
Boosting Debug Productivity
Practical Applications of Debug Innovations

in a UVM World

Joerg Richter
Director R&D, Verification Group

1

Agenda

Motivation

Efficient SV/UVM Testbench Debug

Rapid Root-Cause Analysis with Reverse Debug

Search-centric Debug with OneSearch

Embedded SW Debug

© Accellera Systems Initiative 2

Shrinking
Time-to-
Market

Windows

Block-level
testing to

SW Bring-up

Functionality
Power

Performance

Verification Complexity Exponentially Increasing

1G

10G

1T

100G

2010

28nm

2000

90nm

2005

40nm

2015

14nm
2020

10/7/5nm

100M

1995

250nm

10M

• 1-5M gates ASIC

• 1-2 clocks

• 10K lines of SW

• 10M+ gates ASIC

• 5-10 IPs per ASIC

• 10+ power domains

• 10-15 clocks

• 1-2 interface protocols

• 100K lines of SW

• 200M+ gates mobile SoC

• 50+ IPs per SoC

• 100+ power domains

• 300+ clocks

• 30+ interface protocols

• 10M+ lines of SW

L
o
g
ic

 S
ta

te
s
 &

 T
ra

n
s
itio

n
s

10x

10x

10x

Source: Synopsys

Billion+
Gates SoCs

© Accellera Systems Initiative 3

Scope of Debug Expanding

RTL/Gate

TestBench UPFSoftware

Embedded
Processor

Bus Protocols VIP

Constraints Coverage

Analog

© Accellera Systems Initiative 4

Agenda

Motivation

Efficient SV/UVM Testbench Debug

Rapid Root-Cause Analysis with Reverse Debug

Search-centric Debug with OneSearch

Embedded SW Debug

© Accellera Systems Initiative 5

Testbench Debug Complexity

Verification Approach

Migration from v2k to SystemVerilog/UVM

Expertise mismatch

Environment

Languages & Methodologies

In-house/vendor VIP

Scale

Block to sub-system to system

Signal-level to Protocol-level

Volume

Amount & complexity of functionality to verify

Use of IPs in design

Testbench Debug
Complexity

© Accellera Systems Initiative 6

Debug Testbenches Interactively
Full-visibility Testbench Debug in Verdi & VCS • On-demand Debug

• Step forward/back/into
testbench constructs

• Go back in time without
restarting simulation OR setting
checkpoints

• Full Visibility

• Source code, dynamic objects,
watch list etc.

• Call stack, members, local
variables etc.

• Powerful Capabilities

• Trace value assignment
into testbench

• Perform what-if analysis

• Enable day-to-day and batch
simulation debug

Watch Views

Object
Browser

Source Code
Debug

Members &
Local Variables

Class
Browser

Full Interactive
Control

Stack Browser

Reverse Debug
Control

© Accellera Systems Initiative 7

Key Elements for Efficient SystemVerilog TB Debug

Class Browser
Class hierarchy, methods,

members

Class Browser
Class instances with member

values

Object Browser
All objects with member

values and UVM hierarchy

Stack and Locals
Call stack of thread(s)

Frame locals with values

© Accellera Systems Initiative 8

Simulation Control & TB Behavior Tracking

Watch

Source with Value
Annotation

SmartLog: Powerful
Interactive Console

Simulation Control Breakpoints

© Accellera Systems Initiative 9

Making Debug UVM Aware

Resource DB Factory Domains
/ Phases

Sequences Registers Hierarchy

© Accellera Systems Initiative 10

Buried in logfiles?

I want just the errors around
the 10,000 nsec mark

What’s the source code that
created this message?

Emacs search not enough
anymore…

Logfile is too big! How do I find
the UVM Fatal?

There has to be a better way to browse data across all these logs!

How can I browse a log with
custom messages?

Manually correlating log
messages is so annoying!

© Accellera Systems Initiative 11

SmartLog to the Rescue

• Smart browsing of log files

– Hyperlinks

– Message filtering: UVM, VCS, Severity…

– Time visualization and navigation

– Message navigation

– File view or structure view

– Searching and text based filtering

– Customize and add own log parsing rules (for custom log files)

© Accellera Systems Initiative 12

SmartLog – File View

Standard Log with Hyperlinks

File view /
Structure view

Table view with
columns

© Accellera Systems Initiative 13

Agenda

Motivation

Efficient SV/UVM Testbench Debug

Rapid Root-Cause Analysis with Reverse Debug

Search-centric Debug with OneSearch

Embedded SW Debug

© Accellera Systems Initiative 14

Productivity with Reverse Debug

Simulation

Time 0

Breakpoint Stepped beyond line
of Interest

Simulation

Time 0

NO
Restart
Needed

Saves Hours of Simulation

Basic Interactive Debug

w/ Reverse Debug

Restart
Simulation

Step back

Simulation

Time 0

Done

Done

Go Back to ANY
Point in Time

Rerun Simulation

© Accellera Systems Initiative 15

Finding Failures
Diagnose and Debug - Moving forward and backward in time

Simulation

Time 0

Jump back to previous
point in time

Step forward through
code to find issue

Test FAIL

Advance forward to later time
without re-simulation

Done

Undo/Redo
Last simulation control command

Forward & Backward

Go To
Previous/Next

Value Assignment

Reverse Controls
Run - Next – Step – Step Out – Step in
Thread – Next in Thread – Step in TB

© Accellera Systems Initiative 16

What-if Analysis
Fix and Validate in One Simulation

Simulation

Time 0

Jump back to previous
point in time

Step forward through
code to find issue

Test FAIL

No need to recompile

Done

Force signal – Expect new outcome

Test PASS
New outcome, test does not

stop/fail here anymore

Simulate forwards

Repeat if needed

No need to re-run
simulation

© Accellera Systems Initiative 17

Regression Debug

Overnight Regression

w/ Regression Debug Enabled

FAIL

FAIL

pass

pass

FAIL

FAIL

Rerun with dumping/
logging enabled

1. Analyze log;
Identify events

2. Instrument
checkpoints

3. Rerun sims
interactively

4. Debug

FAIL

FAIL

pass

pass

FAIL

FAIL

1. Auto-Analyze
2. Auto-Instrument
3. Auto-Rerun

4. Debug Time Savings Per Test

Reduce debug TAT significantly
Maximize regression utilization
Focus manual effort on debug

Done

© Accellera Systems Initiative 18

Interactive Debug Flows
Interactive debug for both day-to-day and batch simulation tasks

1. User runs and debugs interactive simulation in Verdi

2. User runs batch/interactive simulation, saves sessions, later restores sessions and debugs interactively

simv
-verdi

Verdi Interactive
Debug

Reverse Debug

Bug found

simv
-ucli -ucli2Proc

Verdi Interactive
Debug

Reverse Debug

Bug foundRestore

Session
Sim

Session

Save

Session

Verdi Interactive
Debug

Reverse Debug

- or -

Save

Session

✓

✓

© Accellera Systems Initiative 19

Verdi Reverse Debug

© Accellera Systems Initiative 20

Agenda

Motivation

Efficient SV/UVM Testbench Debug

Rapid Root-Cause Analysis with Reverse Debug

Search-centric Debug with OneSearch

Embedded SW Debug

© Accellera Systems Initiative 21

Search Queries…

What do you use
Google for?

Do you still use
bookmarks?

Any kind of Information!
The only place!

It changes your need
of other features

How do you search?What do you enter?

People just enter plain
words – no syntax

Can you imagine life
without Google?

Now, how would designers and verification engineers like to search?

© Accellera Systems Initiative 22

OneSearch
A single search for the entire verification environment

searches within source files and files used for the design

searches within log files from compilation and execution

searches within the compiled design for any Identifier

searches within Verdi tool documentation PDF files

searches fully customized
(custom DBs, specific files, environment, …)

Sources

Logs

Identifiers

Docs

Your Own

• Single and simple user interface

• Fast search engines

Custom PDFs:
FAQ available

© Accellera Systems Initiative 23

Configure
Settings

Search
Query

Search Engine Selection

Hyperlinks to SmartLog
Viewer

Hyperlinks to Source View

Hyperlinks to PDF Viewer

Using Verdi OneSearch

© Accellera Systems Initiative 24

Verdi OneSearch

© Accellera Systems Initiative 25

Agenda

Motivation

Efficient SV/UVM Testbench Debug

Rapid Root-Cause Analysis with Reverse Debug

Search-centric Debug with OneSearch

Embedded SW Debug

© Accellera Systems Initiative 26

SoC Debug Challenges
Lack of Visibility on the Software Side

SoC Simulation

Interconnect Fabric

Memory

Image

User
Logic

Memory
Model

CPU

USB IIP

USB VIP

C Code

C
Compile

User
Block

(C/DPI)

CPU

Verdi
Design & Testbench Debug

BUT… What about the embedded software?CPU Software Debug
• Encrypted Model ?
• Registers + Nets ?
• No or Low-Visibility
• Looks like a Black Box

Time Consuming Manual Debug:

• Log-files, Waveforms

• ELF Dump, Disassembly

• Decoding Stack, Variables

At every point in time…

© Accellera Systems Initiative 27

SoC Simulation

Interconnect Fabric

Memory

Image

User
Logic

Memory
Model

CPU

USB IIP

USB VIP

C Code

C
Compile

User
Block

(C/DPI)

CPU

Verdi
Design & Testbench Debug

Verdi HW SW Debug Add-on
Instruction-Accurate Embedded Processor Debug with

Synchronized HDL, C, Assembly Visibility

SoC Debug Challenges
Lack of Visibility on the Software Side

© Accellera Systems Initiative 28

Verdi HW SW Debug

© Accellera Systems Initiative 29

• Enables co-debug between HW and SW

• HW and SW debug synchronized in time

• View C/Assembly source,
C variables, stack, memory

• Debugs multiple cores simultaneously

• Simulation supports all ARM® Cortex®
cores

• Easy to support additional cores or
custom cores

SoC Simulation

CPU
Mem

Model

USB Host
IIP

Application
Logic

X-Bar (HDL)

Mem
Image

Verdi

Programmer’s View

Embedded Software Debug in Eclipse

Call Stack

Registers

Variables

C Source
Code

Assembly
Code

Memory

Provides programmer’s view of code running on simulated processor

© Accellera Systems Initiative 30

Combined HW and SW Debug

Sync

Post Process Debug
• Eclipse feels like interactive

debug
• Run Forward/Back
• Step Forward/Back

© Accellera Systems Initiative 31

Debugging Multi-Core

Provides programmer’s views into multiple cores simultaneously

Call-Stack for Multiple
Cores

Source Code executing
in selected core

Select Cores
to debug

© Accellera Systems Initiative 32

Verdi HW SW Debug Flow

VCS
simv

SoC
Design

Files

Simulation

CPU Log

Debug

Verdi

HW/SW Engine

Design
FSDB

armcc -g
gcc -gC Src HEX file

ELF
files

C-Compile with ‘-g’ and optionally ‘–O1’

New HW/SW Flow

Existing C Flow

Existing RTL Flow

hwsw_
debug_
convert

Converter

HWSW
FSDB

C-Src &
ELF
files

Verdi
Pattern File

GDB

Eclipse

No modifications needed - Enable CPU log during simulation

© Accellera Systems Initiative 33

Verdi HW SW Debug

© Accellera Systems Initiative 34

Verdi HW SW: Getting Started

• Download and install latest Verdi Release

• Run Dhrystone Example to verify installationInstall

• Identify the CPU cores in your design

• Dump CPU log from your simulationPrepare

• Run Converter on CPU log to generate FSDB
Convert

• Invoke Verdi and HW SW Debug/Eclipse

• Debug your Embedded Software and Design HDLDebug

© Accellera Systems Initiative 35

Summary
Interactive Debug

• Full-featured, full visibility debug for
SV/UVM testbench

• Run forward and backwards for
improved debug efficiency

OneSearch

• Fast and efficient search

• Search entire verification
environment at once

SmartLog

• Organized logs in table format with
time and other filters

• Parse logs with hyperlinks to source

HW SW Debug

• Synchronized HW and SW debug

• Multi-core support

• Performance profiling and embedded
SW code coverage

© Accellera Systems Initiative 36

Questions?

Motivation

Efficient SV/UVM Testbench Debug

Rapid Root-Cause Analysis with Reverse Debug

Search-centric Debug with OneSearch

Embedded SW Debug

© Accellera Systems Initiative 37

References

• Synopsys Verification Home
https://www.synopsys.com/verification.html

• Synopsys Verdi Debug Platform
https://www.synopsys.com/verification/debug.html

• Synopsys Verdi HW/SW Debug
https://www.synopsys.com/verification/debug/verdi-hw-sw-debug.html

© Accellera Systems Initiative 38

https://www.synopsys.com/verification.html
https://www.synopsys.com/verification/debug.html
https://www.synopsys.com/verification/debug/verdi-hw-sw-debug.html

