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Abstract—Today’s complex designs increasingly include at least 

one, and often more, embedded processors. Given software’s 

increasing role in the overall design functionality, it has become 

increasingly important to leverage the embedded processors in 

verifying hardware/software interactions during system-level 

verification. This paper presents a UVM-based package for 

software-driven verification, and presents applications of this 

package that enable more-comprehensive system-level 

verification. 
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I. INTRODUCTION 

Complexity begets complexity. Which is to say, to run 

properly and fully realize their intended behavior, today’s 

intricate hardware designs with tens of millions (or more) 

gates inevitably require ever more nuanced and elaborate 

software. This tight coupling means that the traditional 

verification process, where both hardware and software are 

designed and verified in isolation and then integrated late in 

the design cycle, is less and less workable. What is needed is a 

two-way street for verifying low-level software and verifying 

the hardware used by the embedded software, and doing both 

as early in the process as possible.   

 

A software-driven verification environment differs in some 

fundamental ways from a hardware-centric verification 

environment. Figure 1 shows a typical hardware-centric SoC 

verification environment. Agents within the testbench 

environment apply stimulus to the design via its interfaces. 

Software runs on the processor within the design to manage 

the component IP blocks. From a structural perspective, the 

processor, and the software running on it, is part of the design.  

 

In the diagram below, the hardware and software portions of 

the testbench environment run in isolation, which leads to 

several problems. First, the isolation makes it very difficult or 

impossible to coordinate the operation of software running on 

the processor with stimulus provided from the hardware-

centric testbench environment. It is also extremely challenging 

to achieve the level of comprehensive verification needed to 

ensure proper design operation, since the software-driven 

stimulus is unable to take advantage of advanced stimulus 

generation techniques or to contribute to functional coverage 

metrics.  

 

 
Figure 1 – Hardware-Centric Verification Environment 

 

 

The comprehensiveness of verification can be increased by 

making the software running on the processor part of the 

verification environment. For example, in the case of this 

design, IP 3 has no external interfaces. Its operation in 

conjunction with IP 2 can really only be verified by 

controlling IP 3 via software, while applying stimulus to the 

external interface of IP 2. Enabling this coordination and 

cooperation of the hardware-centric and embedded-software 

portions of the testbench is a key goal of a software-driven 

verification environment. 

 

 



 
Figure 2 - Software-Driven Verification Environment 

 

Figure 2 shows a block diagram of a software-driven 

verification environment. Functionally, the embedded 

software running on the embedded processor becomes another 

agent in the testbench environment that is able to apply 

stimulus to the hardware design from the inside.  

 

Some forward-looking verification engineers have created 

testbench environments with built-in hooks to enable 

coordination between the hardware and software aspects of the 

test. Though undeniably useful, these hooks are usually 

specific to a project or verification team and so typically aren’t 

portable. This paper proposes a methodology and software-

driven verification (SDV) extensions to UVM that enable 

embedded software to participate in hardware-centric 

verification starting at the block level and continuing to the 

system level. 

II. UVM SDV PACKAGE 

The UVM Software-Driven Verification (SDV) package 

provides infrastructure that enables embedded verification 

software to coordinate with a UVM testbench environment. 

The majority of the features provided by the UVM SDV 

library simply extend features already provided by the UVM 

library into the software domain.  

 

The UVM library provides several categories of features that 

enable verification IP to coordinate and cooperate, and enable 

reuse of verification IP. UVM provides a standard messaging 

mechanism that enables informational, warning, error, and 

fatal messages from all verification components to be tracked, 

filtered, and redirected. UVM provides a configuration 

mechanism that enables the operation of a verification IP 

component to be customized in a standardized way. UVM 

provides a phasing mechanism that enables verification IP 

components to coordinate and synchronize across the lifecycle 

of the test. In a UVM testbench, verification stimulus is 

modeled using a sequence, decoupling the type of stimulus to 

produce (the sequence) from the mechanism by which it is 

applied to the design. Finally, UVM provides the non-blocking 

analysis-port mechanism for broadcasting information about 

the state of the design or of activity within one of the 

verification IP components. 

 

The UVM SDV package enables embedded software running 

on a processor model to take advantage of these UVM-

provided services, enabling the embedded software to act as 

yet another verification component (or set of verification 

components) in the UVM testbench environment, coordinate 

with other activity occurring in the SystemVerilog portion of 

the UVM testbench, and publish information on the state of 

the software for use by verification IP components within the 

SystemVerilog portion of the testbench. 

 

III. UVM SDV PACKAGE COMPONENTS 

The UVM SDV package provides three key components, with 

a goal of simplifying the process of creating a software-driven 

verification environment.  

 

 
Figure 3 - UVM SDV Package Components 

 

Figure 3 shows the components provided by the UVM SDV 

package in the SystemVerilog and embedded software 

portions of the verification environment. The UVM SDV 

connector manages interactions between the SystemVerilog 

environment and one processor. Consequently, an instance of 

the UVM SDV connector is created for each processor to be 

used for verification in the design. Communication between 

the SystemVerilog environment and the embedded software 

occurs via the hardware/software communication mechanism 

in the center of the diagram. The embedded test software uses 

the UVM SDV software library to interact with the UVM 

SDV connector, via the hardware/software communication 

mechanism. 

 

A. Hw/Sw Communication Mechanism 

The central enabling feature of the UVM SDV package is a 

communication channel between the SystemVerilog and the 

embedded software portions of the testbench environment. 



Modularity is a key requirement for the communication 

mechanism, since the available infrastructure for 

communication between hardware and software may differ in 

a block-level environment, simulation-based system-level 

environment, emulation-based system-level environment, and 

a live target. Consequently, the UVM SDV package is 

architected to enable the communication mechanism to be 

easily swapped without requiring invasive changes to the 

embedded verification software or the SystemVerilog portion 

of the UVM environment. 

 

Data transmitted via the communication mechanism is 

formatted as variable-length data packets, which enables 

specific implementations of the communication mechanism to 

know nothing about the higher-level activity that is provoking 

exchange of data. Consequently, creating a new 

implementation of the communication mechanism is relatively 

straightforward. 

 

The UVM SDV package provides two pre-built 

communication mechanisms, which are suitable for 

simulation-based block-level verification, and simulation or 

emulation-based system-level verification.  

 

Early software-driven verification can be performed at block-

level by native-compiling the verification software as a DPI 

library that interacts with the block-level verification 

environment via the register model. The UVM C-Based 

Stimulus package [1] provides an implementation of this 

functionality. The UVM SDV package provides a DPI-based 

hardware/software communication mechanism for use in this 

type of environment. 

 

In a simulation- or emulation-based system-level verification 

environment, data can be exchanged with the processor via a 

block of memory that is accessible to both the processor and 

the testbench environment. Many system-level environments 

already provide a mechanism to access processor-accessible 

memory from the testbench in order to load code or implement 

some form of software debug. The UVM SDV package 

provides a shared-memory communication mechanism that 

can easily be customized for use in a system-level verification 

environment. 

 

New communication mechanisms can be created as needed. 

For example, a communication mechanism based on a high-

speed serial interface could be useful in performing some level 

of software-driven verification on a live target. 

 

B. Software Pack/Unpack API 

Many of the application-level services provided by the UVM 

SDV package require the exchange of transactions between 

the SystemVerilog and the embedded software portions of the 

verification environment. UVM provides the uvm_packer 

class that enables a UVM object to serialize its contents to a 

data stream, or de-serialize its contents from a data stream.  

 

The UVM SDV package provides a similar API for use by the 

embedded software. As with the UVM packer API, the UVM 

SDV API supports packing and unpacking integer, string, and 

object data types.  

 

The figures below show an example of a data structure and the 

pack and unpack functions for that data structure. Figure 4 

shows a simple C struct that we might use to exchage a pair of 

values between the embedded software testbench and the 

SystemVerilog environment. Figure 5 shows the pack function 

for the sw_txn data structure. The uvm_sdv_pack_int API is 

used to pack the 32-bit integer fields A and B. Figure 6 shows 

the unpack function for the sw_txn data structure. The 

uvm_sdv_unpack_int API is used to read values for the A and 

B fields from the packer. 

 

 
Figure 4 - Example C Transaction 

 
 

 

 
 

 

 

 
 

 

IV. UVM SDV APPLICATION-LEVEL SERVICES 

The UVM SDV package provides a set of application-level 

services on top of the communication mechanism between the 

embedded software and the SystemVerilog UVM 

environment. These services extend UVM’s features for 

configuration, messaging, synchronization, stimulus 

generation, and analysis to the embedded software 

environment. 

 

Figure 6 – Example Unpack Function 

void sw_txn_unpack( 

  uvm_sdv_packer  *packer, 

  void            *obj) 

{ 

  sw_txn *txn = (sw_txn *)obj; 

  txn->A = uvm_sdv_unpack_int(packer, 32); 

  txn->B = uvm_sdv_unpack_int(packer, 32); 

} 

Figure 5 – Example Pack Function 

void sw_txn_pack( 

  uvm_sdv_packer  *packer, 

  void            *obj) 

{ 

  sw_txn *txn = (sw_txn *)obj; 

  uvm_sdv_pack_int(packer, txn->A, 32); 

  uvm_sdv_pack_int(packer, txn->B, 32); 

} 

typedef struct sw_txn_s { 

  int A; 

  int B; 

} sw_txn; 

 



A. Access to the UVM Configuration Database 

The UVM configuration database enables the verification 

environment to configure instantiated verification components 

in a standard manner. The UVM configuration database 

enables data of any type to be stored and retrieved. Providing 

the embedded-software test access to the configuration 

database is highly desirable, since the operation of the 

software may need to adjust based on the design or 

environment configuration.  

 

The UVM SDV package provides access to the configuration 

database for a restricted set of data types. Specifically, the API 

provides access to configuration items stored as a string, 64-bit 

integer, or uvm_object. A SystemVerilog class for a 

configuration item stored as an object must implement pack 

functionality, and a corresponding unpack function must be 

implemented in the software environment. 

 

In the SystemVerilog environment, configuration elements 

intended for use by the embedded software are applied to the 

UVM SDV connector. Given the restricted configuration data 

types supported by the UVM SDV package, the configuration 

elements must be registered using one of pre-defined 

configuration types uvm_sdv_config_type_obj, 

uvm_sdv_config_type_int, or uvm_sdv_config_type_str. 

 

 

 
 

Figure 7 shows the SystemVerilog code to apply a 

configuration object for use by the embedded software to the 

UVM SDV connector. Figure 8 shows the corresponding 

embedded software to retrieve the configuration object and 

call SW APIs to apply the configuration. 

 

 

 
 

B. Unified Message Reporting 

UVM provides infrastructure for verification components to 

report messages. UVM SDV provides a corresponding API to 

the embedded software environment, enabling messages 

produced by software verification components to be managed 

in the same way that messages produced verification 

components in the SystemVerilog UVM environment are. This 

enables, for example, errors encountered by the embedded 

software to be counted in the simulation summary report along 

with errors encountered by any other verification component 

in the environment. 

 

 
 

Having messages from both SystemVerilog and embedded-

software environments treated in the same way enables 

messages produced by the embedded-software environment to 

take advantage of any UVM-specific automation provided by 

the simulation environment. For example, the simulation 

environment may provide a message viewer that enables UVM 

messages to be categorized, or special filtering capability to 

search messages based on message-field attributes.  

 

In addition to the benefit of unified message reporting, using 

the UVM SDV message API provides a performance boost 

Figure 9 - Software Calling UVM Message API 

void test_func() { 

  char buf[128]; 

  int A, B, i; 

 

 for (i=0; i<4; i++) { 

  A = read_A(); 

  B = read_B(); 

 

  sprintf(buf, “A=%d B=%d”, A, B); 

  UVM_INFO(“test_func”, msg, UVM_MEDIUM); 

 

  if (A >= B) { 

    sprintf(buf, “A >= B”); 

    UVM_ERROR(“test_func”, msg); 

  } 

 } 

} 

 

Figure 8 - Obtaining Configuration Data in SW 

 

void apply_test_config() { 

  sw_cfg cfg_obj; 

 

  uvm_sdv_config_db_get_object( 

    “TEST_SW_CONFIG”, 

    &sw_cfg_unpack, 

    &cfg_obj); 

 

  setup_back2back(cfg_obj.en_back2back); 

  setup_wide_link(cfg_obj.en_wide_link); 

 

} 

Figure 7 - Setting Configuration Data for SW 

 

typedef cfg_db_obj 

 uvm_config_db #(uvm_sdv_config_type_obj); 

 

function void build_phase(); 

  sw_cfg cfg_obj = new; 

 

  cfg_obj.en_back2back = 1; 

  cfg_obj.en_wide_link = 0; 

 

  cfg_db_obj::set(this,    

    “*.m_sdv_agent”, 

    “TEST_SW_CONFIG”, 

    cfg_obj); 

 

endfunction 

 



compared to other simulation-based approaches to displaying 

messages. Often, a UART or other serial device is used to 

display messages. Even when the UART is configured for 

maximum baud rate, transmitting a message consumes a 

significant amount of simulation time. For example, 

displaying a short message via the UART in the UVM SDV 

demo testbench consumes 1600uS of simulation time. 

Reporting that same message via UVM SDV consumes 300uS 

of simulation time – a 5x reduction. 

 

C. Support for Objections 

UVM provides the objection mechanism to enable multiple 

processes to coordinate behavior. Often, the objection 

mechanism is used to coordinate the end of the main phase, 

and thus the end of the test. 

 

The UVM SDV package extends the objection mechanism 

into the embedded-software domain, enabling the software test 

to participate in ending the test, as shown in Figure 10. 

 

 

 
 

While not a complex feature, extending support for objections 

into the software domain makes it dramatically simpler to treat 

the embedded software as just another verification component 

in the UVM testbench environment. 

 

D. Software UVM Sequence Driver 

Stimulus in a UVM environment is commonly generated using 

a sequence running on a sequencer. The sequence generates 

sequence items that are supplied to a driver whose 

responsibility it is to convert the information within the 

sequence item into lower-level (often signal-level) interactions 

with the design. Figure 11 shows the UVM sequence, 

sequencer, and driver architecture for applying stimulus to the 

design. 

 

 
Figure 11 - UVM Sequence Architecture 

 

 

The UVM SDV package extends the concept of a driver, 

enabling the embedded software to act as the driver for 

sequences running in the SystemVerilog environment. This 

enables stimulus described by sequences developed during 

block-level verification to be reused at system level to control 

the operation of the embedded software. It also enables the 

SystemVerilog portion of the testbench to coordinate 

operation of the software with stimulus generated via agents 

attached to design interfaces. 

 

Most critically, enabling the embedded software to act as a 

driver for stimulus generated within the SystemVerilog 

environment enables software-driven verification to take 

advantage of advances in automated stimulus generation. 

Constrained-random stimulus generation boosts test-creation 

productivity significantly compared to directed tests, and has 

been used extensively for block-level verification. Leveraging 

block-level constrained-random sequences at the system level, 

via software-driven verification, boosts the number of use-case 

scenarios that can be described. 

 

Efficiency, however, is a key concern for system-level 

verification. Given the achievable throughput at full-chip 

level, maximizing the number of unique cases verified and 

minimizing the number of redundant cases is highly desirable. 

Graph-based intelligent testbench automation tools, such as 

Mentor’s Questa inFact, can help achieve this goal by 

targeting desirable scenarios and eliminating unwanted 

redundancy. Since graph-based stimulus can integrate into a 

testbench as a UVM sequence producing sequence items, the 

same coverage-targeting graph-based sequences that drive 

verification IP in the SystemVerilog portion of the UVM 

environment can be used to drive embedded software via the 

UVM SDV sequence driver. 

 

Figure 12 shows the UVM SDV architecture for applying 

sequence-driven stimulus via the embedded software. Note 

that the driver in the SystemVerilog UVM environment that 

formerly applied the stimulus to the design is replaced with a 

Figure 10 - Raising/Lowering an Objection 

 

void test_main() { 

 

  // Raise the start-of-test objection 

  uvm_sdv_raise_objection(“Test Main”, 1); 

 

  // Execute test behavior 

  // ... 

 

  // Raise the start-of-test objection 

  uvm_sdv_drop_objection(“Test Main”, 1); 



driver that forwards the stimulus, via the UVM SDV 

connector, to the embedded software.  

 

 
Figure 12 - SDV Sequencer Driver Architecture 

 

Figure 13 shows the embedded software that implements a 

driver for a UVM sequencer. An instance of a sequencer 

driver is represented by a variable of type  

uvm_sdv_sequencer_driver_t, a data structure that 

encapsulates data required by the UVM SDV library to 

communicate with the SDV driver in the HVM environment. 

From the user’s perspective, the uvm_sdv_sequencer_driver_t 

data structure is opaque.    A handle for the sequencer driver is 

first initialized by specifying an instance-path pattern that 

matches the instance path of the UVM SDV driver within the 

SystemVerilog portion of the testbench, as well as the unpack 

function for the request item, and the pack function for the 

response item, if applicable. Once the sequencer driver is 

initialized, the software can begin calling the get_next_item 

function to receive a sequence item from the sequencer within 

the SystemVerilog portion of the environment. The item_done 

function is called to signal that the sequencer driver has 

completed the item and, optionally, return a response item. 

 

 

 

E. Launching Sequences 

Enabling the embedded software to implement a driver allows 

automated stimulus created in the SystemVerilog portion of 

the testbench environment to be easily applied via the 

embedded software. Often, though, it is also desirable for the 

embedded software to be able to easily initiate activity in the 

SystemVerilog portion of the testbench.  

 

The UVM SDV package provides an API that enables the 

software to launch a sequence on any sequencer within the 

SystemVerilog portion of the environment, and check whether 

the sequence has completed. As shown in Figure 14, the 

software is able to create and start an arbitrary sequence on an 

arbitrary sequencer within the testbench environment.  

 

 
Figure 14 - Launching Sequences via UVM SDV 

Figure 13 - Sequence Driver Software 

req_txn req, rsp; 

uvm_sdv_sequencer_driver_t txn_drv; 

 

uvm_sdv_sequencer_driver_init(&txn_drv, 

  “*.m_sdv_driver”, // inst path of drv 

  &req_txn_unpack,  // unpack function 

  &rsp_txn_pack);   // pack function 

 

while (true) { 

 // Receive item from sequencer 

 uvm_sdv_sequencer_driver_get_next_item( 

    &txn_drv, 

    &req); 

 

 // Apply request and form response  

 

 // Complete item 

 uvm_sdv_sequencer_driver_item_done( 

   &txn_drv, 

   &rsp); 

} 



 

The code in Figure 15 shows an example application of the 

sequence-launch API. In this case, the embedded software 

launches a traffic-generation sequence in the SystemVerilog 

portion of the environment, and proceeds to run some data-

processing code as long as the traffic is being generated by the 

sequence running in the SystemVerilog portion of the 

environment. This could be used to verify the ability of the 

design hardware to support both software-centric data 

processing and hardware-centric traffic. 

 

 
 

 

 

The ability of the embedded software to launch sequences 

within the SystemVerilog portion of the UVM environment, 

coupled with the ability for the embedded software to act as a 

driver for sequences, gives the software test maximum 

flexibility to act as a slave, a master, or both in the verification 

scenario. 

 

F. Software Analysis Port 

Analysis ports are widely used in UVM environments to 

publish data corresponding to events observed by the 

verification components or the accumulated internal state of 

the components. Analysis-port clients include scoreboards, 

functional coverage monitors, and sometimes complex 

stimulus-generation agents.  

 

The UVM SDV package provides a method for embedded 

software to easily and efficiently send information to analysis 

subscribers in the SystemVerilog testbench environment. As 

shown in Figure 16, the UVM SDV package provides an 

analysis publisher component that is instantiated in the 

SystemVerilog testbench environment. This component 

contains an analysis port to which analysis subscribers in the 

environment can be connected. The UVM SDV embedded 

software library provides an API to establish a connection to 

an analysis publisher component, and send transactions to it. 

 

 
Figure 16 - SDV Analysis Port Architecture 

 

 

Figure 17 shows the creation and connection of the Analysis 

Publisher component in the SystemVerilog portion of the 

testbench environment. A system-level scoreboard is 

connected to the analysis port of the analysis publisher 

component in order to monitor status information from the 

embedded software. 

 

 

 
 

Figure 18 shows the embedded software that initializes an 

analysis port to publish transactions via the analysis publisher 

component named m_state_pub instantiated in the 

SystemVerilog environment. In this case, each time the 

software test completes a set of operations, it publishes 

information (state A and B) to the SystemVerilog UVM 

environment.  

 

Figure 17 – Creation of the Analysis Publisher 

 

uvm_sdv_publisher #(sw_txn) m_state_pub; 

system_scoreboard           m_sys_sb; 

 

function void build(); 

  // Create the state publisher 

  m_state_pub = new(“m_state_pub”, this); 

 

  // Create the system scoreboard 

  m_sys_sb = new(“m_sys_sb”, this); 

endfunction 

 

function void connect(); 

  // Connect the scoreboard to the   

  // publisher analysis port 

  m_state_pub.ap.connect( 

    m_sys_sb.analysis_export); 

endfunction 

 

 

uint32_t id; // sequence instance id 

 

id = uvm_sdv_sequence_start( 

    “traffic_gen_seq”, // sequence id 

    “*.traffic_seqr”); // sequencer path 

 

// Perform other operations while 

// the sequence is running 

while (uvm_sdv_sequence_is_running(id)) { 

  // Run software activity 

  process_data(); 

} 

Figure 15 - Sequence Launch Software 



 

 
 

Efficiency is a key reason to use an analysis port to expose 

data for analysis from the embedded software environment. 

The Message Reporting section noted that using the UVM 

SDV messaging API to report a simple message was about 5x 

more efficient with respect to simulation time than transferring 

that same message via a UART. In the UVM SDV demo 

environment, transferring the same two elements of data using 

an analysis port consumes only 50uS of simulation time, 

compared to 300uS to display that information via the 

message-reporting services, and 1600uS to display the data via 

the UART. In other words, using the analysis port is 32x faster 

than displaying the data via a UART. In addition to shortening 

simulation times, more-efficient transfer of data minimizes the 

impact that analysis has on the timing and operation of the 

test. 

 

G. Extensibility to New Applications 

A key attribute of the UVM SDV package is its extensibility 

to new application-level services. New application-level 

services, whose requirements are not directly supported by 

existing services, can be implemented on top of the lower-

level communication infrastructure provided by the UVM 

SDV package without modifying the package. 

 

One example of an application-level services whose 

requirements differ from the support provided by existing 

services is reactive graph-based stimulus generation. Graph-

based stimulus creating sequence items was mentioned earlier. 

However, the capabilities of graph-based stimulus generation 

are much more general and powerful than just creating 

transactions. Graphs lend themselves very nicely to the more-

procedural nature of system-level scenarios, where a scenario 

may break down into a series of steps where decisions must be 

made at each step based on the current system state. 

 

 
Figure 19 - Procedural Graph-Based Stimulus 

 

Figure 19 shows a simple system-scenario graph where the 

system operation mode is configured (CFG_A, CFG_B), then 

a series of operations are performed. The current queue depth 

is queried at the beginning of each iteration of the lower loop 

in the graph. Depending on the queue depth, different 

operations are performed.  

 

An application such as this requires both efficiency and 

support for exchange of heterogeneous messages between the 

embedded software and the SystemVerilog environment. 

Implementing the required exchange of information in terms 

of an existing UVM SDV application-level services doesn’t 

make sense, but the underlying communication mechanism 

easily enables the flexible communication required by this 

application. 

 

V. SUMMARY 

Today’s complex designs increasingly contain one or more 

processors. Leveraging these processors for software-driven 

design verification is critical to being able to exercise complex 

use-case scenarios. The UVM Software-Driven Verification 

package presented in this paper enables software-driven 

verification environments to easily be created. Extending 

UVM services such as automated stimulus generation, and 

efficient capture of analysis data to the software domain 

enables more-complex system use cases to be verified earlier 

and more-comprehensively. This bridging of the software and 

hardware worlds leads to increased productivity in system-

level test creation, greater visibility into system-level 

interactions, and a boost in overall verification results. 
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Figure 18 - Software Driving an Analysis Port 

 

uvm_sdv_analysis_port ap; 

sw_txn state; 

 

uvm_sdv_analysis_port_init( 

  &ap, 

  “*.m_state_pub”, 

  &sw_txn_pack); 

 

while (true) { 

 // Run operation 

 process_data(); 

 

 // Read software state 

 state.A = read_A(); 

 state.B = read_B(); 

 

 uvm_sdv_analysis_port_write(&ap, &state); 

} 

 


