
BOOSTING SIMULATION PERFORMANCE OF UVM REGISTERS

IN HIGH PERFORMANCE SYSTEMS

Ahmed Yehia

Mentor Graphics Corp.

Cairo, Egypt

ahmed_yehia@mentor.com

ABSTRACT

Registers and memory blocks are key parts of any design; a

typical design could hold hundreds of them. Verifying the

behavior of registers and memory blocks is an essential part

in the verification process. There are many techniques for

modeling and verifying hardware registers and memory

blocks. In this paper, we focus on verifying hardware

registers using register packages.

Verification and modeling of hardware registers and

memory blocks via register packages is not a new trend.

Many register packages from various vendors, written in

different languages, currently exist and used in the

industry. The Accellera VIP-TSC committee has made a

significant progress in releasing the Universal Verification

Methodology (UVM) [1] defining standards for creation,

integration, and extension of verification environments.

The UVM register library is an open source library, being

part of the UVM library, which allows modeling and

verification of hardware registers and memory blocks. Yet,

the way the UVM register library is currently designed to

layer registers and memories transactions on top of bus

transactions, well suits low speed buses. On the other hand,

it may not be efficient for high performance buses

introducing undesired simulation performance degradation.

In the paper, we give a quick overview of the UVM

register library on how it could be used to model and verify

hardware registers and memory blocks, showing the

simulation performance bottlenecks observed when

performing on high-speed buses. We then present an

efficient overlay layer that can be easily integrated on top of

the UVM register library, making the library suitable for

high as well as low performance systems. Then we show

how an efficient, yet powerful, registers to AMBA AXI bus

transactions adapter would look like in this case. Finally,

we provide a cost-benefit analysis on current and proposed

implementations.

1. INTRODUCTION

Naming some of the UVM register library features:

 Address management.

 Modeling registers and memory blocks.

 Front door and back-door access to Device under

Verification (DUV).

 Implicit and explicit prediction of registers and

memory blocks values.

 Coverage model API.

Usually the integration of a register library in a

testbench environment requires four abstract steps: (1)

building the register database, (2) writing registers and

memory blocks test sequences, (3) configuring registers

coverage as needed, and (4) integrating registers models

and test sequences to the testbench verification components.

1.1 Building the Register Database

Although register models could be built-up manually,

typically register models are automatically generated using

register model generators, which prevent manual coding

errors. There are a number of commercial UVM register

generator tools that can capture register specification from

spreadsheet, IP-XACT, and XML inputs. Below we

provide a quick overview of the different UVM classes used

to build your register database.

1.1.1 Field

A group of bits providing specific functionality in a

hardware register. It is modeled in the UVM register library

using the uvm_reg_field class, and configured using the

uvm_reg_field::configure() method.

1.1.2 Register

A hardware register model grouping fields at different

offsets within the register. It is modeled in the UVM

register library by extending the uvm_reg base class adding

rand objects of uvm_reg_field type, and configured using

the uvm_reg::configure() method.

1.1.3 Memory

A memory block with well-defined address range. It is

modeled in the UVM register library by extending the

uvm_mem base class defining the memory block

specifications inside the constructor new(), and configured

using the uvm_mem::configure() method.

1.1.4 Block

Groups registers, memories and sub-blocks. It is modeled in

the UVM register library by extending the uvm_reg_block

base class, then instantiating and configuring registers,

memories and sub-blocks inside its build() method.

1.1.5 Map

Locates the address offset of registers, memories and sub-

blocks within a block. It is modeled in the UVM register

library by instantiating an object of uvm_reg_map class in a

block. Registers and memories are added to the address

map using uvm_reg_map::add_reg() and

uvm_reg_map::add_mem() respectively.

1.2 Writing Register and Memory Sequences

Usually a verification engineer would like to access

registers and memories writing or reading their contents.

The UVM register library provides write(), read(),

burst_write() and burst_read() APIs for accessing registers

and memories. These methods get called in the sequence

body() method reflecting the test scenario of a user. The

map will locate the address of the register (or the memory)

being accessed, then handover the register transaction to an

adapter which will convert them to a corresponding

transaction of the bus lying underneath; this is what is

called the front-door access. The advantage of this flow, is

that registers and memories test sequences can be written in

a generic way independent of the bus architecture lying

underneath. This enables verification environment reuse

and portability. The UVM package comes with a library of

automatic sequences doing basic registers and memories

tests that can be reused when necessary.

1.3 Configuring Registers Coverage

The UVM register library does not come with coverage

models for registers; however, they provide the necessary

API to control the instantiation and sampling of coverage

models built by the user. Coverage models will not be

covered by this paper as they are out of its scope, please

refer to the registers section in the UVM user manual for

more details[1].

1.4 Integrating UVM Registers in the testbench

environment

Typically, UVM register models are integrated in the

testbench environment by doing the following steps:

 Build register database by constructing the register

blocks in the test and pass their handles to

testbench components via configuration objects.

 Build a register adaption layer; a component to

translate register transactions to bus transactions

and vice versa. This can be achieved by extending

the uvm_reg_adapter base class and providing an

implementation for reg2bus() and bus2reg()

methods.

 Construct the register adapter object in the

testbench environment and connect it, as well as

the agent sequencer, to the register map via the

set_sequencer() method.

 Build a predictor component acting as a listener on

the bus by extending the uvm_reg_predictor class,

implementing its write() method. The predictor is

used to convert bus transactions to register

transactions then update the corresponding register

model, or if desired compare the register model

value to the actual hardware register value.

 Construct the predictor object in the testbench

environment, and connect it to the bus agent

monitor analysis port using normal UVM

Transaction Level Modeling (TLM) analysis port

connections.

The following figure represents a verification environment

with UVM registers integrated[4].

Figure 1. Verification Environment with UVM Registers Integrated

2. CURRNET UVM REGISTERS FRONT-DOOR

ACCESS IMPLEMENTATION

The way the UVM register library front-door access is

currently designed is illustrated as follows: (1) a field,

register or memory write()/read() call shall invoke a field,

register or memory do_write()/do_read(), (2) a field,

register or memory do_write()/do_read() will invoke a map

do_write()/do_read(), (3) a map do_write()/do_read() will

invoke a map do_bus_write()/do_bus_read(), which will

invoke the adapter reg2bus() for converting a register

transaction to the corresponding bus transaction to be

executed afterwards.

The current SystemVerilog [5] implementation of the

map do_bus_write() (and similarly do_bus_read()) method

in the UVM register library is as follows:

task uvm_reg_map::do_bus_write (uvm_reg_item rw,

 uvm_sequencer_base sequencer,

 uvm_reg_adapter adapter);

 ...

 //Get bus and register/field/memory information

 get_bus_info(rw, map_info, n_bits, lsb, skip);

 //Extract addresses from the map_info

 addrs = map_info.addr;

 ...

 //Loop over data values array in register trans

 foreach (rw.value[val_idx]) begin

 //Calculate byte enables in case of UVM Field

 if (rw.element_kind == UVM_FIELD) begin

 ...

 end

 ...

 //For each address location

 foreach (addrs[i]) begin

 uvm_sequence_item bus_req;

 uvm_reg_bus_op rw_access;

 uvm_reg_data_logic_t data =

 (value >> (curr_byte*8)) &

 ((1'b1 << (bus_width * 8))-1);

 //Update rw_access struct

 //In case of UVM Field update byte enable

 if (rw.element_kind == UVM_FIELD)

 for (int z=0;z<bus_width;z++)

 rw_access.byte_en[z] =

 byte_en[curr_byte+z];

 rw_access.kind = rw.kind;

 rw_access.addr = addrs[i];

 rw_access.data = data;

 rw_access.byte_en = byte_en;

 rw_access.n_bits = (n_bits > bus_width*8)

 ? bus_width*8 : n_bits;

 ...

 //Convert the register item transaction to

 //the bus transaction lying underneath

 bus_req = adapter.reg2bus(rw_access);

 ...

 //Drive transaction

 bus_req.set_sequencer(sequencer);

 rw.parent.start_item(bus_req, rw.prior);

 ...

 rw.parent.finish_item(bus_req);

 ...

 end //foreach (addrs[i])

 ...

 end //foreach (rw.value[val_idx])

 ...

endtask //do_bus_write()

The method first captures the information of the item1

accessing it, i.e. address(es) of the item, number of bits to

update, address offset and data. It captures some additional

information in case of a field access. It also captures the

corresponding bus width.

The dynamic array value, holds the write data in case of

a write(), or to hold the read data in case of read(). In case

of read()/write(), value will be a single element array. In

case of burst_read()/burst_write(), i.e. item is a memory,

value will hold multiple elements. The queue addrs, is a

queue holding the address(es) of an item. The number of

elements in addrs depends on the item's width with respect

to the bus width. If the item's width is smaller than or equal

to the bus width, the addrs queue will hold single element,

otherwise the number of elements in the array will be equal

to the item's width divided by the bus width.

As shown in the above implementation, the

do_bus_write() will loop over value elements. Then in each

iteration, loop over each item addresses. In each inner

iteration, the method constructs a register transaction to be

converted to bus transaction via the adapter's reg2bus()

method. This methodology may be suitable for low

performance buses; however, it could be inefficient for high

performance buses not utilizing bus powerful features lying

underneath. Imagine the scenario where one is operating on

an AMBA AXI [6] bus and wants to write to a 2KB

memory block; the current implementation will send 512

different bursts on an AMBA AXI bus of 32-bit width, this

looks like an inefficient way to operate on an AMBA AXI.

Instead, 32 bursts (16 beats each) could be sent, or even a

single burst of 512 beats if your system permits extended

burst length. Each time you send an extra burst on AMBA

AXI bus, you lose at least two cycles in the case of a write

and one cycle in the case of a read2. Maximizing the

number of bursts maximizes context switching in

simulation, which may have severe consequences on

simulation performance imagining a test performing

hundreds of these operations.

1 An item is typically a field, register or a memory location.
2 Analysis assuming simple AMBA AXI where data phase follows

address phase by at least one clock cycle.

3. ALTERNATIVE IMPLEMENTATION TO

CURRENT UVM REGISTERS FRONT-DOOR

ACCESS

As stated previously the current do_bus_write()

implementation creates an undesired bottleneck when

performing on high performance buses. In the following

subsections we represent an efficient alternative to

do_bus_write() making it suitable for high performance

buses, then we show how a powerful implementation of

reg2bus() and bus2reg() methods shall look like in this case

for an AMBA AXI bus.

3.1 Efficient Alternative to Current do_bus_write()

Implementation for High Speed Buses

task uvm_reg_map::do_bus_write (uvm_reg_item rw,

 uvm_sequencer_base sequencer,

 uvm_reg_adapter adapter);

 ...

 //Used to share data between

 //reg2bus() & do_bus_write()

 uvm_reg_bus_op_c uvm_reg_bus_op_c_write = new();

 //Get bus and register/field/memory information

 get_bus_info(rw, map_info, n_bits, lsb, skip);

 //Extract addresses from the map_info

 addrs = map_info.addr;

 //Calculate byte enables in case of UVM Field

 if (rw.element_kind == UVM_FIELD) begin

 ...

 end

 //Total number of bits to be sent for all items

 n_bits_total = n_bits*rw.value.size();

 //Capture the start address

 start_address = addrs[0];

 //Update rw_access struct

 rw_access.byte_en = byte_en;

 rw_access.kind = rw.kind;

 rw_access.n_bits = n_bits_total;

 //Sync mechanism for concurrent writes

 uvm_reg_bus_op_c:: reg2bus_write_sm.get(1);
 //Extract bursts when more bits to write

 while (rw_access.n_bits > 0) begin

 rw_access.addr = start_address;

 //Pass rw to adapter

 adapter.m_set_item(rw);

 //Convert the register item transaction to the

 //bus transaction lying underneath

 bus_req = adapter.reg2bus(rw_access);

 adapter.m_set_item(null);

 //Push the bus_req to the bus requests queue

 //Workaround adapter.reg2bus() returning only

 //one sequence item limitation

 bus_req_q.push_back (bus_req);

 //Get info about consumed bits by adapter

 //bus2reg(). Workaround rw_access passed as

 //const in bus2reg() prototype

 uvm_config_db #(uvm_reg_bus_op_c)::get(null,

 "", "rw_acc_adapt_write",

 uvm_reg_bus_op_c_write);

 //update start address of next iteration

 //reflecting num of bits converted to bus

 //transactions

 start_address += uvm_reg_bus_op_c_write.n_bits

 /(8*get_addr_unit_bytes());

 rw_access.n_bits -=

 uvm_reg_bus_op_c_write.n_bits;

 end //while (rw_access.n_bits > 0)

 //Free the semaphore

 uvm_reg_bus_op_c:: reg2bus_write_sm.put(1);

 //Drive all bus transactions

 foreach (bus_req_q[i]) begin

 uvm_sequence_item bus_req = bus_req_q[i];

 bus_req.set_sequencer(sequencer);

 rw.parent.start_item(bus_req,rw.prior);

 ...

 rw.parent.finish_item(bus_req);

 ...

 end

endtask //do_bus_write()

The proposed implementation avoids chopping data in

bus width chunks and lets the adapter's reg2bus() method

decide the amount of data it is going to put in a bus

transaction according to its bus capabilities.

We start doing the same regular tasks getting item and

bus information. The total amount of bits to be accessed

and the start address were then marked and passed to the

register item transaction. We keep on looping conditionally

until there are no more bits to access. In each iteration, the

adapter reg2bus() would consume as many bits as it could

from the register item transaction according to its bus

capabilities, converting the register item transaction to a

suitable transaction for the bus lying underneath. The

reg2bus() then notifies the do_bus_write() with the amount

of bits it consumed via the sync object

uvm_reg_bus_op_c_write, which the do_bus_write() gets a

handle of via the resources DB uvm_config_db3.

The uvm_reg_bus_op_c is a very simple class used for

sharing data between the reg2bus() adapter method and the

3 Resource DB was introduced in UVM for data sharing. Please

refer to the UVM user manual for more information.

do_bus_write(). The reason it is needed, is because only the

reg2bus() knows how many bits it consumed, however the

info is required by the do_bus_write() to know if it needs to

re-iterate. The problem could have gone away if reg2bus()

returns an array of bus transactions, however the current

method prototype in the UVM library returns only one bus

transaction. The hereby proposed implementation aims to

be an overlay layer on top of the UVM package; no edits in

UVM source are required for it to function properly, thus

the proposed means for sharing data.

Since the overhead of accessing the configuration

database for every bus transaction could be tangible

especially for low speed buses, a better solution is to extend

the UVM register library to support a register-to-bus

method that returns an array of transactions. Appendix B

demonstrates the extended enhancements required in the

UVM register library to leverage from a register to bus

reg2bus_arr() method that returns an array of bus

transactions for handling high, as well as low, performance

buses while maintaining backward compatibility with

current implementation.

The implementation of uvm_reg_bus_op_c class is as

follows:

class uvm_reg_bus_op_c;

 static semaphore reg2bus_read_sm;

 static semaphore reg2bus_write_sm;

 static semaphore bus2reg_read_sm;

 int n_bits;

 // Function: new

 //

 // create a new instance

 // typically it creates instances of the static

 // semaphores only once

 function new();

 if (reg2bus_write_sm == null)

 reg2bus_write_sm = new(1);

 if (reg2bus_read_sm == null)

 reg2bus_read_sm = new(1);

 if (bus2reg_read_sm == null)

 bus2reg_read_sm = new(1);

 endfunction

endclass

All what needs to be done is to extend the

uvm_reg_map class and implement the do_bus_write() and

do_bus_read() methods as shown above. Implementation of

do_bus_read() would be similar to do_bus_write() but may

be little trickier -more details in Appendix A. In the test (or

when building your register block), just override

uvm_reg_map with your new register map class name using

the set_type_override()4 method.

class my_reg_block extends uvm_reg_block;

 virtual function void build();

 uvm_reg_map::type_id::set_type_override(

 my_reg_map::get_type(),1);

 ...

 endfunction

endclass

3.2 Efficient implementation of reg2bus() and

bus2reg() for an AMBA AXI bus

3.2.1 reg2bus() implementation for an AMBA AXI bus

Typically reg2bus() will be working on high level bus

transactions, e.g. write/read bursts in case of an AMBA

AXI protocol.

A. Capture the required info for optimal burst type

selection
virtual function uvm_sequence_item reg2bus

 (const ref uvm_reg_bus_op rw);

 ...

 //get the uvm_reg_item, data, burst address,

 //map, and bus width

 rw_reg_item = get_item();

 reg_data_q = rw_reg_item.value;

 burst_addr = rw.addr;

 map = rw_reg_item.local_map;

 bus_width = map.get_n_bytes();

 //Maximum number of bytes in one AXI burst is 4K

 bytes_to_send = ((((rw.n_bits-1)/8) + 1) < 4096)

 ?(((rw.n_bits-1)/8) + 1) : 4096;

 ...

In the code below, we capture different scenarios: (1)

field access, (2) register or memory access with unaligned

address or number of bytes smaller than bus width, and (3)

register or memory access with number of bytes greater

than or equal to bus width.

B. Field access accomodating for fields wider than bus

width by sending INCR bursts
 if (&rw.byte_en == 0) begin

 for (int curr_byte=0;

 curr_byte < `UVM_REG_BYTENABLE_WIDTH;

 curr_byte += bus_width)

 begin

 int ones = 0;

 byte_en_chunk = (rw.byte_en >> curr_byte) &

4 The set_type_override() method is used to override specific

types with others using the OOP factory terminology.

 ((1'b1 << bus_width)-1);

 for (int i=0; i< bus_width; i++)

 if (byte_en_chunk[i] == 1)

 ones += 1;

 if (ones > 0) begin

 bytes_sent += ones;

 burst_length += 1;

 end

 end

 //Burst Size is either bus width

 //or register width

 rg = field.get_parent();

 parent_reg_bytes = (rg.get_n_bits()-1)/8 + 1;

 burst_size = (parent_reg_bytes > bus_width)?

 bus_width : parent_reg_bytes;

 if (rw_reg_item.kind == UVM_WRITE) begin

 for (int curr_byte=0;

 curr_byte < (burst_size*burst_length);

 curr_byte += burst_size) begin

 reg_data_q[0] = reg_data_q[0] >>

 (curr_byte*8);

 axi_data_q.push_back(reg_data_q[0]);

 end

 void'(reg_data_q.pop_front());

 end

 end

C. Unaligned address, or bytes to send smaller than bus

width: Fixed burst with single beat
 else begin

 for(int i=2; i<= bus_width;i=i*2)

 if ((byte_addr%i==i/2)||

 (bytes_to_send<i)) begin

 burst_length = 1;

 burst_size = i/2;

 bytes_sent = i/2;

 //Flag a transformation complete

 transform_complete = 1;

 if ((rw_reg_item.kind == UVM_WRITE) ||

 (rw_reg_item.kind == UVM_BURST_WRITE))

 begin

 axi_data_q.push_back(reg_data_q[0] &

 ((1'b1 << (burst_size * 8))-1));

 reg_data_q[0] = reg_data_q[0] >>

 (burst_size*8);

 end

 break;

 end

 end

D. Accessing register or memory with number of bytes

greater than or equal to bus width.

 if (transform_complete == 0) begin

 //Maximum AXI burst length is 16, or

 //4K/Bus-width in case of extended burst length

 int max_burst_length;

 if (axi_master_cfg.extended_burst_enabled)

 max_burst_length = 4096/bus_width;

 else

 max_burst_length = 16;

 burst_length=((bytes_to_send -1) /

 bus_width + 1) < max_burst_length ?

 ((bytes_to_send - 1)/bus_width + 1):

 max_burst_length;

 burst_size = bus_width;

 bytes_sent = burst_length * bus_width;

 if ((rw_reg_item.kind == UVM_WRITE) ||

 (rw_reg_item.kind == UVM_BURST_WRITE))

 begin

 for (int i=0;i<burst_length;i++) begin

 for (int curr_byte=0;

 curr_byte <= reg_or_mem_bits /8;

 curr_byte+=burst_size) begin

 reg_data_q[0] =

 reg_data_q[0]>>(curr_byte*8);

 axi_data_q.push_back (reg_data_q[0] &

 ((1'b1 << (axi_rw_item.size * 8))-1));

 end

 void'(reg_data_q.pop_front());

 end

 end

 end

E. Populate the bus transaction
 axi_rw_item = axi_item_t::type_id::create();

 //AXI transaction Address

 axi_rw_item.addr = burst_addr;

 //AXI transaction Length

 axi_rw_item.burst_length = burst_length - 1;

 //AXI transaction Kind

 axi_rw_item.burst = (burst_length > 1)?

 AXI_INCR : AXI_FIXED;

 //AXI transaction Size

 axi_rw_item.size = burst_size;

 //Direction, Strobes, Data

 if ((rw_reg_item.kind == UVM_WRITE) ||

 (rw_reg_item.kind == UVM_BURST_WRITE)) begin

 //AXI transaction kind

 axi_rw_item.read_or_write = AXI_TRANS_WRITE;

 //AXI transaction kind

 axi_rw_item.data_words = axi_data_q;

 // AXI transaction write strobes

 ...

 end

 else if ((rw_reg_item.kind == UVM_READ) ||

 (rw_reg_item.kind == UVM_BURST_READ))

 axi_rw_item.read_or_write = AXI_TRANS_READ;

After transformation is complete, we update the

uvm_reg_bus_op_c object to hold the number of bits

consumed and pass it to the resource DB, then return the

bus transaction.
 //Wrapper uvm_reg_bus_op_c object update

 uvm_reg_bus_op_c_1 = new();

 uvm_reg_bus_op_c_1.n_bits = bytes_sent*8;

 if ((rw_reg_item.kind == UVM_WRITE) ||

 (rw_reg_item.kind == UVM_BURST_WRITE))

 uvm_config_db #(uvm_reg_bus_op_c)::set(null,

 "*", "rw_access_adapter_write",

 uvm_reg_bus_op_c_1);

 else

 uvm_config_db #(uvm_reg_bus_op_c)::set(null,

 "*", "rw_access_adapter_read",

 uvm_reg_bus_op_c_1);

 return axi_rw_item;

endfunction //reg2bus()

In some circumstances, you may have limitations or

constraints on the bus that certain kinds of bus capabilities

could not be utilized, the above code can be easily extended

to take bus limitations and constraints into consideration

when generating the burst. All what is needed would be a

handle of the bus configuration object being passed to the

adapter, the reg2bus() would check if a chosen burst feature

is not supported and re-iterate if needed.

3.2.2 bus2reg() for an AMBA AXI

Typically bus2reg() implementation would be relatively

simple since we will be listening to lower level transactions,

i.e. read and write beats, and not high level bursts.

Therefore, it will convert lower level bus beats transactions

to register transactions. It may need to listen to higher level

read AXI bursts to get the whole burst data for the

do_bus_read() method as shown below.

virtual function void bus2reg (uvm_sequence_item

 bus_item, ref uvm_reg_bus_op rw);

if (!$cast(axi_rw_beat, bus_item)) begin

 if ($cast(axi_rw_burst, bus_item))

 //This part is needed to fulfill needs of

 //do_bus_read() to get data out of the burst

 //in one shot

 if (axi_rw_burst.read_or_write ==

 AXI_TRANS_READ) begin

 typedef uvm_reg_data_t data_q_t [$];

 data_q_t read_data_q;

 foreach (axi_rw_burst.data_words[i])

 read_data_q.push_back

 (axi_rw_burst.data_words[i]);

 uvm_config_db #(data_q_t)::set(null,

 "*", "bus2reg_read_data_q",

 read_data_q);

 end

 else

 `uvm_info ("RegMem",{"adapter

 [",this.get_name(),"] bus2reg()

 Casting failed!"}, UVM_FULL)

 return;

 end

 rw.kind = (axi_rw_beat.read_or_write ==

 AXI_TRANS_WRITE) ? UVM_WRITE:UVM_READ;

 rw.addr = axi_rw_beat.addr;

 rw.data = axi_rw_beat.data;

 rw.status = UVM_IS_OK;

 //calculate byte enable from beat size

 ...

endfunction

4. COST-BENEFIT ANALYSIS AND

EXPERIMENTAL RESULTS

4.1 Lines of code and complexity

As demonstrated above when taking a look at the proposed

implementation of do_bus_write()/do_bus_read() w.r.t. the

current implementation, you shall notice that lines of code

and complexity are relatively close. While lines of code of

proposed implementation may be smaller (since some of the

overhead to chop data into bus bursts is moved to the

reg2bus()and bus2reg() methods), yet using the resource

DB and semaphores to share data between

do_bus_write()/do_bus_read() and reg2bus()/bus2reg()

methods and to support concurrent writes, or reads

(working around reg2bus() prototype limitation) add some

complexities. These complexities shall be eliminated if the

reg2bus() prototype returns an array of bus transactions.

On the other hand the implementation of

bus2reg()/reg2bus() methods in the proposed

implementation would be more complex if one wants to

benefit from a high performance bus powerful features. Or

rather, stick with simple implementation of these methods

for a trade off with simulation performance.

4.2 Simulation Performance

The number of simulation cycles depends on the

number of transactions executed; the greater the number of

executed transactions, the greater the simulation cycles and

hence longer the simulation time will be. The proposed

implementation attempts to send the smallest amount of bus

transactions possible. On the other hand, the current

implementation sends the maximum amount. Simulation

performance is affected by the amount of context switching

in your code. Each time you generate and execute an extra

transaction, context is switched from the UVM registers

context to the bus driver context, thus maximizing the

number of transaction executed which would hurt

simulation performance. This makes the proposed

implementation suitable for high performance buses as it

just moves the bottleneck from the UVM registers to the

adapter implementation and the corresponding bus

architecture. On Low performance buses, the overhead of

accessing the resource DB for every bus transaction could

be tangible, resulting in a slight performance degradation

w.r.t. current implementation. An ultimate resolution is to

extend the UVM register library to support a register to bus

method that generates an array of bus transactions.

Appendix B demonstrates the required extensions in detail.

4.3 Experimental Results

The following figure describes how simulation performance

is affected when executing unnecessary bursts, attempting

to perform a write to a 2KB memory on an AMBA AXI bus

of 32-bit width. As shown below, simulation performance

of the proposed implementation can be five times better

than the current implementation. The current

implementation will send 512 different AXI bursts; point

“A” on the graph represents normalized simulation CPU

time and cycles for the current implementation. The

proposed implementation can send one burst with 512

different beats, reducing context switching and eliminating

extra cycles; reducing simulation time and cycles to point

“B” on the graph.

Figure 2. Effect of Executing Unnecessary AMBA AXI Bursts on

Simulation Performance accessing a 2KB memory block

5. CONCLUSION

The paper has shed some light on current UVM registers

front-door access implementation. In summary, the current

implementation inserts undesired bottleneck when

performing on high performance buses, by chopping data in

bus-width chunks, generating a simple transaction for each

chunk, and avoiding making use of bus powerful features

when found. As a result the amount of transactions

generated is maximized, which in turn would maximize

context switching during simulation that would badly affect

simulation performance.

We presented an alternative implementation that

avoids chopping data, passing the decision making to the

adapter translating from register transactions to bus

transactions letting it decide how many of the data it could

consume in one transaction. This way the bottleneck is

moved to the adapter and the corresponding bus

architecture. The current prototype of the reg2bus() in the

UVM library allows returning only one transaction,

although it would have been much better if the method

returns array of transactions.

A cost-benefit analysis showed that in terms of lines of

code count, code complexity, and use model, current and

proposed implementations are similar. However when it

comes to simulation performance, the proposed

implementation can super exceed the current

implementation on high performance buses.

6. REFERENCES

[1] UVM User Manual, uvmworld.org.

[2] UVM Reference, uvmworld.org.

[3] UVM Open Source Kit, uvmworld.org.

[4] UVM/OVM Cookbook, verificationacademy.com/uvm-
ovm.

[5] "IEEE Standard for SystemVerilog- Unified Hardware
Design, Specification, and Verification Language,"
IEEE Std 1800-2009, 2009.

[6] AMBA AXI reference, infocenter.arm.com.

Current Implementation

(A)

Proposed

Implementation

(B)

APPENDIX A. – OVERLAY REGISTER MAP DO_BUS_READ() IMPLEMENTATION

// $Id: uvm_reg_map_ext.svh,v 1.12 2011/06/03 00:00:00 ayehia Exp $

//--

// Ahmed Yehia ahmed_yehia@mentor.com

// Copyright 2005-2013 Mentor Graphics Corporation

// All Rights Reserved Worldwide

//

// Licensed under the Apache License, Version 2.0 (the

// "License"); you may not use this file except in

// compliance with the License. You may obtain a copy of

// the License at

//

// http://www.apache.org/licenses/LICENSE-2.0

//

// Unless required by applicable law or agreed to in

// writing, software distributed under the License is

// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR

// CONDITIONS OF ANY KIND, either express or implied. See

// the License for the specific language governing

// permissions and limitations under the License.

//--

task do_bus_read (uvm_reg_item rw, uvm_sequencer_base sequencer, uvm_reg_adapter adapter);

 //Read data queue

 typedef uvm_reg_data_t data_q_t [$];

 data_q_t read_data_q;

 //bus_width in bytes (important to know your limits). Default (when UVM_HIER is passed)

 //is to get narrowest bus. Bus write depending on bus type and configuration

 int unsigned bus_width = get_n_bytes();

 int unsigned bus_width_bits = bus_width * 8;

 //Byte enable, applicable only for UVM_FIELD.

 //Initialize to all ones to avoid confusion otherwise

 uvm_reg_byte_en_t byte_en = '1;

 //Address related fields

 uvm_reg_map_info map_info;

 //Array of addresses. For a register its size depends on the bus_width;

 //if bus_width is smaller than the register width then the size of the addr,

 //array will simply be register_width/bus_width, otherwise the addr will hold only 1 location

 //For memory each memory location will be treated as one register

 uvm_reg_addr_t start_address, addrs[$];

 //Specification variables

 int lsb, addr_skip, n_bits, n_bits_total, extra_bits;

 uvm_sequence_item bus_req, bus_req_q[$];

 uvm_reg_bus_op rw_access;

 uvm_reg_bus_op_c uvm_reg_bus_op_c_read = new();

 //Get Addresses and specs for all kinds (fields/registers/mem)

 Xget_bus_infoX(rw, map_info, n_bits, lsb, addr_skip);

 //Macro needed for IUS limitation with assignment compatibility of dynamic arrays to queues

 `UVM_DA_TO_QUEUE(addrs,map_info.addr)

 //UVM_FIELD is only picked up if one configures his fields to be accessed individually

 if (rw.element_kind == UVM_FIELD) begin

 //Excess bits on bus width boundaries. Flags the start of the field w.r.t

 //the bus width boundary, this is useful when calculating byte enable

 //and when shifting the data to align with the start of the field

 extra_bits = (lsb % bus_width_bits);

 //Calculate byte enables if adapter supports byte enable.

 if (adapter.supports_byte_enable) begin

 int idx = extra_bits / 8; // Initialize index to start of bytes locations

 // Total size of the field to be accessed in bits (size of a field)

 int access_bits = extra_bits % 8 + n_bits;

 byte_en = '0; //Initialization of byte_en all zeros

 while(access_bits > 0) begin

 byte_en[idx++] = 1'b1;

 access_bits -= 8;

 end

 end

 //Skip addresses un-needed to access the fields (addresses of the rest of the reg),

 //byte_enable should take care of the footer addresses

 for (int i=0; i<addr_skip; i++)

 void'(addrs.pop_front());

 end

 //Total number of bits to be sent. For memory, n_bits come for one memory location

 //and so I am multiplying by the value size to reflect for the memory

 n_bits_total = n_bits*rw.value.size();

 start_address = addrs[0]; //Capture the start address

 //Assing byte_en (useful only for UVM_FIELD), kind and n_bits

 rw_access.byte_en = byte_en;

 rw_access.kind = rw.kind;

 rw_access.n_bits = n_bits_total;

 //Lock the semaphore, needed if concurrent writes will be supported

 uvm_reg_bus_op_c::reg2bus_read_sm.get(1);

 //Loop for bursts

 while (rw_access.n_bits > 0) begin //As long as there is data to send

 rw_access.addr = start_address;

 adapter.m_set_item(rw);

 bus_req = adapter.reg2bus(rw_access);

 //Something wrong with the adapter.reg2bus(), trigger a UVM_FATAL

 if (bus_req == null)

 `uvm_fatal("RegMem",{"adapter [",adapter.get_name(),"] didnt return a bus transaction"});

 //Push the bus_req to the queue of bus_requests. This is needed due to the limitation

 //in the adapter.reg2bus() prototype returning only one sequence item

 bus_req_q.push_back (bus_req);

 //A means for communication between the adapter.reg2bus() and the do_bus_write().

 //This is to workaround the limitation of rw_access being passed as const

 uvm_config_db #(uvm_reg_bus_op_c)::get(null, "",

 "rw_access_adapter_read", uvm_reg_bus_op_c_read);

 //Something wrong with the adapter.reg2bus(), trigger a UVM_FATAL

 if (uvm_reg_bus_op_c_read == null)

 `uvm_fatal("RegMem",{"adapter [",adapter.get_name(),"] Means of communication is broken

 between adapter.reg2bus() and reg_mem_map.do_bus_write()!"});

 if (uvm_reg_bus_op_c_read.n_bits == 0)

 `uvm_fatal("RegMem",{"adapter [",adapter.get_name(),"] Adapter returned n_bits of zero,

 this could result in an infinite loop!"});

 //update start_addr to reflect number of bits that has been already sent out

 start_address += uvm_reg_bus_op_c_read.n_bits/(8*get_addr_unit_bytes());

 rw_access.n_bits -= uvm_reg_bus_op_c_read.n_bits;

 end //while (rw_access.n_bits > 0)

 //Free the semaphore

 uvm_reg_bus_op_c::reg2bus_read_sm.put(1);

 //Drive read transactions to driver

 foreach (bus_req_q[i])

 begin

 uvm_sequence_item bus_req = bus_req_q[i];

 bus_req.set_sequencer(sequencer);

 rw.parent.start_item(bus_req,rw.prior);

 if (rw.parent != null && rw_access.addr == addrs[0]) begin

 rw.parent.pre_do(1);

 rw.parent.mid_do(rw);

 end

 rw.parent.finish_item(bus_req);

 bus_req.end_event.wait_on();

 uvm_reg_bus_op_c::bus2reg_read_sm.get(1);

 if (adapter.provides_responses) begin

 uvm_sequence_item bus_rsp;

 uvm_access_e op;

 rw.parent.get_base_response(bus_rsp);

 adapter.bus2reg(bus_rsp,rw_access);

 end

 else begin

 adapter.bus2reg(bus_req,rw_access);

 end

 //Get the read data from the bus and update the item

 uvm_config_db #(data_q_t)::get(null, "*", "bus2reg_read_data_q", read_data_q);

 uvm_reg_bus_op_c::bus2reg_read_sm.put(1);

 rw.status = rw_access.status;

 for (int j = 0, k = 0; j < read_data_q.size(); j++, k++) begin

 rw.value[k] = 0;

 for (int curr_byte=0; curr_byte < `UVM_REG_BYTENABLE_WIDTH; curr_byte+=bus_width) begin

 if (curr_byte > 0) begin

 j++;

 if (j >= read_data_q.size())

 break;

 end

 read_data_q[j] = read_data_q[j] & ((1<<bus_width*8)-1);

 rw.value[k] |= read_data_q[j] << curr_byte*8;

 if (rw.element_kind == UVM_FIELD)

 rw.value[k] = (rw.value[k] >> extra_bits) & ((1<<n_bits)-1);

 if ((rw.status == UVM_IS_OK) && ((^read_data_q[j]) === 1'bx))

 rw.status = UVM_HAS_X;

 end

 end

 if (rw.parent != null && rw_access.addr == addrs[addrs.size()-1])

 rw.parent.post_do(rw);

 end //foreach (bus_req_q[i])

 endtask //do_bus_read()

APPENDIX B. – DEMONSTRATION OF SOME OF THE REQUIRED MODIFICATIONS IN THE UVM

REGISTERS LIBRARY FOR HANDLING HIGH SPEED BUSES EFFICIENTLY

// $Id: uvm_reg_map_ext.svh,v 1.12 2011/07/20 00:00:00 ayehia Exp $

//--

// Ahmed Yehia ahmed_yehia@mentor.com

// Copyright 2005-2013 Mentor Graphics Corporation

// All Rights Reserved Worldwide

//

// Licensed under the Apache License, Version 2.0 (the

// "License"); you may not use this file except in

// compliance with the License. You may obtain a copy of

// the License at

//

// http://www.apache.org/licenses/LICENSE-2.0

//

// Unless required by applicable law or agreed to in

// writing, software distributed under the License is

// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR

// CONDITIONS OF ANY KIND, either express or implied. See

// the License for the specific language governing

// permissions and limitations under the License.

typedef uvm_sequence_item uvm_sequence_item_q [$];

virtual class uvm_reg_adapter extends uvm_object;

 ...

 virtual function uvm_sequence_item_q reg2bus_arr(const ref uvm_reg_bus_op rw);

 endfunction

endclass

task uvm_reg_map::do_bus_write (uvm_reg_item rw, uvm_sequencer_base sequencer, uvm_reg_adapter adapter);

 uvm_reg_addr_t addrs[$];

 uvm_reg_map system_map = get_root_map();

 int unsigned bus_width = get_n_bytes();

 int unsigned bus_width_bits = bus_width * 8;

 uvm_reg_byte_en_t byte_en = -1;

 uvm_reg_map_info map_info;

 int n_bits;

 int lsb, skip, addr_skip, n_bits_total, extra_bits;

 int unsigned curr_byte;

 int n_access_extra, n_access;

 uvm_sequence_item bus_req, bus_req_q[$];

 uvm_reg_bus_op rw_access;

 Xget_bus_infoX(rw, map_info, n_bits, lsb, skip);

 `UVM_DA_TO_QUEUE(addrs,map_info.addr)

 // if a memory, adjust addresses based on offset

 if (rw.element_kind == UVM_MEM)

 foreach (addrs[i])

 addrs[i] = addrs[i] + map_info.mem_range.stride * rw.offset;

 if (rw.element_kind == UVM_FIELD) begin

 //Excess bits on bus width boundaries. Flags the start of the field w.r.t the bus width boundary,

 //this is useful when calculating byte enable and when shifting the data to align with the start of

 //the field

 extra_bits = (lsb % bus_width_bits);

 //Calculate byte enables if adapter supports byte enable.

 if (adapter.supports_byte_enable) begin

 int idx = extra_bits / 8; //Initialize index to start of bytes locations

 //Total size of the field to be accessed in bits (size of a field)

 int access_bits = extra_bits % 8 + n_bits;

 byte_en = '0; //Initialization of byte_en all zeros

 while(access_bits > 0) begin

 byte_en[idx++] = 1'b1;

 access_bits -= 8;

 end

 end

 //Skip addresses un-needed to access the fields (addresses of the rest of the reg),

 //byte_enable should take care of the footer addresses

 for (int i=0; i<addr_skip; i++)

 void'(addrs.pop_front());

 //Update value to align on the field.

 //No need to do a foreach cause for a field value size is 1 anyways.

 foreach (rw.value[val_idx])

 rw.value[val_idx] = rw.value[val_idx] << extra_bits;

 end

 //Total number of bits to be sent. For memory, n_bits come for 1 memory location and so I am

 //multiplying by the value size to reflect for the whole memory

 n_bits_total = n_bits*rw.value.size();

 //byte_en (useful only for UVM_FIELD), kind and n_bits

 rw_access.byte_en = byte_en;

 rw_access.kind = rw.kind;

 rw_access.n_bits = n_bits_total;

 rw_access.addr = addrs[0];

 adapter.m_set_item(rw);

 bus_req_q = adapter.reg2bus_arr(rw_access);

 adapter.m_set_item(null);

 if (bus_req_q.size() == 0) begin

 //Method reg2bus_arr was not implemented, revert to old behavior for backward compatibility

 foreach (rw.value[val_idx]) begin: foreach_value

 uvm_reg_data_t value = rw.value[val_idx];

 foreach(addrs[i]) begin: foreach_addr

 uvm_reg_data_t data;

 data = (value >> (curr_byte*8)) & ((1'b1 << (bus_width * 8))-1);

 `uvm_info(get_type_name(), $sformatf("Writing 'h%0h at 'h%0h via map \"%s\"...",

 data, addrs[i], rw.map.get_full_name()), UVM_FULL);

 if (rw.element_kind == UVM_FIELD) begin

 for (int z=0;z<bus_width;z++)

 rw_access.byte_en[z] = byte_en[curr_byte+z];

 end

 rw_access.kind = rw.kind;

 rw_access.addr = addrs[i];

 rw_access.data = data;

 rw_access.n_bits = (n_bits > bus_width*8) ? bus_width*8 : n_bits;

 rw_access.byte_en = byte_en;

 adapter.m_set_item(rw);

 bus_req = adapter.reg2bus(rw_access);

 adapter.m_set_item(null);

 if (bus_req == null)

 `uvm_fatal("RegMem",{"adapter [",adapter.get_name(),"] didnt return a bus transaction"});

 bus_req_q.push_back(bus_req);

 curr_byte += bus_width;

 n_bits -= bus_width * 8;

 end: foreach_addr

 foreach (addrs[i])

 addrs[i] = addrs[i] + map_info.mem_range.stride;

 end: foreach_value

 end

 foreach (bus_req_q[i])begin

 uvm_sequence_item bus_req = bus_req_q[i];

 bus_req.set_sequencer(sequencer);

 rw.parent.start_item(bus_req,rw.prior);

 if (rw.parent != null && rw_access.addr == addrs[0])

 rw.parent.mid_do(rw);

 rw.parent.finish_item(bus_req);

 bus_req.end_event.wait_on();

 if (adapter.provides_responses) begin

 uvm_sequence_item bus_rsp;

 uvm_access_e op;

 // TODO: need to test for right trans type, if not put back in q

 rw.parent.get_base_response(bus_rsp);

 adapter.bus2reg(bus_rsp,rw_access);

 end

 else begin

 adapter.bus2reg(bus_req,rw_access);

 end

 if (rw.parent != null && rw_access.addr == addrs[addrs.size()-1])

 rw.parent.post_do(rw);

 rw.status = rw_access.status;

 if (rw.status == UVM_NOT_OK)

 break;

 end

endtask: do_bus_write

	BOOSTING SIMULATION PERFORMANCE OF UVM REGISTERS IN HIGH PERFORMANCE SYSTEMS
	Abstract
	1.1.1 Field
	1.1.2 Register
	1.1.3 Memory
	1.1.4 Block
	1.1.5 Map
	3.2.1 reg2bus() implementation for an AMBA AXI bus
	A. Capture the required info for optimal burst type selection
	B. Field access accomodating for fields wider than bus width by sending INCR bursts
	C. Unaligned address, or bytes to send smaller than bus width: Fixed burst with single beat
	D. Accessing register or memory with number of bytes greater than or equal to bus width.
	E. Populate the bus transaction

	3.2.2 bus2reg() for an AMBA AXI
	AppendIX A. – Overlay Register Map do_bus_read() Implementation
	AppendIX B. – Demonstration of SOME OF the Required modifications in the UVM registers library for handling high speed buses efficiently

