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Abstract — Combining metrics from multiple verification engines 

can massively improve productivity by reducing unnecessary 

verification time. 

I. INTRODUCTION 

Vast amounts of data are produced from today’s 
verification environments. As a result, there is a real need for 
solutions that deliver capacity and performance to access and 
analyze this data in a timely manner. No one coverage metric 
can be used to measure functional verification completeness. 
There is a two-fold requirement: to unify both the different 
coverage metrics and the data from multiple tools and 
verification engines.  

Indeed, data management forms the foundation of any 
verification environment. This paper will show how Infineon 
leveraged Mentor’s UCDB (Unified Coverage DataBase) API 
to store multiple metrics from different sources and tools in a 
common database. We will discuss the custom analysis that 
Infineon performed that was possible as a result of having all 
the coverage metrics stored in a single format that can easily be 
accessed via an open API (Application Programming 
Interface). 

II. DATA MANAGEMENT REQUIREMENTS 

The reality of multiple tools, engines and metrics means the 
ideal verification database has to support more than just 
coverage. The database infrastructure must provide the 
visibility into the process across many dimensions. The major 
requirements of such a database are as follows: 

A. Unification 

No one coverage metric can measure completeness. The 
database has to allow the storage of a large mix of coverage 
metrics from many data sources including simulation, 
emulation, static formal analysis tools, software-driven tests 
and many other application-specific sources. It should be 
possible to combine data based on blocks, systems, instances, 
tests, users and time to give the most flexibility. Combining 
this data based on so many variables requires a flexible 
architecture and a capability to store details about how, where 
and when the coverage data was generated. This allows the 
verification engineer to determine how and when a particular 
metric was or wasn’t hit. The process also should allow these 
metrics and measurements of certain system requirements to be 

associated with a verification plan, and ultimately the design 
specification. 

B. Capacity and Performance 

Unifying the verification data stored by all tools and 
metrics can result in huge volumes of data. The storage 
capacity must be able to handle the very largest of today’s 
designs and the designs of the future. As the stored data 
increases, it is important to have an environment that is 
optimized for capacity and has the performance to manipulate 
and query potentially large amounts of data within workable 
limits. For example, such a database would be required to 
combine results from tests that have many millions of coverage 
bins.  This can strain database capacity. Ideally a solution 
should have the ability to solve both the capacity and 
performance issues within the largest of projects now and in 
the future. 

C. Visibility and Analysis 

Querying stored verification data requires accessing the 
database. The results from many verification engine runs need 
to be combined and the verification engineer needs to be able 
to analyze which runs with which particular settings caused 
particular metrics to be hit. Such analysis is required to do 
optimization, such as figuring out redundancy in tests or 
isolating a particular test or set of tests of a particular feature. 
Combining or merging the data also necessitates an ability to 
query the database to find out information on the history of 
how the data was generated. This includes not only the 
command line options for generating the single tool runs but 
also the utilities used to add and combine data to the database 
across the progression of the project. Efforts to reduce and 
optimize data help reveal trends across the duration of the 
process. The verification process is dynamic. As functionality 
is added to the design and bugs are found and fixed, a higher 
level of trends helps determine if progress is being made 
towards completion. 

D. Control 

Beyond continual data analysis throughout the project, the 
Verification Engineer also needs to have control over the 
coverage model and the ability to document decisions made 
during the process. The database has to have the ability to 
manipulate coverage metrics into an overall metric showing the 
level of completion. It also should support tradeoffs, or 



specifically, the swapping of one metric for another based on 
importance defined by a user-controlled weighting system. As 
verification progresses it’s also important to document any 
exclusions to the coverage model and the reasons why they 
have been excluded. These types of exclusions could be made 
automatically by the verification tools. An example is a static 
formal tool that excludes unreachable code ahead of dynamic 
simulation. 

E. Extensibility and Openness 

Finally, the database needs to be extensible and allow for 
the addition of new application-specific information or metrics, 
even those not currently known. An example is information or 
metrics from a tool yet to be developed. It also needs to be 
completely open and have the ability to add or remove any data 
with a clearly defined interface. This requirement allows any 
third-party tool to write data into the database or extract data, 
allowing the unification of data across tools from one or 
multiple vendors. 

III. THE UNIFIED COVERAGE DATABASE 

 

A. Overview 

The Unified Coverage Database (UCDB) has been 
architected from the ground up to meet the requirements 
outlined above. The UCDB has been the default coverage 
database format for storing code coverage and functional 
coverage metrics in both ModelSim and the Questa Advanced 
Simulator for a number of years. In addition, UCDB 
extensibility allows for combining test data, assertions and 
coverage results from many other engines, including Static 
Formal Verification, power-aware simulation, Analog 
Simulation and emulation. In addition to its coverage storage 
abilities, the UCDB also stores verification plans and test-
specific data, making it a solid anchor for any verification team 
that intends to adopt a verification methodology driven from 
verification plans, design and/or requirements specification 
documents. One of the biggest verification challenges is having 
the ability to bring together the data and benefits from multiple 
verification techniques. The UCDB merge algorithms have 
been developed to take into consideration data from both 
formal (static) and dynamic verification engines. It has the 
ability to combine results and report on any conflicts that may 
occur when comparing static and dynamic techniques, as well 
as allowing a static formal engine to exclude coverage from the 
dynamic simulation engine flagged as unreachable. Leveraging 
the unique test-associated merging capability it is possible for a 
verification team to maintain a single merged database that 
contains merged coverage data from multiple verification runs 
or simulations in a regression. A record of the attributes, 
commands and settings of any tool are associated with each test 
or testcase, giving it a unique label to allow test association 
with coverage data. The architecture allows verification plans 
to be imported and linked with multiple coverage metrics or 
tests. This single database has enough information within it to 
help figure out the test(s) that incremented a specific coverage 
bin. 

B. Architecture Details 

From the users point of view the database has three sections as 
shown below in Figure 1, three sections of the UCDB. The first 

section is the coverage data collection. The second is the 
recording of test-specific information, such as test name, tool 
settings, CPU time, username, etc., along with the history of 
how the tests were generated, combined and/or merged 
together. The last is the testplan section used for testplan 
tracking, which allows the storage of testplan items that can be 
linked to the coverage model and/or the test cases themselves. 

Designs and testbenches are hierarchically organized. 
Design units (Verilog modules or VHDL entity/architectures) 
can be hierarchical, though they are not always. Test plans can 
be hierarchical. Even coverage data (of which the 
SystemVerilog covergroup is the best example) can be 
hierarchical. Therefore, the UCDB needs some general way to 
store hierarchical structures. The UCDB has scopes (also 
referred to as hierarchical nodes), which store hierarchical 
structures (i.e., elements of a database that can have children). 
Coverage data and assertion data are stored as counters, which 
indicate how many times something happened in the design. In 

Figure 2, the basic design, coverage hierarchy is shown. For 
example, the counters count how many times a sequence 
completed, how many times a bin incremented or how many 
times a statement executed. In UCDB terminology, these types 
of counters and some associated data are called coveritems. 
These counters are database leaf nodes, which cannot have 

Figure 1, three sections of the UCDB 

Figure 2, the basic design, coverage hierarchy 



children. In the diagram the scopes top, child1, and child2 
represent the module instances of this design hierarchy 
however there is also a need to access the data from the design 
unit point of view. Coverage associated with the design unit 
and accessed this way will be the union of coverage from the 
instances of the design unit. Source file information is stored 
with the design unit as attributes and from each module 
instance scope, its corresponding design unit may be accessed; 
in fact, the design unit must exist prior to creating any 
instances. 

As the UCDB needs to distinguish between module 
instances, design units, and even other scopes like those for 
covergroups and coverpoints, the UCDB has a scope type 
associated with every scope. Scope types are in one of the 
following categories an HDL scope, a Design unit scope, a 
Cover scope, a Group scope or a Test plan scope. Each scope 
can hold extra attributes about the nature of the scope. Within 
the hierarchy of the scopes there are relationships that must 
exist between certain scope types for example HDL scopes 
where an instance scope must have a corresponding DU scope, 
and a generate scope must be within an instance scope. These 
relationships are defined within the HDL languages. The 
UCDB API is a very general one that creates certain objects – 
such as scopes, coveritems, and test data records – with certain 
names, types, and attributes. This allows creation of many 
different potential data models. The data models are important 
because they capture assumptions about the data structure for a 
given kind of coverage. Other tools might be able to read and 
make sense of different data structures, the UCDB API itself is 
more general purpose and many different kinds of coverage 
hierarchies could be created through the API. 

 

C. Coverage Data Model Examples 

The coverage metrics that were of interest in the Infineon 
design flow were functional coverage, assertions, and code 
coverage such as statement, branch, expression, and toggle 
coverage. The UCDB has data models for all these types of 
coverage allowing applications to be written that can access 
these types for both analysis and updating during the 
verification process. The following is an overview of two of 
the types of coverage that are covered within this paper and 
how they are stored within the UCDB so that a better 
understanding can be gained on some of the details in the latter 
part of this paper. 

The covergroup type data model is part of the subtree 
rooted at the “cg” (UCDB_COVERGROUP) scope – 
specifically, the subtree containing the UCDB_COVERPOINT 
and UCDB_CROSS scope children. The covergroup instance 
is the subtree rooted at the UCDB_COVERINSTANCE node. 
It is a mirror of the type subtree. When there are multiple 
instances, the number of coverpoint and cross children must be 
the same among all instances, but the numbers of bins can be 
different depending on the definition of the covergroup 
options. The coveritems are at the lowest level and are the bins 
that store the counts for the number of times they have been hit. 
Any SystemVerilog covergroup can be modeled using the 
combination of scopes defined above. The diagram in Figure 3, 
covergroup data model shows an example of a covergroup 

implemented in scopes in the UCDB. In this example a top 
level instance scope is the parent to a covergroup scope called 
“cg’, the covergroup scope has children scopes for each of the 
coverpoints and crosses and each of the coverpoints and 
crosses have coveritems for the bin storage. 

 If the covergroup has instances then a cover instance is 
added as a child of the covergroup and then the cover instance 
will have scopes that include the instance coverpoints and 
crosses. Certain attributes and flags are stored on the scopes 
and bins that give meaning to the scope, some of these are 
shown in the example such as weight and goal. One of the 
important flags is the exclusion flag which allows the coverage 
object to be excluded from coverage calculations. 

The branch coverage data model decomposes the branching 
of an “if” or “case” statement into scopes that can be used to 
count the number of times a certain branch has been taken. The 
diagram in Figure 4, branch coverage data model shows an 
example of an “if”, “elsif” VHDL branch statement. 

 

The HDL instance scope is parent to the branch scope that 
has a bin for the “if” statement being true, the “elseif” 
statement being true and lastly the all false branch when neither 

Figure 3, covergroup data model 

Figure 4, branch coverage data model 



the “if” or “elsif” are true. Again the scopes have attributes and 
flags to carry certain information about both the source of the 
coverage and its uniqueness. 

As has been mentioned the scope type within the database 
testplan sections can also be modeled. Shown in the diagram in 
Figure 6, the testplan model. The testplan has two sections, one 
and two, which could have been written in any format. Once 
they are imported into the UCDB they can be linked to any 
coverage that exists in the database by the use of the tagging 
mechanism. The testplan scopes and the coverage scopes are 
tagged with a matching string which makes a virtual link that 
can be used to calculate testplan coverage based upon the 

coverage that is attached. This coverage would be based upon 
the coverage that is needed to ensure a particular requirement 
or part of the testplan has been successfully verified. 

The calculation of the coverage within the database is the 
roll-up of all the coverage bins within an instance. It is possible 
to define what coverage needs to be included in this roll-up if 
separate numbers are needed for each of the coverage metric. 
This also has the built-in feature that an overall coverage 
number can be gained from for the complete design or testplan 
hierarchy. 

D. Standardization 

Soon after the first implementation of the UCDB was being 
stressed in its use on real projects, Accellera formed the UCIS 
(Unified Coverage Interoperability Standard) working group. 
The goal: to develop a standard for coverage interchange 
between vendors. The group is made up of both EDA vendors 
and user representatives from the largest companies in the 
industry. Mentor Graphics donated its technology as a starting 
point for the standard. This triggered other donations from 
other sources. The UCDB API was chosen as the basis of the 
standard after a lengthy period of analysis of the donated 
technologies. With the standardization process well under way, 
users will start to benefit from this pioneering work and 
database optimizations, particularly as other vendors introduce 
solutions based on the UCIS. 

IV. COMBINING FUNCTIONAL COVERAGE 

Infineon’s verification environments involved a 
combination of VIP using both ‘e’ and SystemVerilog. This 
meant there was a need to combine functional coverage from 

both languages to allow analysis to be carried out on the 
complete coverage model. This was achieved by converting the 
‘e’ functional coverage into the SystemVerilog equivalents and 
combining the two in the UCDB. The UCDB does have the 
ability to store the data model for ‘e’ coverage, but as the same 
analysis tools needed to be used for both types of functional 
coverage, the ‘e’-to-SystemVerilog conversion made sense. 
This seems to go against the whole theory of a unified 
coverage database but it actually goes to the very heart of the 
problem of combining coverage metrics that are similar but not 
quite the same. It is easy to store data into a standard database 
when the model is known and understood, analysis tools are 
able to read this model and analyze based on the stored data. 
However there are two types of analysis tool, one is generic 
and can analyze any combination of coverage because it can 
combine the scores and bins of say SV functional coverage, 
statement, branch and other coverage metrics, for example a 
ranking algorithm or similar. The other type of analysis tool 
may be specific to the coverage metric itself for instance in this 
case of a SV functional coverage browser. This second case 
reads and expects to see coverage and attributes specific to the 
coverage type, like coverpoints, crosses, SV options etc. In our 
case with functional coverage in both SV and ‘e’ we wanted to 
use the analysis tools built for SV to analysis them together in 
the same place. Hence transforming the ‘e’ coverage to SV 
coverage model in the UCDB made complete sense. Storing ‘e’ 
data in the UCDB would be as simple as adding slightly 
different attributes to the storage bins. 

 

 The basic setup for extracting the ‘e’ coverage was to 
extend the ‘e’ coverage API to call C functions written using 
the UCDB API as foreign routines. These routines allowed the 
coverage within ‘e’ to be parsed and used to generate the 
equivalent functional coverage objects within a UCDB. This 
coverage was then combined with the SystemVerilog coverage 
that was generated natively by Questa. 

There were three routines added to the ‘e’ coverage class. 
The first was an initialization routine called “initialize_ucdb,” 

which is called under the constructor as a foreign function and 
in turn calls the UCDB API routine written to open a new 
UCDB and add the test record for the gathered coverage. The 
test record is used to hold as much information as possible 
about how the test was run. In this case, the seed and name of 
test were passed but this will be extended in the future to pass 

Figure 6, the testplan model 

Figure 5, fragments of extended 'e' code 



more information about the ‘e’ test. The second routine, 
“add_type_coverage_data,” was used to transfer the detailed 
information about the coverpoints and bins within the ‘e’ 
coverage model. This routine is called on every coverage 
object as the ‘e’ coverage API transverses the coverage model. 
The routine calls the UCDB API with all the relevant 
information so that the equivalent SystemVerilog coverage can 
be written by the UCDB API routine that is called by the 
extended function. The complete instance name, the coverage 
counts, the at least values, weight, goal, testplan linking details 
and source code information are all passed with each call to 
this routine. Finally, the third routine, “clean_up,” closes and 
writes the UCDB data that has been built up in memory to a 
persistent UCDB data file. In Figure 5, fragments of extended 
'e' code can be seen.. 

The “add_type_coverage_data” routine written using the 
UCDB API does all the heavy lifting. It gets pasted to it the 
complete instance name within the ‘e’ coverage model that 
includes the class, the path to the coverage object and any 
instance information. Along with this it is passed the coverage 
object type, the counts, weights, goals and source code 
information. The UCDB API calls within this routine then add 
the objects to the UCDB in-memory following the data model 
that is defined earlier in Figure 3, covergroup data model. The 
format of the instance path information is as follows. 

<ClassName>::<CoveragePath>(InstanceName==Value) 

The routine is called repeatedly by the ‘e’ API and requires 
that covergroups are defined before coverpoints, crosses or 
cover instances, and that coverpoints and crosses are defined 
before bins. This results in ensuring that the cover group is in 

existence before coverpoints, crosses and instances, and 

coverpoints and crosses exist before the bins are stored. All the 
counts, weights, at least values and testplan linking information 
is also transferred into the UCDB. When running the testbench 
with both the ‘e’ VIP (Verification Intellectual Property) and 
the SystemVerilog VIP, a UCDB file containing the ‘e’ 
functional coverage written from the extended ‘e’ code can be 
combined or merged with a UCDB file containing the 
SystemVerilog coverage written by Questa. Standard product 
utilities were used to merge the two UCDBs together and with 
the test-associated merge of the UCDB, all of the analysis tools 
are able to query which coverage bin was hit by which test. 

This resulted in being able to tell if the coverage was hit by ‘e’ 
or SystemVerilog. The viewing of the ‘e’ coverage can be seen 
alongside the SystemVerilog coverage in Figure 7, converted 
'e' coverage. 

V. COMBINING FORMAL AND CODE COVERAGE 

The following section shows how the results from 
simulation and formal were combined to allow for exclusion of 
certain metrics from simulation using the results of static 
analysis.  

A. Finding Dead Code 

Switching on code coverage within Questa will cause the 
enabled code coverage metrics to be stored within the same 
UCDB that stores the SystemVerilog coverage. Running the 
same source code on the formal tool, OneSpin in this case, 
allowed for generation of a dead code report. Using the output 
from the formal tool report, exclusion commands were 
generated to apply to the UCDB to exclude the unreachable 
statements and branches. This is achieved by generating a set 
of simulator commands, which apply the exclusions and 
automatically update the UCDB. The commands are in the 
following format: 

coverage exclude –src <filename> -line <number> 

The user currently sources this separately once the dead 
code checks have been run, but it would also be possible to 
modify the process which generates the excludes to again call a 
separate UCDB API application directly and apply the 
exclusions to the UCDB. The UCDB has an exclusion 
mechanism that is implemented as a flag on the coverage 
object within the data model. The coverage exclude command 
modifies this flag for the defined object. The API has direct 
access to all the information within the UCDB, so the code 
could be modified to set this flag for the object instead of 
outputting exclusion commands to run as a separate process. 

B. Unreachable Expressions 

Focused Expression Coverage (FEC) is a metric that details 
which inputs have been toggled causing the output of the 
expression to change. To gain full FEC coverage, every input 
must have toggled with the other inputs held at a level that 
allows the toggled input to cause the output of the expression to 
change state. After dynamic simulation is run, missing FEC 
coverage can be seen within the UCDB because each input 
toggle has a bin that is incremented on the occurrence of a 
pattern that satisfies the occurrence of the output toggle. The 
patterns themselves are also stored within the UCDB FEC 
model as attributes, so the vector required to hit a particular 
FEC point as well as the terms that this refers to allows 
inductive properties to be created to prove whether the FEC 
point can actually be hit, i.e: 

 

assume: at t:   not(<vector and expression to be hit>) 

prove:    at t+1: not(<vector and expression to be hit>) 

 

This then gives you a list of FEC points which can never be 
hit. Those that can be hit formally may require an illegal state 

Figure 7, converted 'e' coverage 



combination or input signal combination to get there, so they 
can always be rerun with added restrictions on the design 
inputs. The results of these can then be fed back into the 
UCDB to filter the unhittable points by again excluding them 
within the UCDB using exclusion commands or setting the 
exclusion flag. 

C. Stuck at signals 

OneSpin also reports which signals toggle during analysis 
and produces a log file of these results. The file can be 
converted into PSL assertions within the UCDB, stating which 
stuck-at, initialization and dead code checks pass and fail. The 
user can then iterate over the failing stuck-at PSL assertions 
and generate a set of exclusions, which can be applied to the 
structural toggle coverage already within the UCDB, excluding 
the signals which cannot be toggled. Currently this is done 
manually within Infineon, but it is possible to automate this 
step. 

PSL assertions were used rather than tool specific data-
types in order to aid reuse of the resultant UCDB between 
multiple vendors and their tools. PSL assertions are a 
commonly used construct between simulators and formal tools, 
and any tool providing coverage of them will understand the 
results. This then allows the user to utilize any specific features 
within a coverage tool to analyze the resulting data set, rather 
than relying on a given tool understanding a vendor specific 
data construct. 

 The first step is to convert the log file from the OneSpin 
analysis which gave stuck-at, initialization and dead code 
checks into PSL assertions written within the UCDB again 
using the UCDB API. Now, when trawling over the toggle 
coverage structural results it’s possible to generate exclusion 
commands to exclude stuck-at signals proven by the formal 
tool. 

The conversion from OneSpin log files to UCDB is done 
via a scripting file which calls a C object to create the resultant 
UCDB. Each of the different check types is grepped out of the 
resulting log file, and the name of each check together with its 
pass/fail result are added into an array. The resulting array is 
then iterated over, and each entry is then passed to the UCDB 
API as a PSL assertion with the associated formal result and 
the information stored. This process is then repeated for each 
check type. 

Running these checks and this UCDB creation before 
simulation is started can also reduce the amount of simulation 
required. By removing code that cannot possibly be hit from 
the set of coverage to be hit before simulation starts, the user 
can reduce the number of regression cycles run trying to hit 
things which are unachievable, and also reduce the time spent 
manually trying to justify why certain structural coverage 
points cannot be hit. The latter is often a time sink just to 
justify why coverage points cannot be hit, complementing the 
static analysis of formal and excluding this coverage in 
dynamic simulation can be very productive. 

D. Formal property results 

Finally, to get a complete picture of the verification result 
in the UCDB, we took a log file from OneSpin detailing the 
properties run and the pass/fail/vacuous results, converting 

these into PSL property results and storing them within the 
UCDB. The log file from OneSpin details the property results 
in a tabular format as follows: 

 

ITL Object  type result validity 

Basic_read  property pass uptodate 

Basic_write  property fail (1) uptodate 

 

This log file was read into an array, and then iterated 
around, with each property name becoming a PSL property 
object. The result was added to the property object sub-field. 
Again, PSL property objects were used to maintain the 
commonality between tool sets, and in this case, VHDL PSL 
properties were used to maintain commonality between the 
DUT language and the other verification approaches. Note that 
the actual properties were written in the proprietary ITL 
language within OneSpin, although the approach would also 
work should SystemVerilog Assertions (SVA) or PSL 
properties be used within the OneSpin environment. 

Although properties are not directly equivalent to structural 
coverage, they are analogous to functional coverage, in that 
they are testing functions within the actual DUT. If a property 
within the UCDB is passing, it should be possible to link this to 
functional coverage defined elsewhere within the UCDB and 
thus reduce the amount of required simulation. (Currently this 
is done manually.) 

VI. DATA ANALYSIS 

Having all metrics stored within a single UCDB results in a 
single source, which gives the ability to analyze data using a 
number of standard utilities. One example: applying a new 
ranking algorithm across all metrics to get a complete view of 
the data for all tests and all metrics. The UCDB stores the 
name of the test, which hits each structural and functional 
coverage point, and each added property can be equally treated 
as a test, as can the PSL assertions added from the formal 
consistency checking. All of this information can be viewed as 
a whole for analysis within the same tool. As the information is 
now available in the one location, we can run the inbuilt 
ranking tool to obtain a list of tests which hit the coverage 
metrics in the shortest possible time. The only difference now 
is that the range of coverage metrics is larger. Previously, this 
would have only been done for the structural coverage within 
Questa, or for structural and functional coverage if using 
SystemVerilog. The resultant output is a list of tests (including 
assertions and properties) and the total of the various coverage 
metrics that they have achieved as a regression suite. This then 
forms the golden regression for the test environment. 

 

Example output from UCDB ranking:. 

Metric        Items    Covered%      

Statements  617  70.82 

Branches  421  57.00 

Expressions  334  81.13 



Conditions  365  33.69 

ToggleNodes  4234  42.18 

AssertPasses  2708  100.00 

FecExpressions 444  61.03 

FecConditions 524  33.20 

All 4 input files have been ranked. 

Ranking summary: 

        Total CPU time = 196.97 

        Total SIM time = 464920.00 ns 

        Test order = onespin_property.ucdb, 
testcase.e_1106318176.ucdb, testcase.e_102558471.ucdb, 
testcase.e_1106318190.ucdb 

In the above example, the PSL assertions generated by the 
formal consistency check have been treated as coming from 
one test, as only one tool run is done to generate them. Thus the 
reason why only one test is in the test list while there are 2708 
assertion items in the ranking report. 

With all the coverage stored within a single source it is 
possible to link any coverage object or testcase to a testplan for 
traceability reporting. The UCDB has the ability to import 
testplans from all popular editing tools, such as Word, Excel, 
Calc, Framemaker or even requirements capture systems such 
as DOORs or ReqTracer. The testplan defines a particular 
requirement be tested with the combination of a coverpoint, 
cross, cover directive or any other coverage metric stored 

within the database.  

The fact that any object within the merged UCDB can be 
linked means that it’s possible to link to coverage from the 
VIPs within both SystemVerilog and ‘e’, or even a 
combination of the two. The graphic in Figure 8, testplan 
tracking, shows the testplan tracker and its link to both 
SystemVerilog and the coverage from the ‘e’ VIP. The tracker 
also allows the analysis of any testplan sections to find out 
which test has the best and worst coverage, and also can run the 
ranking algorithm to find the best set of tests for a particular 
section. This allows the traceability of requirements testing all 
the way back to the test that covers the requirement. 

VII. CONCLUSION 

The UCDB allowed for combining of all verification data 
to give a complete picture of coverage across all metrics. Using 
formal methods to complement dynamic simulation means 
gave a more actuate measure of where we were in the process, 
and there was a massive increase in productivity based on the 
fact that time was not wasted trying to close on coverage that 
was not possible to cover. Further improvements to this process 
are possible by automating some of the steps that have been 
detailed in this paper. For example, instead of generating 
exclusion commands to be excluded in each step, the API 
application could have set the exclusion flags to the objects 
directly. In short, having a database technology that allows all 
coverage to be stored in one place and an open API to both 
read and write data to the database enables a more productive 
verification process. 
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