
Bridge the Portable Test and
Stimulus to UVM Simulation

Environment

Theta Yang, Evean Qin
Advanced Micro Devices

3/2/2022 Change "footer" to presenter's name and affiliation 1

• Hierarchical Verification
– IP level
– Subsystem level
– SOC level

• Challenge of vertical Verification Reuse

– Each level compose simulation test
independently

– Change SOC/Subsystem level tests scenarios
manually once IP logic/Testbench has changed

• Solution
– Specify the SOC/Subsystem level tests in high

level of abstraction of Portable Stimulus Script
– Synthesis PSS into concrete simulation tests

through tool set

• Challenge
– Simulation speed is not good to cover large

number of scenarios Handle DV complexity with hierarchical verification

NBIO TESTBENCH

Problem

• Descriptions of Requirement
– Container/SOC reuses test sequence from IP level, a test sequence exerciser which

provides test scenarios’ parameterization, randomization and coverage is required to
instrument the DUT thoroughly and leverage the IP common sequence efficiently.

– Portable stimulus specification (PSS) from Accellera provides standard way of test
reuse in language and simulation flow level.

• Goal,
– Create testbench infrastructure will enable PSS as scenario description
– PSS to test script conversion tools is under development, which supports,

• Sequence exerciser
• Randomization scenarios generation
• System scenario coverage as DV metrics

Portable Stimulus Enabling

PSS Verification Infrastructure

3/2/2022 Change "footer" to presenter's name and affiliation 4

PSS

PSS
Model

PSS Model Runner
“Task dispatcher”

PSS compiler

ruby VM mruby VM

UVM TB C++ Models

DUT

DPISV Intf

DPI

Socket

TLM

Signal

Simulator Process

Socket

Functions

• Ruby Interpreter is embedded in
simulator extension to accept
PSS task
– UVM sequence can be invoked

through ruby run time through DPI to
execute PSS

• PSS is converted into tasks which
depend on each other
– Tasks is managed with a runtime

library which handle depend-graph
• Multiple mruby VM is supported

as multiple agents to accept PSS
tasks.
– Agent is in ruby script

PSS

Ruby DSL
Implementation

PSS BFN

RACC

PSS Parser Tasks Pool

PSS compiler/translator (ruby)

DUTUVM_ruby DPI
Simulation
Runtime

Systemverilog DPI Based Cosim

PSS Parser
• The PSS script is compiled and converted into

its ruby script equivalence.
• After evaluated by a ruby interpreter, the PSS

translated ruby script will create ruby object
model, which is the internal representation of
the PSS abstract test intend.

• The PSS object model is based on a set of
predefined ruby classes and implements the
PSS functionality such as PSS component or
PSS action.

• The PSS object model can run on and interact
with a UVM testbench, with the help of
ruby_uvm simulation runtime library.

PSS_UVM Runtime library
• A ruby extension library is proposed to provides language binding with uvm, the popular

hardware verification framework.
– The library augments uvm with ruby's capability such as dynamic programming, easy to debug, and

the comprehensive ruby library.
– By using ruby on the top of UVM, the UVCs can be stitched and configured in ruby, and the test case

can be developed in ruby as well.
– As an interpretive language and it’s quick development nature of ruby, the efficiency the verification

can be improved largely.
• The functions of major classes of uvm are exported to C through DPI, and though DPI functions

are in turn binding to ruby.
– With this uvm-ruby library, the functionalities of uvm such as uvm factory, phases callback, config_db,

sequence and RAL access are provided in ruby, so that the test case can be developed in ruby
instead of system Verilog.

– The uvm-ruby library also provide the tlm connection API, combined with config_db and factory API,
the uvm components used to construct a uvm testbench can be created and connected dynamically in
ruby.

– The library also provides DUT and uvm object inspection API, which enables use to debug the ruby
testbench or testcase interactively.

Block diagram of UVM runtime
• Testcase in ruby specify how the

test environment is constructed (in
build callback function), and the
contents of the test (in run
callback function)

• The testcase script is loaded in
simulation run time and uvm_env
and uvm_test objects are created
with the configuration from the
script

Create ruby interpreter inside
systemverilog

• Ruby interpreter creation DPI is called in an initial block of testbench
systemverilog code

• Ruby interpreter is created by a C++ function which is spawned as a unix
pthread. The pthread creation is imported to system Verilog as a DPI task and is
invoked in an initial block of testbench.

Feed the ruby uvm test to ruby
interpreter

• When the simulation is running, the ruby interpreter is created and then the top
level of ruby script is loaded. The ruby script defines callback functions
corresponding to each uvm phase, these callback functions are registered into a
predefined dummy uvm test.

• When the dummy uvm test is running, for each uvm_phase, the phase callback
function will be called.

• A C++/ruby cross language library called “ruby rice” is used to pass the function
call from C++ side to ruby side. Ruby rice uses multiple inherit to supports
polymorphic calls travelling between C++ and Ruby seamlessly.

• Rice::Director is used to build a proxy class to properly send execution up or
down the object hierarchy for our uvm_test class.

http://rice.rubyforge.org/classRice_1_1Director.html

Feed the ruby uvm test to ruby
interpreter

Export UVM functionality to ruby using ruby rice

• Rice is a C++ interface to Ruby's C API. It provides a type-safe and
exception-safe interface in order to make embedding Ruby and
writing Ruby extensions with C++ easier. It is similar to Boost.Python
in many ways, but also attempts to provide an object-oriented
interface to all of the Ruby C API.

• What Rice gives you:
– A simple C++-based syntax for wrapping and defining classes
– Automatic conversion of exceptions between C++ and Ruby
– Smart pointers for handling garbage collection
– Wrappers for most builtin types to simplify calling code

Export uvm factory API to ruby

1. Export sv uvm factor functions to C

2. Wrap the functions inside a C++ class,
and create ruby wrapper with ruby rice

3. Use the ruby class in ruby script

Export uvm config db API to ruby

1. Export sv config db functions

2. Wrap the functions inside a C++ class,
and create ruby wrapper with ruby rice

3. Use the ruby class in ruby script

Manipulate uvm sequence in ruby
• In System Verilog side, UVM Sequence is create and run in run_phase, the

phase callback function is a task and consumes simulation time. In Uvm_ruby
library we handle uvm_sequence class is similar to other uvm class like the
uvm_config_db or uvm_factory, but…

• The uvm sequence is create to be executed, after created, the object and the
sequencer on which the sequence will be run is registered into the
uvm_ruby_dummy_test class.

• When we trigger the sequence run in ruby (by seq.run), the task “run_sequences”
in uvm_ruby_dummy_test is trigerred. The task will executed all the registered
sequence.

• Once the registered sequence is finished, the ruby function (seq.run) will return
And after the all tasks ruby test’s run phase is complete, the callback function will
return to uvm_ruby_dummy_test (run_phase) function.

conclusions
• The uvm_ruby library exposes the uvm API and utilities to ruby, and make the

verification engineers can use ruby to create testbench and write testcases. As
ruby is an interpretation based script language, it is much easier for engineer to
stitch a uvm testbench and develop testcase in ruby than in system verilog
natively.

• Uvm_ruby libraries improve the uvm library in a nonintrusive way. The runtime
scope of uvm_ruby created objects are under the dummy uvm_test. Which
means the deployment of uvm_ruby library will not affect the current uvm based
test environment. If there are already parts of testcase being developed in native
uvm, they will works as usual.

• Since the contents of ruby tests are not compiled into simulation execute image,
if DUT and the uvm common code are not changed between simulation, but only
the ruby code changes, we needn't to recompile it when run new tests.

Conclusions-cond
• Ruby as a morden script language provides powerful debug environment, we can

even do interactive simulation debug in the simulator independence way.
We can halt the simulations, inspect into ruby program or check the signal value
of DUT and they restore the simulation.

• Systemverilog language doesn't provide a mechanism to create new class
through PLI/VPI, as a result, we can not create new system verilg class in C and
ruby as well. But the uvm framework provides factory, config db, uvm_object
registration and etc to make current uvm class instances configurable. The
uvm_ruby library is based on those uvm configurable feature, as well as the
system verilog's cross language support (VPI, DPI), which is powerful enough to
do hange verification for complex SOC chips.

Disclaimer & Attribution

The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to product and roadmap changes,
component and motherboard version changes, new model and/or product releases, product differences between differing manufacturers, software changes, BIOS
flashes, firmware upgrades, or the like. AMD assumes no obligation to update or otherwise correct or revise this information. However, AMD reserves the right to revise
this information and to make changes from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO RESPONSIBILITY FOR ANY
INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION.

AMD SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT WILL
AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY
INFORMATION CONTAINED HEREIN, EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

ATTRIBUTION
© 2015 Advanced Micro Devices, Inc. All rights reserved. AMD, the AMD Arrow logo and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the
United States and/or other jurisdictions. Other names are for informational purposes only and may be trademarks of their respective owners.

	Bridge the Portable Test and Stimulus to UVM Simulation Environment
	Problem
	Portable Stimulus Enabling
	PSS Verification Infrastructure
	Slide Number 5
	PSS Parser
	PSS_UVM Runtime library
	Block diagram of UVM runtime
	Create ruby interpreter inside systemverilog
	Feed the ruby uvm test to ruby interpreter
	Feed the ruby uvm test to ruby interpreter
	Export UVM functionality to ruby using ruby rice
	Export uvm factory API to ruby
	Export uvm config db API to ruby
	Manipulate uvm sequence in ruby
	conclusions
	Conclusions-cond
	Disclaimer & Attribution

