
Blending multiple metrics from multiple verification

engines for improved productivity

Darron May

Design Verification Technology Division

Mentor Graphics Inc

Newbury, UK

darron_may@mentor.com

Darren Galpin

System IP Verification Manager

Infineon Technologies

Bristol, UK

darren.galpin@infineon.com

Abstract — Combining metrics from multiple verification engines

can massively improve productivity by reducing unnecessary

verification time.

I. INTRODUCTION

Vast amounts of data are produced from today’s
verification environments. As a result, there is a real need for
solutions that deliver capacity and performance to access and
analyze this data in a timely manner. No one coverage metric
can be used to measure functional verification completeness.
There is a two-fold requirement: to unify both the different
coverage metrics and the data from multiple tools and
verification engines.

Indeed, data management forms the foundation of any
verification environment. This paper will show how Infineon
leveraged Mentor’s UCDB (Unified Coverage DataBase) API
to store multiple metrics from different sources and tools in a
common database. We will discuss the custom analysis that
Infineon performed that was possible as a result of having all
the coverage metrics stored in a single format that can easily be
accessed via an open API (Application Programming
Interface).

II. DATA MANAGEMENT REQUIREMENTS

The reality of multiple tools, engines and metrics means the
ideal verification database has to support more than just
coverage. The database infrastructure must provide the
visibility into the process across many dimensions. The major
requirements of such a database are as follows:

A. Unification

No one coverage metric can measure completeness. The
database has to allow the storage of a large mix of coverage
metrics from many data sources including simulation,
emulation, static formal analysis tools, software-driven tests
and many other application-specific sources. It should be
possible to combine data based on blocks, systems, instances,
tests, users and time to give the most flexibility. Combining
this data based on so many variables requires a flexible
architecture and a capability to store details about how, where
and when the coverage data was generated. This allows the
verification engineer to determine how and when a particular
metric was or wasn’t hit. The process also should allow these
metrics and measurements of certain system requirements to be

associated with a verification plan, and ultimately the design
specification.

B. Capacity and Performance

Unifying the verification data stored by all tools and
metrics can result in huge volumes of data. The storage
capacity must be able to handle the very largest of today’s
designs and the designs of the future. As the stored data
increases, it is important to have an environment that is
optimized for capacity and has the performance to manipulate
and query potentially large amounts of data within workable
limits. For example, such a database would be required to
combine results from tests that have many millions of coverage
bins. This can strain database capacity. Ideally a solution
should have the ability to solve both the capacity and
performance issues within the largest of projects now and in
the future.

C. Visibility and Analysis

Querying stored verification data requires accessing the
database. The results from many verification engine runs need
to be combined and the verification engineer needs to be able
to analyze which runs with which particular settings caused
particular metrics to be hit. Such analysis is required to do
optimization, such as figuring out redundancy in tests or
isolating a particular test or set of tests of a particular feature.
Combining or merging the data also necessitates an ability to
query the database to find out information on the history of
how the data was generated. This includes not only the
command line options for generating the single tool runs but
also the utilities used to add and combine data to the database
across the progression of the project. Efforts to reduce and
optimize data help reveal trends across the duration of the
process. The verification process is dynamic. As functionality
is added to the design and bugs are found and fixed, a higher
level of trends helps determine if progress is being made
towards completion.

D. Control

Beyond continual data analysis throughout the project, the
Verification Engineer also needs to have control over the
coverage model and the ability to document decisions made
during the process. The database has to have the ability to
manipulate coverage metrics into an overall metric showing the
level of completion. It also should support tradeoffs, or

specifically, the swapping of one metric for another based on
importance defined by a user-controlled weighting system. As
verification progresses it’s also important to document any
exclusions to the coverage model and the reasons why they
have been excluded. These types of exclusions could be made
automatically by the verification tools. An example is a static
formal tool that excludes unreachable code ahead of dynamic
simulation.

E. Extensibility and Openness

Finally, the database needs to be extensible and allow for
the addition of new application-specific information or metrics,
even those not currently known. An example is information or
metrics from a tool yet to be developed. It also needs to be
completely open and have the ability to add or remove any data
with a clearly defined interface. This requirement allows any
third-party tool to write data into the database or extract data,
allowing the unification of data across tools from one or
multiple vendors.

III. THE UNIFIED COVERAGE DATABASE

A. Overview

The Unified Coverage Database (UCDB) has been
architected from the ground up to meet the requirements
outlined above. The UCDB has been the default coverage
database format for storing code coverage and functional
coverage metrics in both ModelSim and the Questa Advanced
Simulator for a number of years. In addition, UCDB
extensibility allows for combining test data, assertions and
coverage results from many other engines, including Static
Formal Verification, power-aware simulation, Analog
Simulation and emulation. In addition to its coverage storage
abilities, the UCDB also stores verification plans and test-
specific data, making it a solid anchor for any verification team
that intends to adopt a verification methodology driven from
verification plans, design and/or requirements specification
documents. One of the biggest verification challenges is having
the ability to bring together the data and benefits from multiple
verification techniques. The UCDB merge algorithms have
been developed to take into consideration data from both
formal (static) and dynamic verification engines. It has the
ability to combine results and report on any conflicts that may
occur when comparing static and dynamic techniques, as well
as allowing a static formal engine to exclude coverage from the
dynamic simulation engine flagged as unreachable. Leveraging
the unique test-associated merging capability it is possible for a
verification team to maintain a single merged database that
contains merged coverage data from multiple verification runs
or simulations in a regression. A record of the attributes,
commands and settings of any tool are associated with each test
or testcase, giving it a unique label to allow test association
with coverage data. The architecture allows verification plans
to be imported and linked with multiple coverage metrics or
tests. This single database has enough information within it to
help figure out the test(s) that incremented a specific coverage
bin.

B. Architecture Details

From the users point of view the database has three sections as
shown below in Figure 1, three sections of the UCDB. The first

section is the coverage data collection. The second is the
recording of test-specific information, such as test name, tool
settings, CPU time, username, etc., along with the history of
how the tests were generated, combined and/or merged
together. The last is the testplan section used for testplan
tracking, which allows the storage of testplan items that can be
linked to the coverage model and/or the test cases themselves.

Designs and testbenches are hierarchically organized.
Design units (Verilog modules or VHDL entity/architectures)
can be hierarchical, though they are not always. Test plans can
be hierarchical. Even coverage data (of which the
SystemVerilog covergroup is the best example) can be
hierarchical. Therefore, the UCDB needs some general way to
store hierarchical structures. The UCDB has scopes (also
referred to as hierarchical nodes), which store hierarchical
structures (i.e., elements of a database that can have children).
Coverage data and assertion data are stored as counters, which
indicate how many times something happened in the design. In

Figure 2, the basic design, coverage hierarchy is shown. For
example, the counters count how many times a sequence
completed, how many times a bin incremented or how many
times a statement executed. In UCDB terminology, these types
of counters and some associated data are called coveritems.
These counters are database leaf nodes, which cannot have

Figure 1, three sections of the UCDB

Figure 2, the basic design, coverage hierarchy

children. In the diagram the scopes top, child1, and child2
represent the module instances of this design hierarchy
however there is also a need to access the data from the design
unit point of view. Coverage associated with the design unit
and accessed this way will be the union of coverage from the
instances of the design unit. Source file information is stored
with the design unit as attributes and from each module
instance scope, its corresponding design unit may be accessed;
in fact, the design unit must exist prior to creating any
instances.

As the UCDB needs to distinguish between module
instances, design units, and even other scopes like those for
covergroups and coverpoints, the UCDB has a scope type
associated with every scope. Scope types are in one of the
following categories an HDL scope, a Design unit scope, a
Cover scope, a Group scope or a Test plan scope. Each scope
can hold extra attributes about the nature of the scope. Within
the hierarchy of the scopes there are relationships that must
exist between certain scope types for example HDL scopes
where an instance scope must have a corresponding DU scope,
and a generate scope must be within an instance scope. These
relationships are defined within the HDL languages. The
UCDB API is a very general one that creates certain objects –
such as scopes, coveritems, and test data records – with certain
names, types, and attributes. This allows creation of many
different potential data models. The data models are important
because they capture assumptions about the data structure for a
given kind of coverage. Other tools might be able to read and
make sense of different data structures, the UCDB API itself is
more general purpose and many different kinds of coverage
hierarchies could be created through the API.

C. Coverage Data Model Examples

The coverage metrics that were of interest in the Infineon
design flow were functional coverage, assertions, and code
coverage such as statement, branch, expression, and toggle
coverage. The UCDB has data models for all these types of
coverage allowing applications to be written that can access
these types for both analysis and updating during the
verification process. The following is an overview of two of
the types of coverage that are covered within this paper and
how they are stored within the UCDB so that a better
understanding can be gained on some of the details in the latter
part of this paper.

The covergroup type data model is part of the subtree
rooted at the “cg” (UCDB_COVERGROUP) scope –
specifically, the subtree containing the UCDB_COVERPOINT
and UCDB_CROSS scope children. The covergroup instance
is the subtree rooted at the UCDB_COVERINSTANCE node.
It is a mirror of the type subtree. When there are multiple
instances, the number of coverpoint and cross children must be
the same among all instances, but the numbers of bins can be
different depending on the definition of the covergroup
options. The coveritems are at the lowest level and are the bins
that store the counts for the number of times they have been hit.
Any SystemVerilog covergroup can be modeled using the
combination of scopes defined above. The diagram in Figure 3,
covergroup data model shows an example of a covergroup

implemented in scopes in the UCDB. In this example a top
level instance scope is the parent to a covergroup scope called
“cg’, the covergroup scope has children scopes for each of the
coverpoints and crosses and each of the coverpoints and
crosses have coveritems for the bin storage.

 If the covergroup has instances then a cover instance is
added as a child of the covergroup and then the cover instance
will have scopes that include the instance coverpoints and
crosses. Certain attributes and flags are stored on the scopes
and bins that give meaning to the scope, some of these are
shown in the example such as weight and goal. One of the
important flags is the exclusion flag which allows the coverage
object to be excluded from coverage calculations.

The branch coverage data model decomposes the branching
of an “if” or “case” statement into scopes that can be used to
count the number of times a certain branch has been taken. The
diagram in Figure 4, branch coverage data model shows an
example of an “if”, “elsif” VHDL branch statement.

The HDL instance scope is parent to the branch scope that
has a bin for the “if” statement being true, the “elseif”
statement being true and lastly the all false branch when neither

Figure 3, covergroup data model

Figure 4, branch coverage data model

the “if” or “elsif” are true. Again the scopes have attributes and
flags to carry certain information about both the source of the
coverage and its uniqueness.

As has been mentioned the scope type within the database
testplan sections can also be modeled. Shown in the diagram in
Figure 6, the testplan model. The testplan has two sections, one
and two, which could have been written in any format. Once
they are imported into the UCDB they can be linked to any
coverage that exists in the database by the use of the tagging
mechanism. The testplan scopes and the coverage scopes are
tagged with a matching string which makes a virtual link that
can be used to calculate testplan coverage based upon the

coverage that is attached. This coverage would be based upon
the coverage that is needed to ensure a particular requirement
or part of the testplan has been successfully verified.

The calculation of the coverage within the database is the
roll-up of all the coverage bins within an instance. It is possible
to define what coverage needs to be included in this roll-up if
separate numbers are needed for each of the coverage metric.
This also has the built-in feature that an overall coverage
number can be gained from for the complete design or testplan
hierarchy.

D. Standardization

Soon after the first implementation of the UCDB was being
stressed in its use on real projects, Accellera formed the UCIS
(Unified Coverage Interoperability Standard) working group.
The goal: to develop a standard for coverage interchange
between vendors. The group is made up of both EDA vendors
and user representatives from the largest companies in the
industry. Mentor Graphics donated its technology as a starting
point for the standard. This triggered other donations from
other sources. The UCDB API was chosen as the basis of the
standard after a lengthy period of analysis of the donated
technologies. With the standardization process well under way,
users will start to benefit from this pioneering work and
database optimizations, particularly as other vendors introduce
solutions based on the UCIS.

IV. COMBINING FUNCTIONAL COVERAGE

Infineon’s verification environments involved a
combination of VIP using both ‘e’ and SystemVerilog. This
meant there was a need to combine functional coverage from

both languages to allow analysis to be carried out on the
complete coverage model. This was achieved by converting the
‘e’ functional coverage into the SystemVerilog equivalents and
combining the two in the UCDB. The UCDB does have the
ability to store the data model for ‘e’ coverage, but as the same
analysis tools needed to be used for both types of functional
coverage, the ‘e’-to-SystemVerilog conversion made sense.
This seems to go against the whole theory of a unified
coverage database but it actually goes to the very heart of the
problem of combining coverage metrics that are similar but not
quite the same. It is easy to store data into a standard database
when the model is known and understood, analysis tools are
able to read this model and analyze based on the stored data.
However there are two types of analysis tool, one is generic
and can analyze any combination of coverage because it can
combine the scores and bins of say SV functional coverage,
statement, branch and other coverage metrics, for example a
ranking algorithm or similar. The other type of analysis tool
may be specific to the coverage metric itself for instance in this
case of a SV functional coverage browser. This second case
reads and expects to see coverage and attributes specific to the
coverage type, like coverpoints, crosses, SV options etc. In our
case with functional coverage in both SV and ‘e’ we wanted to
use the analysis tools built for SV to analysis them together in
the same place. Hence transforming the ‘e’ coverage to SV
coverage model in the UCDB made complete sense. Storing ‘e’
data in the UCDB would be as simple as adding slightly
different attributes to the storage bins.

 The basic setup for extracting the ‘e’ coverage was to
extend the ‘e’ coverage API to call C functions written using
the UCDB API as foreign routines. These routines allowed the
coverage within ‘e’ to be parsed and used to generate the
equivalent functional coverage objects within a UCDB. This
coverage was then combined with the SystemVerilog coverage
that was generated natively by Questa.

There were three routines added to the ‘e’ coverage class.
The first was an initialization routine called “initialize_ucdb,”

which is called under the constructor as a foreign function and
in turn calls the UCDB API routine written to open a new
UCDB and add the test record for the gathered coverage. The
test record is used to hold as much information as possible
about how the test was run. In this case, the seed and name of
test were passed but this will be extended in the future to pass

Figure 6, the testplan model

Figure 5, fragments of extended 'e' code

more information about the ‘e’ test. The second routine,
“add_type_coverage_data,” was used to transfer the detailed
information about the coverpoints and bins within the ‘e’
coverage model. This routine is called on every coverage
object as the ‘e’ coverage API transverses the coverage model.
The routine calls the UCDB API with all the relevant
information so that the equivalent SystemVerilog coverage can
be written by the UCDB API routine that is called by the
extended function. The complete instance name, the coverage
counts, the at least values, weight, goal, testplan linking details
and source code information are all passed with each call to
this routine. Finally, the third routine, “clean_up,” closes and
writes the UCDB data that has been built up in memory to a
persistent UCDB data file. In Figure 5, fragments of extended
'e' code can be seen..

The “add_type_coverage_data” routine written using the
UCDB API does all the heavy lifting. It gets pasted to it the
complete instance name within the ‘e’ coverage model that
includes the class, the path to the coverage object and any
instance information. Along with this it is passed the coverage
object type, the counts, weights, goals and source code
information. The UCDB API calls within this routine then add
the objects to the UCDB in-memory following the data model
that is defined earlier in Figure 3, covergroup data model. The
format of the instance path information is as follows.

<ClassName>::<CoveragePath>(InstanceName==Value)

The routine is called repeatedly by the ‘e’ API and requires
that covergroups are defined before coverpoints, crosses or
cover instances, and that coverpoints and crosses are defined
before bins. This results in ensuring that the cover group is in

existence before coverpoints, crosses and instances, and

coverpoints and crosses exist before the bins are stored. All the
counts, weights, at least values and testplan linking information
is also transferred into the UCDB. When running the testbench
with both the ‘e’ VIP (Verification Intellectual Property) and
the SystemVerilog VIP, a UCDB file containing the ‘e’
functional coverage written from the extended ‘e’ code can be
combined or merged with a UCDB file containing the
SystemVerilog coverage written by Questa. Standard product
utilities were used to merge the two UCDBs together and with
the test-associated merge of the UCDB, all of the analysis tools
are able to query which coverage bin was hit by which test.

This resulted in being able to tell if the coverage was hit by ‘e’
or SystemVerilog. The viewing of the ‘e’ coverage can be seen
alongside the SystemVerilog coverage in Figure 7, converted
'e' coverage.

V. COMBINING FORMAL AND CODE COVERAGE

The following section shows how the results from
simulation and formal were combined to allow for exclusion of
certain metrics from simulation using the results of static
analysis.

A. Finding Dead Code

Switching on code coverage within Questa will cause the
enabled code coverage metrics to be stored within the same
UCDB that stores the SystemVerilog coverage. Running the
same source code on the formal tool, OneSpin in this case,
allowed for generation of a dead code report. Using the output
from the formal tool report, exclusion commands were
generated to apply to the UCDB to exclude the unreachable
statements and branches. This is achieved by generating a set
of simulator commands, which apply the exclusions and
automatically update the UCDB. The commands are in the
following format:

coverage exclude –src <filename> -line <number>

The user currently sources this separately once the dead
code checks have been run, but it would also be possible to
modify the process which generates the excludes to again call a
separate UCDB API application directly and apply the
exclusions to the UCDB. The UCDB has an exclusion
mechanism that is implemented as a flag on the coverage
object within the data model. The coverage exclude command
modifies this flag for the defined object. The API has direct
access to all the information within the UCDB, so the code
could be modified to set this flag for the object instead of
outputting exclusion commands to run as a separate process.

B. Unreachable Expressions

Focused Expression Coverage (FEC) is a metric that details
which inputs have been toggled causing the output of the
expression to change. To gain full FEC coverage, every input
must have toggled with the other inputs held at a level that
allows the toggled input to cause the output of the expression to
change state. After dynamic simulation is run, missing FEC
coverage can be seen within the UCDB because each input
toggle has a bin that is incremented on the occurrence of a
pattern that satisfies the occurrence of the output toggle. The
patterns themselves are also stored within the UCDB FEC
model as attributes, so the vector required to hit a particular
FEC point as well as the terms that this refers to allows
inductive properties to be created to prove whether the FEC
point can actually be hit, i.e:

assume: at t: not(<vector and expression to be hit>)

prove: at t+1: not(<vector and expression to be hit>)

This then gives you a list of FEC points which can never be
hit. Those that can be hit formally may require an illegal state

Figure 7, converted 'e' coverage

combination or input signal combination to get there, so they
can always be rerun with added restrictions on the design
inputs. The results of these can then be fed back into the
UCDB to filter the unhittable points by again excluding them
within the UCDB using exclusion commands or setting the
exclusion flag.

C. Stuck at signals

OneSpin also reports which signals toggle during analysis
and produces a log file of these results. The file can be
converted into PSL assertions within the UCDB, stating which
stuck-at, initialization and dead code checks pass and fail. The
user can then iterate over the failing stuck-at PSL assertions
and generate a set of exclusions, which can be applied to the
structural toggle coverage already within the UCDB, excluding
the signals which cannot be toggled. Currently this is done
manually within Infineon, but it is possible to automate this
step.

PSL assertions were used rather than tool specific data-
types in order to aid reuse of the resultant UCDB between
multiple vendors and their tools. PSL assertions are a
commonly used construct between simulators and formal tools,
and any tool providing coverage of them will understand the
results. This then allows the user to utilize any specific features
within a coverage tool to analyze the resulting data set, rather
than relying on a given tool understanding a vendor specific
data construct.

 The first step is to convert the log file from the OneSpin
analysis which gave stuck-at, initialization and dead code
checks into PSL assertions written within the UCDB again
using the UCDB API. Now, when trawling over the toggle
coverage structural results it’s possible to generate exclusion
commands to exclude stuck-at signals proven by the formal
tool.

The conversion from OneSpin log files to UCDB is done
via a scripting file which calls a C object to create the resultant
UCDB. Each of the different check types is grepped out of the
resulting log file, and the name of each check together with its
pass/fail result are added into an array. The resulting array is
then iterated over, and each entry is then passed to the UCDB
API as a PSL assertion with the associated formal result and
the information stored. This process is then repeated for each
check type.

Running these checks and this UCDB creation before
simulation is started can also reduce the amount of simulation
required. By removing code that cannot possibly be hit from
the set of coverage to be hit before simulation starts, the user
can reduce the number of regression cycles run trying to hit
things which are unachievable, and also reduce the time spent
manually trying to justify why certain structural coverage
points cannot be hit. The latter is often a time sink just to
justify why coverage points cannot be hit, complementing the
static analysis of formal and excluding this coverage in
dynamic simulation can be very productive.

D. Formal property results

Finally, to get a complete picture of the verification result
in the UCDB, we took a log file from OneSpin detailing the
properties run and the pass/fail/vacuous results, converting

these into PSL property results and storing them within the
UCDB. The log file from OneSpin details the property results
in a tabular format as follows:

ITL Object type result validity

Basic_read property pass uptodate

Basic_write property fail (1) uptodate

This log file was read into an array, and then iterated
around, with each property name becoming a PSL property
object. The result was added to the property object sub-field.
Again, PSL property objects were used to maintain the
commonality between tool sets, and in this case, VHDL PSL
properties were used to maintain commonality between the
DUT language and the other verification approaches. Note that
the actual properties were written in the proprietary ITL
language within OneSpin, although the approach would also
work should SystemVerilog Assertions (SVA) or PSL
properties be used within the OneSpin environment.

Although properties are not directly equivalent to structural
coverage, they are analogous to functional coverage, in that
they are testing functions within the actual DUT. If a property
within the UCDB is passing, it should be possible to link this to
functional coverage defined elsewhere within the UCDB and
thus reduce the amount of required simulation. (Currently this
is done manually.)

VI. DATA ANALYSIS

Having all metrics stored within a single UCDB results in a
single source, which gives the ability to analyze data using a
number of standard utilities. One example: applying a new
ranking algorithm across all metrics to get a complete view of
the data for all tests and all metrics. The UCDB stores the
name of the test, which hits each structural and functional
coverage point, and each added property can be equally treated
as a test, as can the PSL assertions added from the formal
consistency checking. All of this information can be viewed as
a whole for analysis within the same tool. As the information is
now available in the one location, we can run the inbuilt
ranking tool to obtain a list of tests which hit the coverage
metrics in the shortest possible time. The only difference now
is that the range of coverage metrics is larger. Previously, this
would have only been done for the structural coverage within
Questa, or for structural and functional coverage if using
SystemVerilog. The resultant output is a list of tests (including
assertions and properties) and the total of the various coverage
metrics that they have achieved as a regression suite. This then
forms the golden regression for the test environment.

Example output from UCDB ranking:.

Metric Items Covered%

Statements 617 70.82

Branches 421 57.00

Expressions 334 81.13

Conditions 365 33.69

ToggleNodes 4234 42.18

AssertPasses 2708 100.00

FecExpressions 444 61.03

FecConditions 524 33.20

All 4 input files have been ranked.

Ranking summary:

 Total CPU time = 196.97

 Total SIM time = 464920.00 ns

 Test order = onespin_property.ucdb,
testcase.e_1106318176.ucdb, testcase.e_102558471.ucdb,
testcase.e_1106318190.ucdb

In the above example, the PSL assertions generated by the
formal consistency check have been treated as coming from
one test, as only one tool run is done to generate them. Thus the
reason why only one test is in the test list while there are 2708
assertion items in the ranking report.

With all the coverage stored within a single source it is
possible to link any coverage object or testcase to a testplan for
traceability reporting. The UCDB has the ability to import
testplans from all popular editing tools, such as Word, Excel,
Calc, Framemaker or even requirements capture systems such
as DOORs or ReqTracer. The testplan defines a particular
requirement be tested with the combination of a coverpoint,
cross, cover directive or any other coverage metric stored

within the database.

The fact that any object within the merged UCDB can be
linked means that it’s possible to link to coverage from the
VIPs within both SystemVerilog and ‘e’, or even a
combination of the two. The graphic in Figure 8, testplan
tracking, shows the testplan tracker and its link to both
SystemVerilog and the coverage from the ‘e’ VIP. The tracker
also allows the analysis of any testplan sections to find out
which test has the best and worst coverage, and also can run the
ranking algorithm to find the best set of tests for a particular
section. This allows the traceability of requirements testing all
the way back to the test that covers the requirement.

VII. CONCLUSION

The UCDB allowed for combining of all verification data
to give a complete picture of coverage across all metrics. Using
formal methods to complement dynamic simulation means
gave a more actuate measure of where we were in the process,
and there was a massive increase in productivity based on the
fact that time was not wasted trying to close on coverage that
was not possible to cover. Further improvements to this process
are possible by automating some of the steps that have been
detailed in this paper. For example, instead of generating
exclusion commands to be excluded in each step, the API
application could have set the exclusion flags to the objects
directly. In short, having a database technology that allows all
coverage to be stored in one place and an open API to both
read and write data to the database enables a more productive
verification process.

ACKNOWLEDGMENT

Avidan Efody, Mentor Graphics for his help on
implementing the ‘e’ coverage extensions.

Figure 8, testplan tracking

