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Abstract— Memories constitutes a significant percentage of almost all SOC’s die area. For a given logical depth, logical 

width and cycle time requirement, we get many memory configurations with different values for access time, physical width, 

physical depth and area. Today the decision to pick the right RAM cell for a given design is iterative and manual. Existing 

techniques for this mostly involve designer feedback which is a slow, reactive and incremental approach. In multi-million 

gate design, prediction and mitigation of design issues as early as possible in the design cycle helps avoid many iterative 

fixes which subsequently have a huge impact on design convergence and design turnaround time. In this paper, Pre-

characterization of RAMs (random access memory) for automatic area efficient design is modeled and we use pre-

characterization scores during synthesis. Using this approach, one can be sure about the tool picking the most area efficient 

RAM cell for the design, while meeting other design constraints. This allows designers to resolve the area problems caused 

by RAM cells before going to the layout design phase. We haven't applied this flow to a large-scale high-level synthesis 

production design because it is mostly a concept at this stage. 
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I. INTRODUCTION  

Memory cells constitutes a significant percentage of the SOC area. Today, for a given cycle time requirement, 

the memory cell which best fits the design is typically chosen manually by the designer. If the designer’s choice 

goes wrong, this can lead to an increase in die area or not meeting the timing requirements. There is a comprehensive 

need to explore early predictions, estimations and mitigations early in the design to aid synthesis tools to do better. 

There are difficulties related to design turnaround time (back and forth design churns between logic / synthesis 

/ place and route each time) and design closure (balance timing / power / area specification simultaneously with 

congestion) in existing approaches, especially in large design block implementations. 

Physical aware synthesis only includes the aspect ratio of the block for optimization. However, there is no 

known technique which includes the intelligence to automatically decide the best RAM cell for a given aspect ratio 

during synthesis for better area optimization for designs, while taking other design parameters like timing, 

congestion, power etc. into account. 

In the worst-case scenario, design failure can be caused if incorrect RAM cells are mapped during synthesis, 

due to density overflow. In traditional RTL-based (Register Transfer Level) design flows, area problems caused by 

RAM cells cannot be found until the floorplan step. This problem is exacerbated during logic synthesis.  

In this proposal we pre-characterize RAM cell library for area. We score each library cells based on area 

characteristics. This is a one-time processing effort before the synthesis flow. Multiple scores are possible per 

library cell for the range of expected values for different parameters available during memory compilation. The 

library cell score for area optimization is then used in the synthesis flow. The pre-characterization scores are used 

to estimate/optimize the area profile. 

Other cost metrics used in synthesis like congestion, timing, power etc. will not be affected at all when applying 

the formulae developed in this paper because the whole concept is to only pre-characterize RAM cells based on the 

factors discussed. The aim of the technique is to decide the best RAM cell for a design from the library in terms of 

area, while taking frequency and access times into account. Once the decision is made, we can map it during the 

technology mapping step during logic synthesis. 

Below flow-chart explains how the proposed idea can be integrated in the existing synthesis technique. 
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     Fig.1 

The proposed technique ensures minimum impact in the sign-off process while significantly improving design 

turnaround time (TAT).  

II. RELATED WORK 

The specialization of the memory architecture has been widely studied in embedded systems due to its impact on 

area, power, and performance [1].  

Panda et al. have proposed various solutions to create custom architectures and improve the system’s performance, 

both in terms of memory organization and data layout [1]. 

Similarly, Benini et al. proposed a technique to customize the memory sub-system with respect to an application, 

using profiling, while accounting for layout information to minimize power consumption [2].  

The possibility of sharing and reusing memory elements has been explored by Desnos et al. [3].  

Wang et al. [6] propose an automated methodology for data reuse, memory partitioning, and memory merging for 

FPGAs. This approach has also been extended to consider the concurrent optimization of multiple processes [4], 

but only to optimize the fine-grained communication, not the storage elements.  

On the other hand, Wang et al. presented a complete theory for data partitioning which includes the support for 

more complex data access patterns [5]. This method can be added to our approach as a technique to determine 

how the logical addresses need to be translated into the corresponding physical addresses. All these solutions are 

applied to the behavioral specification, before high-level synthesis. 

This is efficient and elegant, but it imposes several limits to the reusability of the components as they need to be 

resynthesized each time the memory subsystem is modified. 

Recently, different approaches have been proposed to effectively enable the reuse of pre-characterized 

components in SoCs. Liu et al. compose pre-characterized components to create a Pareto set of the entire system 

[7]. However, memory aspects are not considered.  

 

Li et al. adopt a similar approach to create systems by composing pre-characterized IPs through a pre-defined 

architectural template [8]. The approach has been further extended to determine the organization of the memory 

subsystem [9]. However, it is not clear how the authors can deal with memories having different access times, 

especially considering the explicit synchronization of the entire system through a finite state machine. Moreover, 

it seems that parameters like the logical width and logical depth are not explored as this constraint is not considered 

when determining the memory elements. 

Tatsuoka Masato et al. propose a novel design flow by integrating HLS tool with physically aware logic synthesis 

technology [10]. Here congestion prediction and mitigation techniques are incorporated during logic synthesis 
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however there is nothing about scoring or pre-characterization of memory cells and area aware mapping technique 

are not considered. 

 

III. KEY WORDS AND FORMULAE 

A typical memory configuration today looks like 

 

 
 

Table.1 

 

Area Difficulty Score (ADS): is a parameter or a weight given to each RAM cell of the library based on how 

much each RAM cell is likely to contribute towards the area. Area difficulty score of each RAM cell is a 

function of number of words, number of bits, physical width and depth.  

 

ADS of a RAM cell = F (words, bits, geom_x, geom_y)    (1) 

 

ADS of a RAM cell is directly proportional to a new parameter we are introducing called “Megabits per mm 

square”, which is nothing but bit density which will determine the area efficiency of each RAM cell. 

 

Calculating Megabits per mm square (Mbits/mm2) 

 

 Area of RAM cell in mm2 = [(geom_x) * (geom_y)]/1000000         (2) 

  

Megabits = [(words) * (bits)]/1048576       (3)                                 

 

 Mbits/mm2 =[(Eq.3) / (Eq.2)]        (4) 

 

ADS α [1/At], where At, is the access time of RAM cell.    (5) 

 

 Cycle time Ct of the RAM cell is treated as constant. 

  

Therefore, we can say area difficulty score of each RAM cell can be derived from 

   

ADS = [(Ct * Mbits/mm2) / At]       (6) 

 

Higher the Mbits/mm2 value, better it is for area optimization. Hence, we can now pre-characterize or score RAM 

cells based on Mbits/mm2 value. 

 

IV. BIT DENSITY AWARE SYNTHESIS FLOW 

To address area problem caused by mapping inappropriate RAM cell, we propose a bit-density aware synthesis 

design flow as shown in Fig. 1. There are 2 additional steps which are introduced to the traditional design flow: 

provide bit-density aware pre-characterized RAM cell library and provide a memory.txt file with logic 

requirement for the memory used in the module. 
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Example  

 

Let’s take a case where the logical requirement for the memory used in the module is logic depth of 21504 and 

logic width of 266. In each write cycle we need to write 160B of data into 3 banks of memory. The aspect ratio 

of the block is x=5000 micron and y=1650 micron. 

 

The memory.txt file content will be as below 

 

#--------------------------------------------------------------------# 

# Description: 

#    List of memories used in this module 

# 

# Line format: 

# vendor=VENDOR type=TYPE vt=VT depth=DEPTH width=WIDTH mux_factor=MF write_mask=WM 

repaircols=RCOLS pipeline=PL \ 

# [banks=BANKS] wrapper_name=WNAME logical_width=LWIDTH width_inst=WINST 

# 

 

# Memory related options: 

# 

# VENDOR=[arm]  

# TYPE=[sr1p_hd|sr2p_hd|sr2p_uhd|rf1p_hd|rf2p_hs]  

# VT=[svt|hvt]       default: hvt 

# MF= [2|4|8|16|32]   

# WM=[yes|no] default: no 

# PL=[yes|no] default: no 

# BANKS= [1|2|4|8] - only applicable to sr2p_uhd memory 

# 

# Memory and wrapper related options: 

# 

# RCOLS= [0|1|2|3] 

# 

# Wrapper related options: 

# 

# WNAME=verilog module name 

# LWIDTH=[integer] 

# WINST=[integer] 

 

############### PD XYZ mems ##############  

vendor=arm type=sr1p_uhd vt=hs banks=8 mux_factor=8  write_mask=no repaircols=2 pipeline=ext 

logical_width=266 logical_depth=21504  wrapper_name=XYZ 

 

The pre-characterized RAM cell library for this given memory configuration specified in memory.txt file above 

will typically look like below table using Eq.4. 
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Table.2 

 

We can see from the above table the number of options available for synthesis tool for the given memory 

specification. Since the synthesis tool is physically aware, it can read the size of the module, which is 

5000x1650 microns.  

 

It is evident from the above table, that the synthesis tool can easily pick the memory configuration with highest 

Mbits/mm2, which would otherwise be user input based on floorplanning results and can be iterative.  

 

Since we need to write 160B (1280 bits) of data in each cycle into 3 banks. From Table.2, we can see that we 

would need 4 instances of each RAM cell selected to realize logic depth of 21k and logic width of 266 (256 bits 

of data + 10 bits of ECC logic) plus 2 repair columns. Therefor we would need 5*4 instances to realize a logic 

width of 1280 bits or 160 Bytes. Since we need to write 160 Bytes of data in 3 banks, the total instances needed 

for this module to meet the aspect ratio and logical requirement would be 60 instances. A typical floorplan for 

this module will look like this as shown in Fig.2 

 

 
 

Fig.2 
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V. CONCLUSIONS 

A new approach is proposed which can be easily be integrated into existing physical aware synthesis tool. The 

pre-characterized RAM cell based on bit-density aids synthesis tool during technology mapping step to 

intelligently select the best RAM cell for the given module for the aspect ratio and logical requirements, which 

would otherwise be iterative and error prone saving a lot of turnaround time.  
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