
Boost Verification Results by
Bridging the Hw/Sw Testbench Gap

by

Matthew Ballance

Verification Technologist

Mentor Graphics

Sponsored By:

2 of (total number of slides)

Agenda

• Block-level verification techniques

• SoC-level verification and the testbench gap

• UVM Software-Driven Verification package

Sponsored By:

3 of (total number of slides)

Block-level Verification

• Verification from the outside in

– Plan, create scenarios to verify

– Apply at the design interfaces

– Confirm correctness of results

• Over a decade of tool development and standardization

– Automation

• Constrained random generation

• Intelligent testbench automation

– Standardization – Verilog, VHDL, SystemVerilog

– Methodology and reuse

• AVM,OVM,VMM,UVM

Sponsored By:

4 of (total number of slides)

SoC Verification

• Software central to design operation

• Verification from the outside in

– VIP connected to design interfaces

• Verification from the inside out

– Software running on the processor

• Challenges

– Difficult to coordinate Hw, Sw scenarios

– Little or no automation for Sw test creation

– Difficult to extract data from Sw test

Sponsored By:

5 of (total number of slides)

Gap? What Gap?

Hardware Domain Info

• Test configuration

• Automated test stimulus

• Analysis-data collection

• Hw scenario control

Software Domain Info

• Info/error messages

• Software state

• Sw scenario control

Sponsored By:

6 of (total number of slides)

The Need Isn’t New

• Hw/Sw Testbench connections aren’t new

• Often addressed environment-specific requirements

– Signal software test pass/fail

– Obtain randomized data

• Often proprietary

– Project / company specific

– Difficult to reuse

• Not UVM-centric

– Connecting existing UVM infrastructure requires work

Sponsored By:

7 of (total number of slides)

What is the UVM SDV Package?

• UVM-based package to enable Software-Driven Verification

– Connects Hw and Sw domains

– Simplifies coordination of Hw/Sw verification scenarios

• Scalable across environments

– Block-level verification in simulation

– SoC-level in simulation

– SoC-level in emulation

• Light-weight Sw components

– Small memory footprint

– Low processing overhead

Sponsored By:

8 of (total number of slides)

UVM SDV Architecture

• ‘C’ API

• SystemVerilog UVM-based classes

• Modular communication mechanism between Hw/Sw

– Shared memory

– DPI

• App-level services

– Hw/Sw synchronization

– Sw stimulus from UVM

– Sw state to UVM

– Sw-initiated Hw stim

Sponsored By:

9 of (total number of slides)

Base Hw/Sw Synchronization

• Sw API to pack/unpack data structures

• Obtain Configuration information from UVM

– Test-customization parameters

• Send Sw messages to UVM

– Enables common management of Hw/Sw status

– Reduced overhead vs printf via UART

• Sw control of objections

– Enables Sw to participate in test termination

Sponsored By:

10 of (total number of slides)

SW Stimulus from UVM

• Enables SW to drive stimulus generated in UVM

• Sequence item packed/unpacked by UVM API

• Item unpacked by SDV ‘C’ API

• Reuse existing UVM

– Sequences

– Sequence items

– Sequencers

Sponsored By:

11 of (total number of slides)

SW Stimulus from UVM
SW-side Implementation

• Software implements the UVM driver component

• ‘C’ API mirrors UVM sequencer-port API

• Initialize Sw driver

• Get sequence item

• Signal item done

req_txn req, rsp;

uvm_sdv_sequencer_driver_t txn_drv;

uvm_sdv_sequencer_driver_init(&txn_drv,

“*.m_sdv_driver”, // inst path of drv

&req_txn_unpack, // unpack function

&rsp_txn_pack); // pack function

while (true) {

uvm_sdv_sequencer_driver_get_next_item(

&txn_drv,

&req);

uvm_sdv_sequencer_driver_item_done(

&txn_drv,

&rsp);

}

Sponsored By:

12 of (total number of slides)

SW State to UVM

• SW API exposes SW state via UVM analysis port

• Enables analysis of SW state in UVM

– Scoreboard

– Coverage

• More efficient than printf

– Reduce analysis overhead

• Example:

– printf via UART: 1600uS

– Analysis port: 50uS

Sponsored By:

13 of (total number of slides)

SW State to UVM
SW-side Implementation

• SW initializes an analysis port

– Specifies path of publisher in UVM environment

• Initialize analysis port

• Perform operation

• Read Sw state

• Publish to UVM env

uvm_sdv_analysis_port ap;

sw_txn state;

uvm_sdv_analysis_port_init(

&ap, “*.m_state_pub”,

&sw_txn_pack);

while (true) {

process_data();

state.A = read_A();

state.B = read_B();

uvm_sdv_analysis_port_write(

&ap, &state);

}

Sponsored By:

14 of (total number of slides)

Initiate UVM Stimulus from SW

• SW can launch sequences in UVM environment

– Launch any sequence on any agent

• SW can monitor completion

Sponsored By:

15 of (total number of slides)

Initiate UVM Stimulus from SW
SW-side Implementation

• Sequence-launch call specifies

– Sequence name

– Sequencer path

• Start is non-blocking

• API returns run status

uint32_t id;

id = uvm_sdv_sequence_start(

“traffic_gen_seq”,

“*.traffic_seqr”);

// Perform other operations while

// the sequence is running

while

(uvm_sdv_sequence_is_running(id))

{

// Run software activity

process_data();

}

Sponsored By:

16 of (total number of slides)

Extensibility
Graph-Based Stimulus

• Extension API provided for new applications

• Coordinated Hw/Sw tests benefit from stimulus that is

– Sequential

– Dynamically reactive to Hw/Sw state

• Graph-Based Stimulus

– Procedural interaction with Sw

– Stimulus/feedback mixed

• Enables description of complex scenarios

Sponsored By:

17 of (total number of slides)

UVM Software-Driven Verification

• Reusable infrastructure

– Easily customized for specific environment

• Connects Hw and Sw domains

– Extends UVM services to Sw domain

– Extensible to domain-specific applications

• Enables automation and visibility

– Automated stimulus generation

• Random, Intelligent

– Sw-state visibility

• Enables coordinated Hw/Sw tests

Q&A

