abstract 

representation and execute the simulation in a user-friendly way. In this paper, a pss_uvm verification framework will be 

introduced and depicted to allow PSS script to be integrated and run in a UVM simulation environment. In this framework, PSS 

script is compiled and converted into its equivalence in ruby script, which can be evaluated in UVM simulation environment with 

the help of a runtime library called ruby_uvm. It enables the users to implement the PSS intuitively and leverage with the distinct 

capabilities augmented to UVM such as dynamic programming and ease of debug. By using PSS script on top of UVM, the 

verification scenarios can be specified in PSS and synthesized to UVM test, which improve the efficiency of verification.  

UVM is by far the most popular verification framework, however UVM based simulation environment has a few limitations,  

 Hard to debug: The interactive debugger of SystemVerilog/UVM depends on simulator from EDA vendors, and it 

is not easy to change the content of testcase when the simulation is undergoing. 

 Long learning curve: UVM is harder to learn than most modern script languages. It will be an interested attempt if 

we can use script to do verification and gain the same verification quality. 

The goal for implementing PSS on top of UVM is to specify test intents in PSS and implement test scenario in UVM. 

Leveraging the support of constrained randomization and coverage analysis provided from PSS, the test scenarios can potentially 

be generated automatically. Through simulating the automatically created test scenarios, the test intent can be confirmed by back-

annotating the simulation result with the corresponding coverage, where the user can close the verification cycle. Bridging PSS 

framework and UVM testbench with a modern script language like ruby, we can obtain the following benefits,  

 Speed-up development: test scenarios are specified in abstract level (PSS) and converted in concrete representation 

in ruby. PSS allows us to develop the test indent once and used consistently by different verification teams working 

on different verification engines such as simulator, accelerator or emulator. Meanwhile, ruby is ubiquitous and easy 

to be picked up and deployed by different teams for adopting PSS. The setup enables work sharing among 

horizontal verification teams, and makes the test reuse possible among vertical teams such as IP and SOC teams. 

By eliminating the unnecessary repeated tasks, the development of semiconductor project potentially get speeded 

up as the design verification cycle is shortened. 

 Easy to learn and use: The functionality of UVM is exported to high level of abstraction (by C through DPI) and 

executed from ruby extension library. The verification team uses PSS empowered by ruby script to drive UVM 

verification environment, and develops test cases in ruby instead of raw UVM, which reduces the learning time for 

new engineers because ruby is comparatively easier to learn and debug.  

 Nonintrusive with existing UVM library: PSS DSL and underneath ruby_uvm library are developed in a 

nonintrusive way as an add-on functionality of existing UVM testbench. The deployment of ruby_uvm library and 

PSS abstract test intent does not have any impact to the current UVM based test environment. If there are testcases 

already developed in native UVM, they will work as well without any change. 

 Compile-free method: The PSS script is loaded after simulation image being built, so the user can modify the test 

scenario in the script without recompiling the simulation image. In other words, if DUT and the UVM common 
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code are not changed in the iteration, then with only PSS DSL code changes, the user does not need to recompile it 

when trying out fixes or running new tests. 

The proposed pss_uvm verification framework consists of a PSS translator which compiles PSS script to ruby test, a Ruby 

interpreter, a PSS object model library, a ruby_uvm library and a base UVM testbench. After evaluated by the PSS translator, the 

Ruby interpreter builds PSS object models according to the ruby script translated from PSS, which internally represent the PSS 

abstract test intents. The models are based on a set of predefined ruby classes implementing PSS functionality such as PSS 

components or PSS actions. They can be run on and interact with a UVM testbench with the help of ruby_uvm simulation 

runtime library. To interact with the UVM environment in the script, the UVM functions such as running a sequence or 

programing a register with RAL are exported to C side through DPI, which are eventually wrapped as ruby classes. For primitive 

actions of PSS execution, the ruby_uvm will serve any exec calls when the action is triggered. At the beginning of the simulation, 

the ruby_uvm runtime creates ruby interpreter and loads the ruby script converted from PSS with the test intents. By running the 

ruby script, the test scenario will be simulated according to the test intents specified in PSS.  

Figure 1 demonstrates the flow of how ruby bridges PSS and UVM. When simulation starts, the ruby interpreter is created 

inside a pthread run on the simulator. In ruby_uvm, the basic functions from commonly-used UVM classes are exported to C 

through DPI, and these DPI functions are wrapped into ruby proxy class library. With this UVM-ruby library, the functionalities 

of UVM such as factory, config-db, sequence execution and RAL operations all become available to the ruby script. The PSS 

translator converts the PSS script into ruby, which becomes a test case ready to run on the UVM testbench enhanced by 

ruby_uvm. In this paper, the PSS translator and object model are introduced in details in section I, and the implemented of 

ruby_uvm is depicted in section II.  

 

Figure 1. Diagram of pss_uvm work flow  

I. DESIGN OF PSS TO RUBY SCRIPT TRANSLATOR  

A. PSS parser and generator 

The PSS describes a declarative Domain-Specific Language (DSL), which embraces the core concepts from Object-Oriented 

Programming (OOP) languages, Hardware-Verification Languages (HVL), and behavioral modeling languages. PSS features 

native constructs for system notions, such as data/control flow, concurrency and synchronization, resource requirements, states and 

transitions. Its lexical and syntactic conventions come from the C/C++ family, which are included in PSS specification. On the 

other hand, for its constraint and coverage capability, it uses SystemVerilog as a reference. 

The PSS language parser (used in the translator/interpreter) is based on ruby treetop [3]. Treetop is a Ruby library that allows 

users to create parsers easily by describing them using a Parsing Expression Grammar (PEG). PEG is introduced by Bryan Ford 

[4], which is a type of analytic formal grammar, and it describes a formal language in terms of a set of rules for recognizing patterns 

in the language. In general, PEGs are a simple but powerful generalization of regular expressions that are easier to work with than 

the LALR or LR-1 grammars from traditional parser generators. There's no need for a tokenization phase, and look ahead assertions 

can be used for a limited degree of context-sensitivity. With these natures of PEG, it is well-suited for parsing computer languages 

as it is simple to write and easy to maintain. 

The current PSS treetop grammar is derived from the original BNF grammar included in the PSS specification, and the entire 

grammar is included in a signal file with 1000 lines supporting the full PSS grammar parsing. The codes below are examples of 

some PSS activity statement in PSS grammar. Each rule in treetop grammar comes with two parts: one is the regular expression 



that defines what this entity looks like, and the other is the type of syntax node it should be turned into. Treetop matches up the 

name encapsulated in <> with the custom syntax nodes defined as ruby class. The rules in Treetop are written using a superset of 

regular expressions.  
  rule activity_labeled_stmt 
    (identifier ':')? activity_stmt <ActivityLabeledStmt> 
  end 
  rule activity_repeat_stmt 
    ('repeat' 'while' '(' expression ')' activity_sequence_block_stmt) / 
    ('repeat' '(' (identifier ':')? expression ')' activity_sequence_block_stmt) / 
    ('repeat' activity_sequence_block_stmt ('while' '(' expression ')')?) ';' s <ActivityRepeatStmt> 
  end 

Table 1. Treetop format of PSS grammar  

When parsing a PSS script, an Abstract Syntax Trees (AST) is created and traversed, along with intermediate optimization and 

code generation steps are performed on it. The current implementation doesn't include much of optimization except skipping 

extraneous nodes that we don’t need or care. The custom syntax node classes can return a symbolic expression(S-expr) [5], as a 

simpler representation of themselves using simple nested sets of arrays and native Ruby data-types.  S-expr is selected as 

intermediate AST format for further handling, taking advantage of that Ruby provides decent library to handle S-expr such as filters 

and convers. The AST node class is carefully tuned to create the S-expr with high compatibility to those available ruby language 

tools.  Each complex node delegates the job for producing S-expr down to its children, and each primitive child node (e.g. 

StringLiteral, Identifier) is responsibly to how to return a simple version of itself. The current implementation of PSS parser 

supports all examples included in PSS specification. An example is shown as the following,  
resource struct cpu_core_s {}; 
component dma_c { 
  resource struct channel_s {}; 
  pool[2] channel_s channels; 
  bind channels *;  
  action transfer { 
    lock channel_s chan; 
    lock cpu_core_s core; 
  }; 
}; 
component pss_top { 
  dma_c dma0,dma1; 
  pool[4] cpu_core_s cpu; 
  bind cpu {dma0, dma1}; 
  action par_dma_xfers { 
    activity { 
      parallel { 
        dma_c::transfer xfer_a; 
        dma_c::transfer xfer_b; 
        constraint xfer_a.comp != xfer_b.comp; 
        constraint xfer_a.chan.instance_id == xfer_b.chan.instance_id;  
        constraint xfer_a.core.instance_id == xfer_b.core.instance_id;  
      }; 
    }; 
  }; 
}; 

Table 2. PSS script example   

The generated S-Exp table of the example PSS script is shown below,  
s(:block, 
 s(:call, nil, :resource, s(:lit, :cpu_core_s)), 
 s(:iter, 
  s(:call, nil, :component, s(:lit, :dma_c)),  0, 
  s(:block, 
   s(:call, nil, :resource, s(:lit, :channel_s)), 
   s(:call, nil, :pool, s(:lit, :channels), s(:lit, :channel_s), s(:lit, 2)), 
   s(:call, nil, :bind, s(:lit, :channels), s(:str, "*")), 
   … 

Table 3. Parser intermediate format of PSS in S-expr   

After the S-expr is successfully returned with the root node, the ruby2ruby [6] tool can be used to convert the S-expr to valid 

ruby script. ruby2ruby provides a means of generating pure ruby code easily from RubyParser compatible with S-expr. In the 

design of PSS to ruby translator, the S-expr code generator from the translator is carefully designed to keep the result acceptable 

by ruby2ruby, in order that it can leverage this tool to translate the parser output to valid ruby code. The example of the final 

generated ruby code is shown as below,  
resource(:cpu_core_s) 
component(:dma_c) do 
  resource(:channel_s) 



  pool(:channels, :channel_s, 2) 
  bind(:channels, "*") 
  action(:transfer) do 
    lock(:channel_s, :chan) 
    lock(:cpu_core_s, :core) 
  end 
end 
component(:pss_top) do 
  instance(:dma_c, [:dma0, :dma1]) 
  pool(:cpu, :cpu_core_s, 4) 
  bind(:cpu[:dma0, :dma1]) 
  action(:par_dma_xfers) do 
    activity(:a1) do 
      parallel(:p1) do 
        need_act(:dma_c, :transfer, :xfer_a) 
        need_act(:dma_c, :transfer, :xfer_b) 
        constraint("xfer_a.comp != xfer_b.comp;") 
        constraint("xfer_a.chan.instance_id == xfer_b.chan.instance_id;") 
        constraint("xfer_a.core.instance_id == xfer_b.core.instance_id;") 
      end 
    end 
  end 
end 

Table 4. Result from PSS to ruby translator   

B. PSS object model 

The generated ruby script from PSS script translation is based on PSS’s ruby object model. Most of basic types defined in PSS 

specification are implemented as ruby classes such as components, actions and resources. The PSS object model in ruby provides 

API for global usage, which were referenced by the PSS translated ruby scripts.   

The component class provides a mechanism to encapsulate and reuse elements of functionality. They are structural entities and 

instantiated under other components, through which the instances constitute a hierarchy (tree structure) from the root component 

called pss_top. The actions are implemented as classes instead functions of their parent component. Since PSS actions need to 

encapsulate the rules for their interaction with other actions, by means of an action depended by the completion of other actions, 

the dependency relationship among actions are maintained by an action manger. This action manager will schedule and call the 

associated ruby block maintained in action class once the dependences of the action are resolved. It also manages flow and resource 

objects in order to coordinate each components to work together, where the action can easily reference to flow object and resource 

object. In this setup, the flow object specifies the action’s inputs and outputs, and the resource object specifies the action’s resource 

claims. Furthermore, if an action is atomic, its implementation is supplied via an exec block. In the pss_uvm framework, the exec 

block is a ruby block invoking the underlining ruby_uvm simulation runtime library, which will be discussed in details in the next 

section.  

II. DESIGN OF RUBY_UVM RUNTIME LIBRARY 

Concrete testcases in pss_uvm framework can be either converted from PSS script or written manually in Ruby. They need 

to be run on a ruby interpreter with the support from a ruby_uvm library, the runtime library of pss_uvm. In details, the ruby 

interpreter is created on a Linux pthread spawned from the HDL simulator process for load and execute the Ruby scripts. On 

the other hand, the ruby_uvm library provides the functionality imported from UVM testbench as Ruby’s extensions, so that 

UVM functionality could be used by the Ruby tests. This section will introduce how ruby_uvm library works.  

A. Create ruby interpreter running from simulation process 

In UVM framework, a hierarchy of components are simulated under the coordination from simulation phases. An uvm_test is 

the top level simulation component which creates the whole uvm simulation environment and connects to DUT in the simulation 

build and connect phases. By the time when simulation reaches the run_phase, the DUT and UVM simulation objects have been 

elaborated and internal runtime models have been built inside the simulator, and the simulator starts to proceed the simulation 

actions with scheduling the runtime model and advancing the simulation time. Uvm_ruby is a Systemverilog DPI library, which 

communicates with the simulation run on the HDL simulator, as well as, support the Ruby script with the available UVM 

functionality. When DPI uvmc_init_ruby is called, a ruby interpreter will be created and runs as a part embedded in the simulator. 

The control of the simulation can be transferred to the ruby interpreter, so that the interpreter can perform evaluation of the ruby 

program loaded. uvmc.rb, the very first Ruby program loaded, does the bootstrap and loads in ruby_uvm’s extension library. Then 

it move on to evaluate the user-defined Ruby test script. Through the ruby test, users can apply stimulus to the DUT, inspect the 

DUT object or control verification environment being simulated.  
//create ruby interperter 
static void *init_ruby(void *) 
{ 



 ruby_init(); 
 ruby_init_loadpath(); 
 char script_file[1024]; 
     //specify the default ruby file to load after embedded ruby interpreter 
      sprintf(script_file, "%s%s", getenv("ANCHOR"), "rb/uvmc.rb"); 
 std::cout << "load script file:" << script_file << std::endl; 
 rb_require(script_file);   
 return NULL; 
} 
void uvmc_run_ruby() 
{ 
 pthread_t init_ruby_pthread; 
 pthread_create(&init_ruby_pthread, NULL, init_ruby, NULL); 
 pthread_join(init_ruby_pthread, NULL); 
 return; 
} 

Table 5. Create ruby interpreter from Linux pthread   

Figure 2 shows the internal structure of the ruby_uvm DPI library. Once the simulation control is handed over from UVM 

environment to ruby test, the ruby test can use any valid ruby syntax supported by the ruby interpreter for pre-defined simulation 

actions, for example, loading in extra ruby library. Through this, it can use the functionality provided by ruby extension from 

ruby_uvm to composite the content of the simulation testcase. In the pss_uvm framework, the ruby test is an exerciser layer of the 

UVM environment and it also supports interactively control the UVM simulation environment, allowing users to modify and inject 

actions in the middle of the simulation process. 

The base testbench is still implemented in native UVM code, where the common sequence should be already developed and 

validated in native UVM testbench. Meanwhile, DPI and C++ ruby wrappers are compiled as part of ruby_uvm library. The 

integration comes into effect when the ruby interpreter is created first and the ruby_uvm library is get loaded as a ruby extension at 

the beginning of the simulation. While a ruby function is invoked which calls UVM extension function, the corresponding C++ 

function in the ruby_uvm library is triggered, and SystemVerilog DPI will be called afterworth. With this ruby_uvm library, the 

functionalities of UVM such as factory, uvm_config_db, sequence execution and RAL operations are all ready to use in the ruby 

scripts, and hence the test case can be developed in ruby instead of Systemverilog. The block diagram of ruby_uvm based simulation 

is shown in below figure. 

 

 
Figure 2. Block diagram of ruby_uvm class library 

B. Expose the UVM functionality into ruby class library 

A C++/ruby cross language library called “ruby rice” [7] is used for wrapping the DPI function in C into ruby classes and 

functions. Ruby rice makes writing ruby extensions with C++ easier, and fits well in our pss_uvm framework when creating ruby 

extensions from DPIs, as well as, wrapping the UVM functionality.  

1. Use UVM factory from ruby  

Below codes show how the UVM factory mechanism is supported in ruby, so that the ruby class can create various UVM 

classes such as an uvm_sequence. The DPI calls are using prefix “UVMC_”, for example, UVMC_debug_factory_create. They are 

placed into separate SystemVerilog package when exposing the uvm factory functionality to the C side. Then with the available 

DPIs, ruby rice class can be created to generate the ruby classes. 
extern "C" { 
 ... 
 void UVMC_set_factory_type_override(const char* original_type_name, 



                                     const char* override_type_name, 
                                     bool replace=1); 
 void UVMC_debug_factory_create(const char* requested_type, 
           const char* context=""); 
} 
class UvmFactory { 
 ... 
 void set_factory_type_override(const char* original_type_name, 
                                 const char* override_type_name, 
                                 bool replace=1) { 
  UVMC_set_factory_type_override(original_type_name, override_type_name, replace); 
 } 
 void debug_factory_create(const char* requested_type, const char* context="") { 
  UVMC_debug_factory_create(requested_type, context); 
 } 
};   
//Define ruby class UvmFactory 
define_class<UvmFactory>("UvmFactory") 
  .define_constructor(Constructor<UvmFactory>()) 
  .define_method("print", &UvmFactory::print_factory); 

Table 6. ruby_uvm implementation of factory API   

2. Access Register through RAL  

To support register access API, a group of UVM RAL extension classes has been developed to provide register access with 

"access register by name" style. The arguments to those functions are heretical reference to “register block”, “register name” and 

“field name”. By leveraging this style in the API, there is no need to model a register on ruby side, which saves the repetitive 

modeling work and simplifies the design of supporting library on ruby side. Ruby rice is used to create an UvmReg class wrapping 

around the exported uvm reg model functions using string type only, for example, a register names as function argument. From the 

ruby test script, user can create Uvm Ral transaction by specifying the register or field name without referencing RAL directly. The 

code example below is the ruby rice binding definition and the C++ class of UvmReg. The UvmReg references the UVM exported 

DPI functions, and provides member functional call on the ruby side. After ruby interpreter loads the compiled extension library, 

the UvmReg class will becomes available in the ruby program. The write or read to the ruby object UvmReg will result in the RAL 

access call to the register specified by the register hierarchical name.  
class UvmReg { 
public: 
 UvmReg() {} 
 void setup(string context, string blkname) { 
     UVMC_reg_setup(context.c_str(), blkname.c_str()); 
 } 
  void write(string regname, unsigned int value) { 
     UVMC_reg_write(regname.c_str(), value); 
 } 
  unsigned int read(string regname) { 
     unsigned int value; 
     UVMC_reg_read(regname.c_str(), &value); 
     return value; 
 } 
};   
define_class<UvmReg>("UvmReg") 
      .define_constructor(Constructor<UvmReg>()) 
      .define_method("setup", &UvmReg::setup) 
      .define_method("write", &UvmReg::write) 
      .define_method("read", &UvmReg::read); 

Table 7. ruby_uvm implementation of register API   

3. Execute UVM Sequence 

Transaction class in a UVM testbench is defined as a derived class from uvm_object. Unlike modern script languages, 
SystemVerilog do not support language inspection. It is not easy to setup manipulation the object members without directly 

reference to the member variable. However there are still various methods to modify the class instances of member variables in run 

time. For example, the ruby_uvm supports randomization and set_int/string_local to change the instances of member variables in 

run time. Class UvmSeq is defined in ruby side which is corresponding to uvm_sequence from UVM. In the example below,   

UVMC_sequence_create is a task to create a UVM sequence using UVM factory mechanism with the specified type name. And 

UVMC_sequence_start is a task to start a sequence on a sequencer specified by its hierarchical name. These functions/tasks are 

exposed to C side through SystemVerilog DPI, and then wrapped into several C++  UVMSeq classes with member functions to 

create and start UVM sequence. Now with the help of the ruby rice, the C++ classes are further wrapped into ruby classes which 

can be used in the ruby programming. 



seq = UvmSeq.new 
seq.create "seq_type", "seq_name" 
seq.set_int_local("field_name", num) 
seq.randomize 
seq.set_int_local("field_name", num2) 
seq.send "sequencer" 

Table 8. Short code segment of a ruby_script 
 

In the pss_uvm simulation framework, ruby test can run interactively under the control of a ruby debugger or a user program. 

When the user defines an UvmSeq instance, the member variable can be setup using randomization or set_int/string_local multiple 

times until the class instance’s values are proper. In SystemVerilog by using the randomize() with construct, users can declare in-

line constraints at the point where the randomize() method is called. And the following the constraint blocks will define all of the 

required constraint types and forms as otherwise be declared in a class. However, in current implementation of ruby_uvm library, 

there is still no corresponding facility on ruby side yet. In the pss_uvm framework, all the constraints needs to be declared first 

inside the System Verilog class, then the ruby side can call the class member function to dynamically control a present constraint 

or setting the mode through constraint_mode. After the UvmSeq instance is defined, the member variables value can be printed to 

confirm the proper setup for debug purpose. 

4. Concurrent Process Execution 

On Systemverilog side, the UVM Sequences are created and run in the run_phase where simulation time is consumed. 

Correspondingly, in ruby_uvm library, the common sequence can be created using uvm_factory mechanism which is available to 

ruby script. They can be started on specific uvm sequencers. From ruby side, the start function call has a parameter which specifies 

the hierarchical name of the uvm sequencer. After a sequence has been created in ruby script, the sequence and corresponding 

sequencer pair is pushed into the sequence group, as a queue structure in System Verilog. There is a helper task called 

sequence_execute in Systemverilog and associated data tables to record all sequences and sequencers need to be used in ruby side. 

When a sequence has been triggered in ruby, the task sequence_execute will first obtain the sequence handler in the sequence table, 

and then launch the sequence on the corresponding sequencer. Once the registered sequence is finished, the ruby function (seq.run) 

will return. If all content of ruby tests has been completed, the ruby interpreter will end the job and release the simulation control. 

Furthermore, it is possible to execute multiple UVM sequences in parallel. In a ruby test, a number of uvm sequence can be created 

and launched altogether. The SystemVerilog helper task called sequence_group_execute is designed to serve this purpose. In 

addition, Uvm_ruby can use fork-join construct for controlling the sequences running in parallel. Once the ruby starts running the 

sequence group, the helper task in SystemVerilog will be kicked off. The below example is the pseudo code of this Verilog task, 
fork  
  begin : isolating_thread 
    for(int index=0;index<num_of_seq;index++)begin : for_loop 
      fork 
      automatic int idx=index; 
        begin 
            `uvm_do_on(p_sequence_queue[idx],p_sequencer_queue[idx]); 
        end 
      join_none; 
    end : for_loop 
  wait fork; 
  end : isolating_thread 
join 

Table 9. Concurrent process creation in Systemverilog 

 fork/join blocks the execution control until all direct child threads within it are completed, and the wait fork is blocking and 

waiting for all grandchild threads complete. In the code example above, there is only one child thread in the outer fork/join, the 

isolating_thread begin/end block, which will wait for the grandchildren threads spawned by the fork/join_none inside the ‘for’ 

loop. The isolating_thread creates thread layer that guarantees only blocking the wait for the child threads of itself. It is also 

possible to create other variant to mimic the ‘join all’ and ‘join any’ constructs.  

The majority interaction between the native UVM testbench and the ruby interpreter are through the ruby function bound to 

the Systemverilog DPI. There are several helper data structures on UVM side by which the ruby script can identify the components 

in Systemverilog easily. For example, all the uvm_object created by ruby are stored in Systemverilog as a hash table indexed by 

object names, in this way, a variable in ruby and a class instantiated in Systemverilog can be associated. The ruby script can leverage 

the facility supported by native UVM to inspect and manipulate the Systemverilog object in run time. For example, the user can 

print the UVM class content in a transaction, make modification in the fields or randomize them, and then send the modified 

transaction to uvm sequencer to execute. By binding ruby VPI to print out the DUT signal value, the user can inspect the DUT 

behavior while debugging the ruby test case. Besides the stimulus side, the UVM environment needs the analysis components such 

as uvm checkers and scoreboards to check the design behaviors, and these analysis components will work as they are in a ruby 

enabled UVM testbench. After ruby interpreter has been created in uvm_test run_phase, the simulation is controlled by this ruby 

interpreter, when the ruby test evaluated in the ruby interpreter will take over the simulation. All the DPI functions which have 

been exposed to the ruby side as ruby function calls can be used in the ruby tests. The ruby test can initialize and spawn transactions 

to DUT or to monitor the state of it. If the DPI called consumes simulation time, the ruby interpreter will block the simulation until 



the task finishes the execution. After all ruby expressions have been evaluated, the ruby interpreter will shut down and exit. And 

the simulation will be handed over back to the UVM side, where uvm_test.run_phase will take charge of the remaining simulation.  

III. CONLUSION 

The adoption of PSS needs tools to interpret PSS DSL, create scenarios or automate the testcase generation. In pss_uvm 

framework, tools has been created including PSS to ruby language translator, and the corresponding runtime library like ruby_uvm. 

With the framework and leveraging the tool set, the generated ruby test script could be run directly on a UVM based simulation 

environment. The projects is still in its early phase, without full PSS grammar supported (coverage is not support and only limited 

support of randomization), but it provides a prototype to validate the idea and prove the feasibility.  
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