DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

Break the SoC with Random UVM Instruction
Driver

Bogdan Todea, Microchip Technology, Inc., Bucharest, Romania
(Bogdan.Todea@microchip.com)

Pravin Wilfred, Microchip Technology, Inc., Bangalore, India
(Pravin.Wilfred@microchip.com)
Madhukar Mahadevappa, Microchip Technology, Inc., Bangalore, India
(Madhukar.Mahadevappa@microchip.com)
Diana Dranga, Microchip Technology, Inc., Bucharest, Romania
(Diana.Dranga@microchip.com)

Abstract— Today’s System On a Chip (SoC) ismade up of numerous peripherals, usually multiple processor cores
andin-house and third-party IP’s. Verifying such complex designs is even more challenging, due to various scenarios
that come with such multitude of highly dependentIP’s.

Integratingboth C tests (containing the software instructions) and the Universal Verification Methodology (UVM)
code (containing the rest of the testbench components aimed to verify the hardware) into a single verification testbench
is amain methodology for SoC level verification. However, this approach brings limitations for the control, re usability
and randomization of tests.

This paper demonstrates a technique that allows random generation and driving from an UVM Verification
Environment of Central ProcessingUnit (CPU)instructionsfor SoC Verification, using a black -boxapproach for the
design. The solution accommodatesany design with one or more CPU cores, itis flexible for designchangesandewen
for CPU Instruction Set Architecture (ISA) changes. The solution isfully compatible with UVM and non-UVM System
Verilog (SV) based Verification Testbenches. Examples show how this method is implemented in a testbench that
automatically adaptsand workswith any design configuration.

Keywords— SoC Verification, UVM, CPU instructions, Randomization

l. INTRODUCTION

There are different methodologies for SoC verification. Themain challengeis that we should consider the
software and hardware working together as the full Device Under Test (DUT) [1]. Forthis reason, usually, the
code forthe CPU core is written in C, then processed by a compiler, copied intothe Flash Modeland executed
by the CPU during the simulation.

However, C testssolveonly a part ofthe problem - the stimuli for the CPU instructions. There are other
stimuli driving peripheral communications (I12C, SPI, UART etc.). Since the Universal verification components
(UVCs) are already working at a module level, a natural solution is to reusethe UVM components frommodule
to system. In this way, Ctests contain the software code, while the SV test contains the stimulifor the hardware,
including monitors, checkers and other components. There could be a communication protocol between the SV
testcase andthe Ccode creating more complexscenarios.

There are major disadvantages to using C tests together with SV code, like the challenge to communicate
efficiently between SV and C, which decreases the controllability of the stimuli, becoming harder to implement
more complexscenarios. There are limitations for randomizationand reusability of tests as well.

There are several industry approaches which try to solve the problem of driving the CPU instructions with a
SystemVerilog driver.

DESIGN AND VERIFICATION™

NFERENCE AND EXHIBITION

INDUSTRY APPROACHES FOR DRIVING CPU INSTRUCTIONS WITH SYSTEM VERILOG

A. CPUBus Functional Model (BFM) Approach

As shown in Figure 1, The CPU is replaced by the SVmodel called CPU BFM and the testinteracts directly
with the model. For example, if the applicationwants to configure a register, the write task in the test sends the
write command to the CPU modeland the BFM in turn writes into the specific register.

The disadvantage of this model is that several design blocks are excluded fromverification at SoC level:
Flash Model, Non-Volatile Memory (NVVM) Controller, CPU RTL and replaced with the Verification Testbench
models. They are represented with RED in Figure 1.

While replacing the Flash Model by a verification testbench model is not a high risk, excluding from
verification the NVM Controllerand especially the CPU (the most important block of the design) is increasing
the risk of missing important bugs (decreases the quality of verification).

Testcase
scenarios

Figure 1. CPU BFM Approach

B. Instructionloader approach

As shownin Figure 2, Instructionloader method does not replace the CPU with a model, but it bypasses the
NVM controlleron the instruction path, just before the CPU, by addingan “Instruction loader”.

Testcase
scenarios

Figure 2. Instruction loader approach

The disadvantage with this approach is that there is no verification coverage for the interaction between the
flash memory and the "replaced" module (NVM controller) becausethey are cutoffas shownin Figure 2 (design
blocks inside the red line are excluded for verification at SoC level).

Both cases represent a low robustness for Gate Level Simulation (GLS). Itis very difficult to handle the case
when DATA MUX doesn't have its output registered. In this case we needto drive data fromDATA MUX with
a constantdelay tomimic the combinational delay which might vary fromnetlist to netlist.

7
DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION
B —————

I1l. PROPOSED APPROACH FOR THE CPU INSTRUCTION DRIVING

The methodology proposed by this paper aims to complement thealready existing C based tests verification.

The paper acknowledges that C based test verification is of critical importance for every SoC verification
project, since we must verify in the same time the hardware and the software as a single DUT at SoC level
However, the gaps in verification of the Cbased methodology that were discussed in chapter I. can be covered as
a complementary approach by the new proposed method.

In the proposed method, the CPU instruction code will be written directly and dynamically into the memoty,
using an instruction driver written in System\erilog, called the Instruction Transactor (IX). The IX is formed of
two components:

- IX Driver — this component implements the translation of stimuli from the UVM testbench into
instructions, based on the Instruction Set Architecture (ISA) of the CPU. This means that the IX is
dependenton the ISA.

- IX2NVMIF —this componentimplements the tasks in charge of writing the instructions received from IX
Driver into the NVM Flash Model. This block is dependenton each Flash Model.

By developing IX Drivers for different CPU Architecture types and IX2NVMIF for different Flash Model
types, a library will be developed for different types ofthe IX Transactor.

The interface betweenthe IX Driver and the UVM testbench will be standard, sowe can reuse the verification
stimuli and tests by carefully selecting the IX Driver based on the ISA and the IX2NVMIF based on the flash
type.

The SV test will generate randomly constrained sequences that will be transmitted to the IX. The IX will
convert it to CPU instructions, read the current program memory address and write it to the first flash location
fromwhere the CPU will fetch the next instructions in the next cycle.

Testcase
scenarios

Figure 3. Backdoor load through the CPU Instruction Driver

INSTRUCTION 5 IX2NVMIF

RUCTION 1

INSTRUCTION 2

0. [INsTRUCTION 3
_[INSTRUCTION 4

Figure 4. Detailed representation of IX loading opcode/instructions to flash

DESIGN AND VERIFICATION™
Lt |

This newapproach canbe visualized as loading of binary file to flash dynamically when we want to perform
any operationwith CPU. IX driver would be monitoring the location fromwhich the current instruction is fetched.

Whenever it receives anewtransaction fromthe test, it backdoor loads the flash. CPU is fetching the instruction
from flash and executesiit.

It is not necessary that all instruction in the ISA should be supported by the IX Driver. For SoC level
verification, the requirement is to implement in IX Driver the instructions which are necessary to execute SoC
level modes (SFR read/writes, any debug, sleep/idle instructions, CPU instructions taking a long time etc.). Most
of the non-CPU tests ran at SoC level do not needall the instructions to be implemented.

IV. ADVANTAGES OF USING A SYSTEM VERILOG CPU INSTRUCTION DRIVER

A. Ensuringthecomplete integrity ofthe Design under test (DUT)

As can be seen in Figure 3, the proposed methodology does notrequire excluding any componentofthe
design fromthe SoC verification. The proposed approach will treat the Top Digitalas ablackbox. The only
“intrusion” of the UVM Verification Environment inside the DUT is by writing the instructions within the Flash
Model. This ensures the verification of connectivity for all the DUT components, fromthe NVM to the CPU
and to the blocks communicating with the CPU (peripherals, Interrupt controller, DMA, RAM etc.).

B. High reusability oftests and testbench

This methodology presents a high flexibility for designchange and high reusability between different
projects with differentmemory technologies, CPU ISA types and numbers of CPU cores. Using a layered
hierarchy, the UVM testbench can be completely decoupled fromthe design architecture, flashtechnology and
even fromthe CPU architecture/type.

There are different levels of reusability:

1) Reuse testcase scenarios frommodule to system

The methodology used in our case for SoC verification is based on reusefromModule to Systemnot only of
the verification testbench, but alsothetestcases. The reuse of testcases is done through a System Abstraction
Layer (SAL), a systemthat willassure theright integration between thetest andthe testbench used for.

This means thatany test forany peripheral can be reused, if written according tothe SAL rules. For
example, at module level, the SFR access canbe done through the UVM reg map component, directly accessing
the module level SFR access bus (the peripheral bus). For SoC level, the same SFR access will be throughthe
IX. The testcase will contain just the specific task of writing or reading the SFRand the SAL will take care of
handling theright method of SFRaccess, dependingifthe testbenchis amodule orsystemlevelone.

2) Reuse testcase scenarios andtestbench fromproject to project
Testbenchand testcase scenarios would be reused fromproject to projectwith minimal impact.
There are several possible differences between projects:

a) Different Flash technology
The dependency of different NVM types (depending on size, technology, model provider etc.) is resolved by
creating an additional layer betweenthe IXand the NVM model —the IX2NVM interface. One such interface
can be created for each memory type, with a common interface tothe IXdriver.

b) Different CPU cores architecture or different ISA
In case ofadifferent CPU Instruction Set Architecture, we selectthe corresponding IX driver, which is
based onthe ISA type.
The IXdriveris a reusable component, created specifically foreach CPU instructionsetarchitecture, butwith
a common interface with the IX2NVMIF block and with the rest of the testbench.
The IX Driver can be automatically generated fromthe ISA Documentation.

c) Multi-core projects

In case of multi-core projects, the CPU instruction driver components would be instantiated one time for
each core:one instruction data path component, consistingof one IX Driver (6) and one IX2NVMIF (7) for each
core.

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

C. Seamlessintegration for Gate Level Simulations (GLS)

A main advantage is thatthe IXis seamlessly integrated for gate level simulations. Since this methodology
is a black-boxapproachofthe DUT, no components of the designwere excluded fromverification (like in

Figure 1 or Figure 2).

The gate level netlist should notrequire any changein orderto havethe IX driver plug-and-play. The Top
Digital would be RTL or Gate Level netlist, depending onthe typeofthe simulation. As can be seenin Error!
Reference sourcenot found.3, the type of the top digital component (RTL or netlist) is transparent to the

Verification Testbench.

D. Randomization and Coverage

The coverage that makes sense to define for chip level verification will cover just asmall space of the total
randomization space, since chip verification is more concentrated on verifying features across multiple blocks,

versus module verification, which is concentrated more on randomization of features of eachblock.

There is amultitude of characteristics thatcan be randomized within a set of instructions at chip level. The
biggestspace for randomization is found with mathematical instructions: value of operands and working
registers (WREGs) used for the operands (randomly choose any of the WREGs). Another randomization space
is the randomization between the consecutivetransactions, to create complexscenarios with different kind of
hazards, randomsequences of consecutive transactions etc.

The spaceof randomization for instructions can be covered very wellat module level (through simulation
based, formal verification oramixed). Forchip level, it makes sense to cross the instruction setcoverage with
cross-functional coverage of other blocks. This cross-functional coverage cannot be collected at module level.

The instructionsetcoverage is crossedat SoC level with interactions with other blocks (DMA, RAM,

Interrupt Controller, peripherals).

One of the most suitable candidates for randomization were the CPU mathematical instructions, like Divide

(DIV) and Multiply (MUL).

Tests havebeendeveloped, containing scenarios fora couple of mathematical instructions, each containinga

covergroupofits own.

NO

exp_result e
-

‘ YES

Figure 5. Simplified flow diagram for stimuli generation and checking

Below is a randomization example of the operands:

assert(randomize (Wm) with { Wm dist {[lower_part_Wm :
assert(randomize(Wn) with { Wn dist {[lower_part_Wn :

(upper_part_Wm / 2)1]
(upper_part_Wn / 2)]

1= 58, [{(upper_part_Wm / 2)
1= 50, [(upper_part_Wn / 2)

! upper_part_Wm] :
! upper_part_Wn] :

50 }; 1)
50 }; 1)

Figure 6. Randomization of the operands used

Below is an example of coveragefor the randomized instructions scenarios:

CONFERENCE AND EXHIBITION

option.name = “cpu_mul_rand_cg";
option.per_instance = 1;

Wm_mul : coverpoint Wm {

bins lower_half = {[min_value : (max_value / 2 - 'h@l)1};

bins mid = {(max_value / 2)};

bins upper_half = {[(max_value / 2 + 'h@l) : min_wvaluel};
T

Wn_mul : coverpoint Wn {

bins lower_half = {[min_value : (max_value / 2 - ‘hO1l)1};
bins mid = {(max_value / 2)};
bins upper_half = {[(max_value / 2 + 'h@1l) : max_valuel};

T
result_mul : coverpoint result {

bins lower_half = {['h000OO0EOOEOBEOBE : 'h7FFFFFFFFFFFFFFF]};
bins upper_half = {['h800000000000000O : 'hFFFFFFFFFFFFFFFF]};
T

Wm_mul_x_Wn_mul_x_Result : cross Wm, Wn, result, instruction;
endgroup: cpu_mul_rand_cg

covergroup cpu_mul_rand_cg with Tunction sample(bit[31 : O1 Wm, bif[31 : ©] Wn, bit[63 : 0] result, ix_cpu_data_math_33a_c::cpu_instruction_type_e Instruction] ;]

Figure 7. Cover group used CPU instruction coverage

By using thisapproach, several RTL issues have been discovered in scenarios with the CPU DIV and CPU
MULT instructions. Using randomization, the testwas able to detect corner cases in which the instructions did
notwork correctly.

E. Execute Customcode

We want to havea hookup in our verification environmentto execute any instruction or series of instructions
fromthe test case. In this mode, theuser can specify thedecoded instruction tobe executed. This can be viewed
as a function written in Corassembly and called from SystemVerilog code. This could be also helpful in
simulating validationreported issues using thesame binary file used for validation.

To reproduce the validation issue, it is very difficult to reusethe application code (Ccode)as it is, since
there are no place holders for configuring the testbench components.

With the CPU IX feature, we can load the binaryas it is to configurethe DUT and the SVtestbench can
drive external stimulus and monitor the response.

F. Golden Model usageat chip level

Randomization is requiring using some sort of golden model which can automatically compute the expected
data, based onthe driven stimuliand checkit versus the returned data.

Golden Model can be modeled for each instruction aside, with relatively simple SystemVerilog functions.
The example belowshows a very simple check that replaced thousands of lines with hardcoded expected values,
that were previously written in Cor assembly testcases.

exp_result = (instruction inside { instr A }) ? (Wm[15 : O] * Wn[15 : 8]) : (Wm * Wn);
if(exp_result == Wresult) begin

cpu_mul_rand_cg. sample(Wm, Wn, exp_result, instruction);

end

“uve_info("CPU_MUL_RAND: ", $sformatf("randomize_transaction(): results are equal: %0h, instruction: %@s", exp_result, instruction.name()), UVM_LOW)
end
else hegin
“uvm_error("CPU_MUL_RAND: ", $sformatf("randomize transaction(): results are different, exp_result: %6h, Wresult: %0h, instruction: %@s', exp_result, Wresult, instruction.name()})

Figure 8. Example model for CPU instruction

V. CHALLENGES IN IMPLEMENTING THE SYSTEM VERILOG CPU INSTRUCTION DRIVER

A. Interrupthandling

IX supports Interrupt Serviceroutine (ISR) handling for both SVbased ISRand Assembly (ASM) based ISR
code.

1) SV basedISR:
IX has two main channels to receive instructions fromthe test:
1. Software main channel
2. ISR channel
Usercode is sentto IX through software main channeland ISR code through ISR channel. By default, IX
will be processing code fromsoftware main channeland when interrupt happens, IXwill switch to ISR channel

DESIGN AND VERIFICATION™

CON

CONFERENCE AND EXHIBITION

and process instructions fromthis channel. Once ISR execution is complete, IXwill switch backto Software
main channel.

2) ASM based ISR:

Inside the Flash, the initial space canbe allocated for Interrupt Vector Table (IVT) and ASM ISR code. User
space will start afterthe ISR code placement, so there is no risk of over-writing the IVT or the ISR code in flash.
When Interrupt happens, the CPU code execution jumps to ISR code and after completion it returns tothe
execution codein userspace. Withthis approach, the ISR code will be pre-loaded in the flash model during
compilation stage and sothere is no backdoor loading of ISR code by IX. IX will only stop processing
instructions in main channeland waits for ISR execution to complete.

B. Handling End of Memory

In ourapproach, we are keeping the programcontrol flow in the testcase. When CPU is fetching, the
instruction programcounterwould be incremented linearly. If the testcase scenario is long, programcounter
may reach end of memory. Two scenarios need to be address here:

1) When there are no incoming transactions, CPU would still be executing (NOP instruction) and Program
Counter (PC) would be incrementing. Atthis time, IXwould be monitoring the PCand it will issue an instruction
(GOTO) to CPU to move the programcounter backto the resetvector.

2) Whentheincoming transactioncan't be loaded into the remaining memory space, IX inserts an instruction
to CPU to move programcounter back to resetvector.
We don't see anyissuewith the insertion of extra instructionto change the program counter, since test case
is agnostic aboutthe time at which instruction is executed.

NOP
NOP
Incoming transaction NOP
loadedto location where NOP
next instruction would be NOP
Fetched
NOP
NOP When program
counter reaches end
NOP of program space
NOP
NOP
NOP
Current Instruction NOP
fetched location
NOP
GOTO instruction

Figure 9. Handling of End of memory

C. Burstinstructions

IX supports burst write operation. Burstwrite transaction fromtest mentions thesize of burst, basedon the
size, IX will backdoor load opcodes at oneshot. Asthe PCincrements, the CPU will execute the loaded opcodes
sequentially.

Burst read operations are not supported, since in this case, the IX needs to wait for response fromDUT and
collectthe read dataand pass the read datato thetest.

Forwrite operations, IX does not wait forany responsefromDUT, so burstmode can besupported. This is
usefulforapplications which must executea predefined series of write items to unlock a feature or configure
some set of registers in a very specific sequence.

VI. LIMITATIONS OF THE CURRENT APPROACH

There are some limitations ofthe currentapproach:

e Thereis limited support for cache

e CPU execution forbig designs willtake a long time at chip level due to high boottimes and latency
introduced due to CPU execution itself

e The CPU instructions driver will implement only a subset ofthe complete ISA instructions (the ones
which makes sense to be verified/executed at SoC level)

e Thisis notacomplete solution. Chased testcases remain a must, since SoC level verification should
support simulating application code as well, usually written in C.

DESIGN AND VERIFICATION™
Lt |

CONFERENCE AND EXHIBITION

VII. FUTURE IMPROVEMENTS

The list of future improvements contains:

Automatic generation of the IX driver fromthe ISA documentation
Load any sequence of instructions with any length (which canbe loaded froma text file).
Multiple core support

VII1. CONCLUSION

By using the UVM CPU instruction driver, the majority of the SoC testcases can becompletely written in
UVM/SV, thus providing a high reusability of tests and testbench components. This approach allows more
flexibility in generatingcomplexscenarios forthe SoC Verification.

It allows full randomization ofthe scenarios and easier portability oftestsand testbenches between projects.

This methodology presents a high flexibility for designchanges and high reusability between different
projects with differentmemory technologies, CPU ISA types and number of CPU cores.

Using a layered hierarchy, the UVM testbench can be completely decoupled fromthe designarchitecture,
flash technology andeven fromthe CPU architecture type.

The entire SoCdesign connectivity will be verified, compared to other SoC verification methodologies,
which exclude from connectivity verification certain design blocks.

An important advantage is thatthe IX Driver is seamlessly integrated for gate level simulations.

REFERENCES

[1] Practical Approaches to SOC Verification by Guy Mosensoson,Verisity Design, Inc

[2] IEEE Std 1800-2012, “Standard for SystemVerilog — Unified Hardware Design, Specification, and
Verification Language”

[3] My Testbench Usedto Break! Now it Bends: Adaptingto Changing Design Configurations, Jeff Vance,
Jeff Montesano, Kevin Vasconcellos, Kevin Johnston, Verilab Inc, DVCon USA 2018

