
Boost Verification Results by Bridging the

Hardware/Software Testbench Gap

Matthew Ballance

Mentor Graphics Corporation

Design Verification Technology Division

Wilsonville, Oregon

matt_ballance@mentor.com

Abstract—Today’s complex designs increasingly include at least

one, and often more, embedded processors. Given software’s

increasing role in the overall design functionality, it has become

increasingly important to leverage the embedded processors in

verifying hardware/software interactions during system-level

verification. This paper presents a UVM-based package for

software-driven verification, and presents applications of this

package that enable more-comprehensive system-level

verification.

Keywords—functional verification; software-driven

verification; system-level verification; Univeral Verification

Methodology; graph-based stimulus

I. INTRODUCTION

Complexity begets complexity. Which is to say, to run

properly and fully realize their intended behavior, today’s

intricate hardware designs with tens of millions (or more)

gates inevitably require ever more nuanced and elaborate

software. This tight coupling means that the traditional

verification process, where both hardware and software are

designed and verified in isolation and then integrated late in

the design cycle, is less and less workable. What is needed is a

two-way street for verifying low-level software and verifying

the hardware used by the embedded software, and doing both

as early in the process as possible.

A software-driven verification environment differs in some

fundamental ways from a hardware-centric verification

environment. Figure 1 shows a typical hardware-centric SoC

verification environment. Agents within the testbench

environment apply stimulus to the design via its interfaces.

Software runs on the processor within the design to manage

the component IP blocks. From a structural perspective, the

processor, and the software running on it, is part of the design.

In the diagram below, the hardware and software portions of

the testbench environment run in isolation, which leads to

several problems. First, the isolation makes it very difficult or

impossible to coordinate the operation of software running on

the processor with stimulus provided from the hardware-

centric testbench environment. It is also extremely challenging

to achieve the level of comprehensive verification needed to

ensure proper design operation, since the software-driven

stimulus is unable to take advantage of advanced stimulus

generation techniques or to contribute to functional coverage

metrics.

Figure 1 – Hardware-Centric Verification Environment

The comprehensiveness of verification can be increased by

making the software running on the processor part of the

verification environment. For example, in the case of this

design, IP 3 has no external interfaces. Its operation in

conjunction with IP 2 can really only be verified by

controlling IP 3 via software, while applying stimulus to the

external interface of IP 2. Enabling this coordination and

cooperation of the hardware-centric and embedded-software

portions of the testbench is a key goal of a software-driven

verification environment.

Figure 2 - Software-Driven Verification Environment

Figure 2 shows a block diagram of a software-driven

verification environment. Functionally, the embedded

software running on the embedded processor becomes another

agent in the testbench environment that is able to apply

stimulus to the hardware design from the inside.

Some forward-looking verification engineers have created

testbench environments with built-in hooks to enable

coordination between the hardware and software aspects of the

test. Though undeniably useful, these hooks are usually

specific to a project or verification team and so typically aren’t

portable. This paper proposes a methodology and software-

driven verification (SDV) extensions to UVM that enable

embedded software to participate in hardware-centric

verification starting at the block level and continuing to the

system level.

II. UVM SDV PACKAGE

The UVM Software-Driven Verification (SDV) package

provides infrastructure that enables embedded verification

software to coordinate with a UVM testbench environment.

The majority of the features provided by the UVM SDV

library simply extend features already provided by the UVM

library into the software domain.

The UVM library provides several categories of features that

enable verification IP to coordinate and cooperate, and enable

reuse of verification IP. UVM provides a standard messaging

mechanism that enables informational, warning, error, and

fatal messages from all verification components to be tracked,

filtered, and redirected. UVM provides a configuration

mechanism that enables the operation of a verification IP

component to be customized in a standardized way. UVM

provides a phasing mechanism that enables verification IP

components to coordinate and synchronize across the lifecycle

of the test. In a UVM testbench, verification stimulus is

modeled using a sequence, decoupling the type of stimulus to

produce (the sequence) from the mechanism by which it is

applied to the design. Finally, UVM provides the non-blocking

analysis-port mechanism for broadcasting information about

the state of the design or of activity within one of the

verification IP components.

The UVM SDV package enables embedded software running

on a processor model to take advantage of these UVM-

provided services, enabling the embedded software to act as

yet another verification component (or set of verification

components) in the UVM testbench environment, coordinate

with other activity occurring in the SystemVerilog portion of

the UVM testbench, and publish information on the state of

the software for use by verification IP components within the

SystemVerilog portion of the testbench.

III. UVM SDV PACKAGE COMPONENTS

The UVM SDV package provides three key components, with

a goal of simplifying the process of creating a software-driven

verification environment.

Figure 3 - UVM SDV Package Components

Figure 3 shows the components provided by the UVM SDV

package in the SystemVerilog and embedded software

portions of the verification environment. The UVM SDV

connector manages interactions between the SystemVerilog

environment and one processor. Consequently, an instance of

the UVM SDV connector is created for each processor to be

used for verification in the design. Communication between

the SystemVerilog environment and the embedded software

occurs via the hardware/software communication mechanism

in the center of the diagram. The embedded test software uses

the UVM SDV software library to interact with the UVM

SDV connector, via the hardware/software communication

mechanism.

A. Hw/Sw Communication Mechanism

The central enabling feature of the UVM SDV package is a

communication channel between the SystemVerilog and the

embedded software portions of the testbench environment.

Modularity is a key requirement for the communication

mechanism, since the available infrastructure for

communication between hardware and software may differ in

a block-level environment, simulation-based system-level

environment, emulation-based system-level environment, and

a live target. Consequently, the UVM SDV package is

architected to enable the communication mechanism to be

easily swapped without requiring invasive changes to the

embedded verification software or the SystemVerilog portion

of the UVM environment.

Data transmitted via the communication mechanism is

formatted as variable-length data packets, which enables

specific implementations of the communication mechanism to

know nothing about the higher-level activity that is provoking

exchange of data. Consequently, creating a new

implementation of the communication mechanism is relatively

straightforward.

The UVM SDV package provides two pre-built

communication mechanisms, which are suitable for

simulation-based block-level verification, and simulation or

emulation-based system-level verification.

Early software-driven verification can be performed at block-

level by native-compiling the verification software as a DPI

library that interacts with the block-level verification

environment via the register model. The UVM C-Based

Stimulus package [1] provides an implementation of this

functionality. The UVM SDV package provides a DPI-based

hardware/software communication mechanism for use in this

type of environment.

In a simulation- or emulation-based system-level verification

environment, data can be exchanged with the processor via a

block of memory that is accessible to both the processor and

the testbench environment. Many system-level environments

already provide a mechanism to access processor-accessible

memory from the testbench in order to load code or implement

some form of software debug. The UVM SDV package

provides a shared-memory communication mechanism that

can easily be customized for use in a system-level verification

environment.

New communication mechanisms can be created as needed.

For example, a communication mechanism based on a high-

speed serial interface could be useful in performing some level

of software-driven verification on a live target.

B. Software Pack/Unpack API

Many of the application-level services provided by the UVM

SDV package require the exchange of transactions between

the SystemVerilog and the embedded software portions of the

verification environment. UVM provides the uvm_packer

class that enables a UVM object to serialize its contents to a

data stream, or de-serialize its contents from a data stream.

The UVM SDV package provides a similar API for use by the

embedded software. As with the UVM packer API, the UVM

SDV API supports packing and unpacking integer, string, and

object data types.

The figures below show an example of a data structure and the

pack and unpack functions for that data structure. Figure 4

shows a simple C struct that we might use to exchage a pair of

values between the embedded software testbench and the

SystemVerilog environment. Figure 5 shows the pack function

for the sw_txn data structure. The uvm_sdv_pack_int API is

used to pack the 32-bit integer fields A and B. Figure 6 shows

the unpack function for the sw_txn data structure. The

uvm_sdv_unpack_int API is used to read values for the A and

B fields from the packer.

Figure 4 - Example C Transaction

IV. UVM SDV APPLICATION-LEVEL SERVICES

The UVM SDV package provides a set of application-level

services on top of the communication mechanism between the

embedded software and the SystemVerilog UVM

environment. These services extend UVM’s features for

configuration, messaging, synchronization, stimulus

generation, and analysis to the embedded software

environment.

Figure 6 – Example Unpack Function

void sw_txn_unpack(

 uvm_sdv_packer *packer,

 void *obj)

{

 sw_txn *txn = (sw_txn *)obj;

 txn->A = uvm_sdv_unpack_int(packer, 32);

 txn->B = uvm_sdv_unpack_int(packer, 32);

}

Figure 5 – Example Pack Function

void sw_txn_pack(

 uvm_sdv_packer *packer,

 void *obj)

{

 sw_txn *txn = (sw_txn *)obj;

 uvm_sdv_pack_int(packer, txn->A, 32);

 uvm_sdv_pack_int(packer, txn->B, 32);

}

typedef struct sw_txn_s {

 int A;

 int B;

} sw_txn;

A. Access to the UVM Configuration Database

The UVM configuration database enables the verification

environment to configure instantiated verification components

in a standard manner. The UVM configuration database

enables data of any type to be stored and retrieved. Providing

the embedded-software test access to the configuration

database is highly desirable, since the operation of the

software may need to adjust based on the design or

environment configuration.

The UVM SDV package provides access to the configuration

database for a restricted set of data types. Specifically, the API

provides access to configuration items stored as a string, 64-bit

integer, or uvm_object. A SystemVerilog class for a

configuration item stored as an object must implement pack

functionality, and a corresponding unpack function must be

implemented in the software environment.

In the SystemVerilog environment, configuration elements

intended for use by the embedded software are applied to the

UVM SDV connector. Given the restricted configuration data

types supported by the UVM SDV package, the configuration

elements must be registered using one of pre-defined

configuration types uvm_sdv_config_type_obj,

uvm_sdv_config_type_int, or uvm_sdv_config_type_str.

Figure 7 shows the SystemVerilog code to apply a

configuration object for use by the embedded software to the

UVM SDV connector. Figure 8 shows the corresponding

embedded software to retrieve the configuration object and

call SW APIs to apply the configuration.

B. Unified Message Reporting

UVM provides infrastructure for verification components to

report messages. UVM SDV provides a corresponding API to

the embedded software environment, enabling messages

produced by software verification components to be managed

in the same way that messages produced verification

components in the SystemVerilog UVM environment are. This

enables, for example, errors encountered by the embedded

software to be counted in the simulation summary report along

with errors encountered by any other verification component

in the environment.

Having messages from both SystemVerilog and embedded-

software environments treated in the same way enables

messages produced by the embedded-software environment to

take advantage of any UVM-specific automation provided by

the simulation environment. For example, the simulation

environment may provide a message viewer that enables UVM

messages to be categorized, or special filtering capability to

search messages based on message-field attributes.

In addition to the benefit of unified message reporting, using

the UVM SDV message API provides a performance boost

Figure 9 - Software Calling UVM Message API

void test_func() {

 char buf[128];

 int A, B, i;

 for (i=0; i<4; i++) {

 A = read_A();

 B = read_B();

 sprintf(buf, “A=%d B=%d”, A, B);

 UVM_INFO(“test_func”, msg, UVM_MEDIUM);

 if (A >= B) {

 sprintf(buf, “A >= B”);

 UVM_ERROR(“test_func”, msg);

 }

 }

}

Figure 8 - Obtaining Configuration Data in SW

void apply_test_config() {

 sw_cfg cfg_obj;

 uvm_sdv_config_db_get_object(

 “TEST_SW_CONFIG”,

 &sw_cfg_unpack,

 &cfg_obj);

 setup_back2back(cfg_obj.en_back2back);

 setup_wide_link(cfg_obj.en_wide_link);

}

Figure 7 - Setting Configuration Data for SW

typedef cfg_db_obj

 uvm_config_db #(uvm_sdv_config_type_obj);

function void build_phase();

 sw_cfg cfg_obj = new;

 cfg_obj.en_back2back = 1;

 cfg_obj.en_wide_link = 0;

 cfg_db_obj::set(this,

 “*.m_sdv_agent”,

 “TEST_SW_CONFIG”,

 cfg_obj);

endfunction

compared to other simulation-based approaches to displaying

messages. Often, a UART or other serial device is used to

display messages. Even when the UART is configured for

maximum baud rate, transmitting a message consumes a

significant amount of simulation time. For example,

displaying a short message via the UART in the UVM SDV

demo testbench consumes 1600uS of simulation time.

Reporting that same message via UVM SDV consumes 300uS

of simulation time – a 5x reduction.

C. Support for Objections

UVM provides the objection mechanism to enable multiple

processes to coordinate behavior. Often, the objection

mechanism is used to coordinate the end of the main phase,

and thus the end of the test.

The UVM SDV package extends the objection mechanism

into the embedded-software domain, enabling the software test

to participate in ending the test, as shown in Figure 10.

While not a complex feature, extending support for objections

into the software domain makes it dramatically simpler to treat

the embedded software as just another verification component

in the UVM testbench environment.

D. Software UVM Sequence Driver

Stimulus in a UVM environment is commonly generated using

a sequence running on a sequencer. The sequence generates

sequence items that are supplied to a driver whose

responsibility it is to convert the information within the

sequence item into lower-level (often signal-level) interactions

with the design. Figure 11 shows the UVM sequence,

sequencer, and driver architecture for applying stimulus to the

design.

Figure 11 - UVM Sequence Architecture

The UVM SDV package extends the concept of a driver,

enabling the embedded software to act as the driver for

sequences running in the SystemVerilog environment. This

enables stimulus described by sequences developed during

block-level verification to be reused at system level to control

the operation of the embedded software. It also enables the

SystemVerilog portion of the testbench to coordinate

operation of the software with stimulus generated via agents

attached to design interfaces.

Most critically, enabling the embedded software to act as a

driver for stimulus generated within the SystemVerilog

environment enables software-driven verification to take

advantage of advances in automated stimulus generation.

Constrained-random stimulus generation boosts test-creation

productivity significantly compared to directed tests, and has

been used extensively for block-level verification. Leveraging

block-level constrained-random sequences at the system level,

via software-driven verification, boosts the number of use-case

scenarios that can be described.

Efficiency, however, is a key concern for system-level

verification. Given the achievable throughput at full-chip

level, maximizing the number of unique cases verified and

minimizing the number of redundant cases is highly desirable.

Graph-based intelligent testbench automation tools, such as

Mentor’s Questa inFact, can help achieve this goal by

targeting desirable scenarios and eliminating unwanted

redundancy. Since graph-based stimulus can integrate into a

testbench as a UVM sequence producing sequence items, the

same coverage-targeting graph-based sequences that drive

verification IP in the SystemVerilog portion of the UVM

environment can be used to drive embedded software via the

UVM SDV sequence driver.

Figure 12 shows the UVM SDV architecture for applying

sequence-driven stimulus via the embedded software. Note

that the driver in the SystemVerilog UVM environment that

formerly applied the stimulus to the design is replaced with a

Figure 10 - Raising/Lowering an Objection

void test_main() {

 // Raise the start-of-test objection

 uvm_sdv_raise_objection(“Test Main”, 1);

 // Execute test behavior

 // ...

 // Raise the start-of-test objection

 uvm_sdv_drop_objection(“Test Main”, 1);

driver that forwards the stimulus, via the UVM SDV

connector, to the embedded software.

Figure 12 - SDV Sequencer Driver Architecture

Figure 13 shows the embedded software that implements a

driver for a UVM sequencer. An instance of a sequencer

driver is represented by a variable of type

uvm_sdv_sequencer_driver_t, a data structure that

encapsulates data required by the UVM SDV library to

communicate with the SDV driver in the HVM environment.

From the user’s perspective, the uvm_sdv_sequencer_driver_t

data structure is opaque. A handle for the sequencer driver is

first initialized by specifying an instance-path pattern that

matches the instance path of the UVM SDV driver within the

SystemVerilog portion of the testbench, as well as the unpack

function for the request item, and the pack function for the

response item, if applicable. Once the sequencer driver is

initialized, the software can begin calling the get_next_item

function to receive a sequence item from the sequencer within

the SystemVerilog portion of the environment. The item_done

function is called to signal that the sequencer driver has

completed the item and, optionally, return a response item.

E. Launching Sequences

Enabling the embedded software to implement a driver allows

automated stimulus created in the SystemVerilog portion of

the testbench environment to be easily applied via the

embedded software. Often, though, it is also desirable for the

embedded software to be able to easily initiate activity in the

SystemVerilog portion of the testbench.

The UVM SDV package provides an API that enables the

software to launch a sequence on any sequencer within the

SystemVerilog portion of the environment, and check whether

the sequence has completed. As shown in Figure 14, the

software is able to create and start an arbitrary sequence on an

arbitrary sequencer within the testbench environment.

Figure 14 - Launching Sequences via UVM SDV

Figure 13 - Sequence Driver Software

req_txn req, rsp;

uvm_sdv_sequencer_driver_t txn_drv;

uvm_sdv_sequencer_driver_init(&txn_drv,

 “*.m_sdv_driver”, // inst path of drv

 &req_txn_unpack, // unpack function

 &rsp_txn_pack); // pack function

while (true) {

 // Receive item from sequencer

 uvm_sdv_sequencer_driver_get_next_item(

 &txn_drv,

 &req);

 // Apply request and form response

 // Complete item

 uvm_sdv_sequencer_driver_item_done(

 &txn_drv,

 &rsp);

}

The code in Figure 15 shows an example application of the

sequence-launch API. In this case, the embedded software

launches a traffic-generation sequence in the SystemVerilog

portion of the environment, and proceeds to run some data-

processing code as long as the traffic is being generated by the

sequence running in the SystemVerilog portion of the

environment. This could be used to verify the ability of the

design hardware to support both software-centric data

processing and hardware-centric traffic.

The ability of the embedded software to launch sequences

within the SystemVerilog portion of the UVM environment,

coupled with the ability for the embedded software to act as a

driver for sequences, gives the software test maximum

flexibility to act as a slave, a master, or both in the verification

scenario.

F. Software Analysis Port

Analysis ports are widely used in UVM environments to

publish data corresponding to events observed by the

verification components or the accumulated internal state of

the components. Analysis-port clients include scoreboards,

functional coverage monitors, and sometimes complex

stimulus-generation agents.

The UVM SDV package provides a method for embedded

software to easily and efficiently send information to analysis

subscribers in the SystemVerilog testbench environment. As

shown in Figure 16, the UVM SDV package provides an

analysis publisher component that is instantiated in the

SystemVerilog testbench environment. This component

contains an analysis port to which analysis subscribers in the

environment can be connected. The UVM SDV embedded

software library provides an API to establish a connection to

an analysis publisher component, and send transactions to it.

Figure 16 - SDV Analysis Port Architecture

Figure 17 shows the creation and connection of the Analysis

Publisher component in the SystemVerilog portion of the

testbench environment. A system-level scoreboard is

connected to the analysis port of the analysis publisher

component in order to monitor status information from the

embedded software.

Figure 18 shows the embedded software that initializes an

analysis port to publish transactions via the analysis publisher

component named m_state_pub instantiated in the

SystemVerilog environment. In this case, each time the

software test completes a set of operations, it publishes

information (state A and B) to the SystemVerilog UVM

environment.

Figure 17 – Creation of the Analysis Publisher

uvm_sdv_publisher #(sw_txn) m_state_pub;

system_scoreboard m_sys_sb;

function void build();

 // Create the state publisher

 m_state_pub = new(“m_state_pub”, this);

 // Create the system scoreboard

 m_sys_sb = new(“m_sys_sb”, this);

endfunction

function void connect();

 // Connect the scoreboard to the

 // publisher analysis port

 m_state_pub.ap.connect(

 m_sys_sb.analysis_export);

endfunction

uint32_t id; // sequence instance id

id = uvm_sdv_sequence_start(

 “traffic_gen_seq”, // sequence id

 “*.traffic_seqr”); // sequencer path

// Perform other operations while

// the sequence is running

while (uvm_sdv_sequence_is_running(id)) {

 // Run software activity

 process_data();

}

Figure 15 - Sequence Launch Software

Efficiency is a key reason to use an analysis port to expose

data for analysis from the embedded software environment.

The Message Reporting section noted that using the UVM

SDV messaging API to report a simple message was about 5x

more efficient with respect to simulation time than transferring

that same message via a UART. In the UVM SDV demo

environment, transferring the same two elements of data using

an analysis port consumes only 50uS of simulation time,

compared to 300uS to display that information via the

message-reporting services, and 1600uS to display the data via

the UART. In other words, using the analysis port is 32x faster

than displaying the data via a UART. In addition to shortening

simulation times, more-efficient transfer of data minimizes the

impact that analysis has on the timing and operation of the

test.

G. Extensibility to New Applications

A key attribute of the UVM SDV package is its extensibility

to new application-level services. New application-level

services, whose requirements are not directly supported by

existing services, can be implemented on top of the lower-

level communication infrastructure provided by the UVM

SDV package without modifying the package.

One example of an application-level services whose

requirements differ from the support provided by existing

services is reactive graph-based stimulus generation. Graph-

based stimulus creating sequence items was mentioned earlier.

However, the capabilities of graph-based stimulus generation

are much more general and powerful than just creating

transactions. Graphs lend themselves very nicely to the more-

procedural nature of system-level scenarios, where a scenario

may break down into a series of steps where decisions must be

made at each step based on the current system state.

Figure 19 - Procedural Graph-Based Stimulus

Figure 19 shows a simple system-scenario graph where the

system operation mode is configured (CFG_A, CFG_B), then

a series of operations are performed. The current queue depth

is queried at the beginning of each iteration of the lower loop

in the graph. Depending on the queue depth, different

operations are performed.

An application such as this requires both efficiency and

support for exchange of heterogeneous messages between the

embedded software and the SystemVerilog environment.

Implementing the required exchange of information in terms

of an existing UVM SDV application-level services doesn’t

make sense, but the underlying communication mechanism

easily enables the flexible communication required by this

application.

V. SUMMARY

Today’s complex designs increasingly contain one or more

processors. Leveraging these processors for software-driven

design verification is critical to being able to exercise complex

use-case scenarios. The UVM Software-Driven Verification

package presented in this paper enables software-driven

verification environments to easily be created. Extending

UVM services such as automated stimulus generation, and

efficient capture of analysis data to the software domain

enables more-complex system use cases to be verified earlier

and more-comprehensively. This bridging of the software and

hardware worlds leads to increased productivity in system-

level test creation, greater visibility into system-level

interactions, and a boost in overall verification results.

REFERENCES

[1] M. Peryer, “C-Based Stimulus” [Online]. Available:
https://verificationacademy.com/uvm-ovm/CBasedStimulus

Figure 18 - Software Driving an Analysis Port

uvm_sdv_analysis_port ap;

sw_txn state;

uvm_sdv_analysis_port_init(

 &ap,

 “*.m_state_pub”,

 &sw_txn_pack);

while (true) {

 // Run operation

 process_data();

 // Read software state

 state.A = read_A();

 state.B = read_B();

 uvm_sdv_analysis_port_write(&ap, &state);

}

