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Abstract-Big Data is getting a lot of press these days but does it really apply to ASIC verification efforts? HPE has 

found that it does apply and can be instrumental in helping make smarter decisions. HPE is taking small steps to 
capitalize on the concept of Big Data.  In this paper, we will share our view of using Big Data concepts in the ASIC 
verification domain, highlighting several specific examples of how easy it is for the audience to get started with their own 
Big Data analysis.  We will also share our ideas on where we see larger Big Data opportunities being able to help our 
verification efforts in the future. 

I.   INTRODUCTION 
Big Data is a commonly used term across the industry that is defined by the volume, velocity, and variety of the data collected 

[1] [2] [3]. However, does everyone really understand how to get value from it in Verification? In this paper, we apply Big Data 
techniques in Verification and show that it is not a scary topic but rather one that can be a significant help to the reader. We have 
come to realize that Big Data isn’t just about its size, but about the ongoing impact it can have. We need to get our products to 
market sooner to meet customer needs faster than we are doing today. To accomplish this, we are using this data to drive more 
accurate forecasts for licenses, compute resources, engineering resources, schedules and equip our verification engineers with 
critical data to enable them to make smarter decisions for all current and future ASIC projects in our organization. We believe that 
identifying new data sources, collecting them continuously, and inventing ways to analyze them fits the definition of Big Data and 
has helped us reach those goals.  

We show that gigabytes of data can be analyzed without complicated, time consuming, custom toolsets, or complex MapReduce  
operations [4] stored in NoSQL databases and does not require Artificial Intelligence to make conclusions about the data.  This 
makes Big Data analysis accessible to any Design and Verification Team by using these techniques on data that can be easily 
collected and analyzed, no matter what its size. 

Our team has been collecting and analyzing data from our ASIC development efforts for years.  From this experience, we present 
practical and real examples of how we are utilizing Big Data in our verification methodologies to drive smarter decisions.  Our role 
is to make sure that the people who need this data to make decisions have the data.  To do this, we first focus on how to identify 
and collect the right data to answer the questions that need to be answered. This helps our team perform verification tasks smarter, 
not by changing how we write tests or testbenches or checkers, but by helping us increase simulation throughput and performance, 
monitor DUT performance (bandwidth and latency), and improve test effectiveness through more advanced coverage analysis, 
enabling us to find bugs faster and reduce our time to market. 

Next, we show real examples of how we are presenting and analyzing the data that is collected.  The data must be presented in 
effective ways that lead the user to the answers they need.  Practical examples will show how we look for anomalies in the data, 
how we use data to identify ways to address challenges, and how we move from simply having data to transforming it into 
information to be acted on. 

To illustrate our use of Big Data, we focus on the following areas: Compute Farm Metrics, Performance Data, Test Results Data, 
and Big Coverage Data.  For each area, we show the specific types of data we collect, how we store it, and how we analyze it.  The 
practical questions that we need answered with this data are shared to demonstrate the value that Big Data brings to our team.   

II. COLLECTING THE RIGHT DATA 
Collecting the right data makes all the difference in the types of questions that can be asked and answered to enable verification 

engineers to be smarter and more efficient. The data in Table 1 has been invaluable in helping us ask and answer these questions 
that drive smarter decisions. 

 
Table 1: Types of Data Collected 

Compute Farm Metrics Performance Data Test Results Data Big Coverage Data 
compute farm job data test name test metadata, definition Per Coverage Event 

license usage data traffic mixes tree revision name, test ID 
disk usage bandwidth, latency, utilization pass/fail results & error sigs value, simulation time 

system load swept variables & parameters phase/sim/wall durations Per Test 
per site/business/user per interface memory requested/used name, user, cmd line, 

every 6 minutes per topology garbage collection statistics date, generator 
~400M rows/year 

~40 GB/year for 10+ years 
~20M rows/year 

~20 GB/year for 10+ years 
~70M rows/year 

~30 GB/year for 10+ years 
~100B rows/month 

~1 TB/month 



III. COMPUTE FARM DATA 
 The compute farm data we collect (outlined in Table 1) captures information every 6 minutes per user/site/business and 

gives us tremendous insight on the status of our compute farm jobs, detailed license usage data from our license servers, information 
about our fair share license request queueing from our job manager, compute host loads, and disk usage metrics. This data helps us 
answer various questions about our license forecasting, license utilization, and compute farm queueing issues, enabling us to make 
smarter decisions about how to purchase and manage these resources more effectively. The types of questions we have answered 
with this data and corresponding case studies follow. 

A. Asking the right questions 
Knowing what the actual vs expected demand of licenses lets us ask questions like: Why do my job submission pending times 

seem unusually high today?  What is causing this? Why are all my user jobs being starved for licenses when they are supposed to 
have the highest priority?  Why did only half of my tests run over the weekend?  Why did one team get more than their fair share 
of the license allocation in regressions last night? How much disk space and memory will we need in the future? Some user jobs 
are starving regressions -- exactly which users are they and what are they running? 

Answers to these questions help us understand actual demand versus expected demand. We can tell users things like “you aren’t 
running 24x7 with 20 licenses, you are running 24x7 with only 15 licenses”.  We can spread licenses out across our teams to get 
better utilization. When you run out of licenses, you typically spend more money to get additional licenses because you don’t have 
the data to tell you what is really going on.  

Knowing our license utilization lets us better allocate and use our licenses. We can see from Big Data which organizations and 
sites have been using the licenses. We can pinpoint where the problems are coming from and adjust their utilization appropriately. 

B. Case Study: Why are my user jobs being starved for licenses? 
We had a situation where tests were being starved for licenses. It started with a simple question: Why was our demand for licenses 

so high causing user jobs to be starved for licenses during the day? We pulled up the Pending Jobs chart from our web interface 
(see Figure 1). We saw the demand spiking, causing user jobs to be starved for licenses. Our compute farm metrics database showed 
a window of time where the problem occurred.  This was a transient event. Users felt like it was taking longer for their jobs to run, 
but without the data, we wouldn’t have known if it was a real issue or not. Even if we believed it was real, without the data, how 
do you track down a transient event like this? By the time you investigate, the issue has cleared up but your engineers continue to 
be impacted. 

After analyzing our available license count against our pending user jobs, we discovered we were being starved (see Figure 2).  
Our regression jobs are required to obey a buffer limit which assures licenses are always available for users. They can’t take licenses 
reserved for user jobs. Yet, our license availability was clearly falling below this buffer limit. So, who was taking the licenses?  
Available licenses fell below our buffer limit and license availability, causing response time for user jobs to increase.  

 

 
Figure 1. Compute Farm Data – Pending jobs spike 



 
Figure 2. Compute Farm Data – Avail Licenses below buffer 

 
We looked at our license server plots, organized by business, to find out where the licenses were going (see Figure 3). We found 

that another business was getting more licenses than we were. We also discovered the same business was also using more license 
resources than they were supposed to (see Figure 4). We now knew which business was taking the licenses and preventing our jobs 
from running, but we didn’t know why. We asked some additional questions like: Who made the license count jump? Who is 
running jobs in that business? We started looking at their jobs for anomalies to point to what they were doing incorrectly. Were 
they specifying the license limits properly? Were they asking for and reserving the license resource they were using? We used live 
data to know which users were requesting resources, showed them the problem, and had them correct their resource requests, which 
ultimately solved the issue we were having.
 

 
Figure 3. Compute Farm Data – Business License Usage 

 

 
Figure 4. Compute Farm Data – Business Resource Usage



We also found a second repetitive issue you can see in Figure 1. Each day at certain times, a spike similar to the original one 
was found. One problem (being starved) led us to solve this secondary problem too. What are these license demands? Where were 
they coming from? We found that all our continuous integration jobs were set to start at the same times during the day across all 
our projects, causing spikes in license demand. We were able to flatten that demand by spreading these jobs throughout the day.  

Big Data helped us ask these questions, and the plots helped us answer them. This enabled our engineers to get back to work 
quickly, increased our job throughput, decreased user job pending times, and raised productivity across the business. 

 

C. Case Study: Why aren’t we using all of our licenses? 
Our regressions weren’t running enough tests, so our first thought was that we needed more licenses. After reviewing our license 

utilization over the past several months, we found that we were never using 100% of our licenses while the job manager showed 
that we regularly use all but a few of our licenses. We then looked at the various license states reported by the job scheduler and 
found that a good chunk of our jobs were in a reserved license state, meaning the test had requested a license but hadn’t actually 
used it yet. The two graphs in Figure 5 and Figure 6 demonstrate this disparity. Figure 5 shows the state of all licenses seen by the 
scheduler. About a tenth of our licenses at this time were tied up in reserved (green) and very few free licenses (blue) at many 
points. Figure 6 shows that the license server reported we only reached about 90% license utilization. We decided to investigate 
these jobs in the reserved state and found multiple issues that resulted in better license usage. 

In the first issue, our simulation job flow is split into multiple parts: compilation, elaboration, simulation, and post simulation 
scripts. Only some of these steps require a license and in this case we realized that our post simulation scripts, which spent most of 
their time compressing and copying files, were causing the scheduler to reserve a license when none was needed. We revised the 
tools managing our jobs to return licenses after the simulation portion had completed to open that license back up, leaving our post 
simulation tools to complete without holding up other jobs.  

The second issue was whether the compilation step could be improved. The vendor tools required a license for this step, but it 
was a lengthy process that only needed a license for the initial setup. We worked with the vendor and used our Big Data analytics 
to demonstrate the license bottleneck this imposed on us. The vendor made the appropriate changes so that compilation didn’t 
require a license the entire time which freed up more of our jobs to acquire available licenses. 

The overall benefit here was better cycle throughput per simulation license without purchasing additional licenses.

 
Figure 5. Compute Farm Data – Job Scheduler License Usage 

 

 
Figure 6. Compute Farm Data – Vendor License Usage



IV. PERFORMANCE DATA 
The performance data we collect (outlined in Table 1) enables analysis of different aspects of our design’s performance while 

also providing insights to aid debugging performance issues.  We utilize an internally developed tool called Autoperf [5] to obtain 
and analyze this data. The approach in Autoperf is to instrument the design, uniquely identify the available measurements, 
and present those measurements in tabular and graphical formats. Autoperf generates and records all measurements it can from the 
available data and lets users review the measurements they desire.   

Autoperf uses unstructured data [6] and aggregates corresponding measurements from multiple tests from the same 
testbench.  The use of unstructured data lets users create new analyses as needed instead of requiring significant effort in advance 
to plan and execute a new performance item and its data model. The software architecture for Autoperf consists of verification 
libraries, performance analysis tools, a Vertica database [6] of test performance results, and a web application [5]. This data helps 
us answer various questions about the performance of our DUT over time, enabling us to catch performance problems as they 
happen. The types of questions we have answered with this data and a corresponding case study follows. 

A. Asking the right questions 
Measuring the performance and latency on each interface across each performance workload, configuration, and testbench lets 

us ask questions like: Am I hitting the performance metrics we need to hit? When did we stop hitting the performance metrics we 
needed to hit? What set of swept parameters across multiple tests gave me the best performance? Have we met our performance 
requirements for each specific traffic class? Answers to these questions help ensure that every testbench meets its expected 
performance targets and helps us isolate when design changes cause performance to drop. Our performance data helps us spot 
anomalies in our design in real time as they happen. 

B. Case Study: Why did our data mover bandwidth take a sudden drop between this week and last week? 
Figure 7 shows the Input versus Output Bandwidth (BW) of a typical data mover operation, with each data point coming from 

specific performance tests run over a period of time. The ratio of input to output BW is related to the size of the transfer request. 
We would have expected to see a tight clustering of points for each transfer size around the expected BW numbers.  Instead, this 
plot showed that something changed that caused our BW to fall off dramatically. We run, record, analyze, and plot data from our 
performance test runs in our nightly regressions. If the numbers fall out of expected ranges (using various outlier detection 
methods), a failure is reported for the verification engineers to look into. We leverage the power of Big Data to automatically tell 
us when something goes wrong.  We don’t have to manually analyze our performance test results each day.  We have scripts and 
processes running on the data that will tell us when something goes wrong or has anomalies in the data, like in this case. 

 
Figure 7. Performance Data Case Study – Expected versus Actual performance drop 

 
We analyzed the data from April 17th by looking back at the auto-generated plots from that day, and were surprised to see that 

our data transfer commands were all being read at the beginning of the simulation as shown in Figure 8. In a real system, these 
would be spread out over the course of the transfer.  This was a stimulus bug that we didn’t catch the first time we setup these 
simulations, leading to an unrealistic data transfer scenario and unrealistic performance numbers.

 



 
Figure 8. Performance Data Case Study – Issue Identified 

 

 
Figure 9. Performance Data Case Study – Issue Fixed 

We analyzed the data from April 22nd by looking back at the auto-generated plots from that day and saw that our data transfer 
commands were now being read throughout the entire simulation as expected as shown in Figure 9. The performance drop flagged 
by our analysis scripts and automated plots helped us recognize we had a problem and showed the effect of fixing it. There were 
really two bugs here: First, we didn’t realize our performance was higher than expected initially. Second, we weren’t spreading out 
our data transfer commands throughout the entire simulation which is the proper modeling of real software behavior. Without this 
data and our automated performance analysis tools operating on that data, we would not have caught this or been able to see and 
debug it as quickly as we did. 

V. TEST RESULTS DATA 
Our test results data (outlined in Table 1) captures information from every simulation and verification job that is executed.  This 

data helps us answer various questions about our design and verification environment, enabling us to make smarter decisions related 
to it. The types of questions we have answered and a corresponding case study follows. 

A. Asking the right questions 
Knowing how many simulation cycles we are running on each testbench lets us ask questions like: Are we properly balanced 

between each testbench? Are any testbenches being starved for cycles? Are any using more than their fair share of cycles? Answers 
to these questions help us ensure every testbench is being run with the expected priority and volume of testing set by our project 
priorities.  

Knowing how effective our regression testing is lets us ask questions like: What are our pass and fail rates? How many tests are 
we running per night per testbench? What is our time to first failure? What tests are finding the most bugs? What types of bugs are 
we finding (functional: assertions, checkers; verification: testbench issues, test errors; etc)? What are our bug open and close 
rates? We utilize pass/fail rate and bug open/close rate curves help us know how mature the DUT is and how stable it is as we 
approach the end of our milestones. 

Knowing how the bug rate compares with verification cycles and cycles over time lets us ask questions like: Are we running the 
right tests in regression that can find the bugs? How do bug find rates vary with verification cycles and cycles over time? Are we 
done finding the easy bugs (requiring fewer cycles to hit)? Are we spending our time hunting for corner case bugs now (requiring 
many cycles to hit)? How mature and stable is the DUT? Answers to these questions help us predict our schedule with greater 
accuracy, enabling us to allocate resources more effectively. 

Knowing our test distributions lets us ask questions like: Am I getting the right distribution of tests?  Are any being starved or 
not running as often as they should be? Is each team receiving the necessary amount of simulation cycles?  For these cycles, is 
each team getting the right distribution of tests to bring the greatest value from those runs? With this Big Data analysis, we learned 



that we needed to start our longer running tests and tests that failed in the last regression first. This gives our engineers feedback 
from those tests sooner, reducing the overall testing cycle time.  

Knowing if our test simulation performance is optimal or not enables us to ask questions like: What factors are causing 
performance degradation in our simulations? Teams want to understand if they are getting the optimal performance from their 
simulation runs. We found instances where our simulation performance was degrading over time. Besides engineers, licenses are 
the most expensive resource we consume, so improving simulation performance lets us avoid over purchasing licenses by using 
the ones we have more efficiently. 

Knowing our CPU and memory usage lets us ask questions like: What CPU and memory configurations do we need to upgrade 
my farm? What CPU configurations would be optimal for our current workloads? Has the CPU utilization of our verification 
workloads remained high or have there been deviations over time? What memory configurations would be optimal for our current 
workloads? We’ve found that by analyzing the maximum, minimum, and average memory utilization, we can make these 
determinations and purchase exactly what we need. 

Knowing how many license hours were used over the previous year lets us ask questions like: What should my 
license forecast be for the next year? How many license hours were used on a given project? How many license 
hours were used over all projects and teams? Based on this data, we increased the accuracy of our forecasts versus 
actual license needs. 

B. Case Study: Why are my tests running slow and taking longer than expected? 
We analyzed our test results data and found our simulations were running 6x longer than normal (see Figure 10). 

 
Figure 10. Test Results Data Case Study – Simulation Metrics – max_duration_seconds spike 

 
We then analyzed all of our simulation metric plots for that same day and time to see if anything jumped out at us. We found 

that there was a direct correlation between the increased run time and the number of garbage collections done during the impacted 
simulations. Our queries revealed the exact revision of code that introduced the dramatic increase in the number of garbage 
collections. We found a change in our testbench that led to a dramatic increase in the amount of memory required to run the 
simulation. Since we hadn’t increased the amount of memory requested by the test, the simulator was garbage collecting to reclaim 
enough memory to meet the required memory demand. This thrashing of memory led to a 6x slowdown in all of our simulations 
for this block. We optimized the testbench and increased the memory being requested by the test to reduce the number of garbage 
collections required, which fixed the problem as shown in Figure 11. 

 

 
Figure 11. Test Results Data Case Study – Garbage Collection Metrics – Problem and Resolution 



 

VI. BIG COVERAGE DATA 
Applying Big Data methods to functional coverage offers several advantages over the SystemVerilog covergroups that engineers 

frequently rely on.  Our work in this area is incomplete but ongoing and has potential to make coverage data more useful.  Typical 
covergroups just record whether a specific condition within a block has occurred, but with a sufficiently large database (several 
terabytes or more) it becomes practical to record all value changes and events for the interesting signals within a design, such as 
state registers, busses, enables, and stall signals.  If enough context is recorded with each value change then complex coverage 
questions can be more easily answered, coverage work can be more interactive and flexible, and the quality of tests and regressions 
can be better measured. 

A. Asking the right questions 
Examples of more complex coverage questions are those that involve multiple blocks in a large design, or questions about the 

frequency, duration, or sequence of events.  A microprocessor engineer might ask, “Are pipelines A, B, and C all stalled at nearly 
the same time?”, “Is this bus arbitration scheme fairly serving all requestors?” or “Is fifo X more than ¾ full at a time when many 
cache misses have occurred in the past N cycles?”  With appropriate tools, the data for tests can be visualized through line charts 
that are similar to waveforms, and engineers can compose coverage questions step-by-step, visualizing the result after each step.  
A first step might chart all the time periods when a fifo is more than ¾ full, and a second step might use those time periods to mask 
a chart of the rolling average of cache misses.  This work can be done interactively, composing new questions without the need to 
immediately re-run regressions to see answers.  Once a coverage question is composed, it can become a metric for choosing the 
best tests to put in regressions, or for eliminating redundant tests from regressions.  Metrics can automatically measure the quality 
of regressions over time as the design and tests change. 

B. Four Major Components 
A Big Data approach to coverage can include four major components: 

1. A fast database with several terabytes of storage. 
2. A way to instrument the verification testbench to log activity in the database. 
3. A web application to explore, measure, and present the data. 
4. A REST data service to give other tools, scripts and web pages access to coverage metrics. 

 
To record data from simulations in the database, we need to instrument the verification testbench, and this process must be easy 

or engineers will not take time to do it.  To record simple value changes of signals and registers, we create XML files that specify 
module names and the hierarchical paths to specific signals/registers within those modules.  A script reads the XML files and 
converts them into executable Verilog code that detects value changes as a simulation runs and records them in a compact ASCII 
file.  After a simulation completes, a different script reads the ASCII file and stores its data in the database.  For events that are 
more complicated than value changes, such as CPU instructions issuing, we provide a small library of instrumentation subroutines, 
and engineers can call these subroutines from their testbenches.  The subroutines can record metadata along with the required 
simulation time, value, and signal name to create richer data.  For instance, when an instruction issues, the metadata could include 
the opcode and source/destination register IDs.  The simulation performance impact of instrumentation varies with the number of 
instrumented signals and the activity factors of those signals, and is similar to the impact of enabling covergroups. 

Database tables let us record the full context of events in our simulations.  We can retrieve not just a hierarchical signal name 
and the simulation time when it changed to a new value, but also metadata, test name, date of simulation, simulation command-
line, person who ran it, RTL version and more.  So much data can be recorded that even large databases need a strategy to avoid 
exceeding the available storage.  In practice, not all simulations need to record data.  A representative subset of nightly regressions 
can record data by default, and a command-line switch can turn on recording for other simulations on demand.  The recorded data 
can have configurable expiration dates, since old data loses its importance as the design changes.  Expired data is automatically 
removed.  The database might contain data derived from user-defined metrics (i.e. average FIFO occupancy) that requires far less 
storage than the raw data that it is derived from, and derived data can be given a longer expiration period than raw data.  This 
preserves important information for long periods while minimizing storage of raw data. 

To benefit from the data, there must be a practical way to visualize it and calculate results from it.  Our approach is a web-based 
application that lets engineers define functions that operate on the data, and creates charts of both raw data and functions.  The goal 
is for engineers to define functions that measure how well a test performs its intended purpose.  A large set of primitive functions 
are built into the application, and user-defined functions are built up from primitives and from other user-defined functions.  
Primitives provide arithmetic operations (i.e. add, subtract, integrate), logical operations (i.e. and, or, greaterThan), 
and time-base operations (i.e. timeShift, length).  Some primitives consume waveforms and return new waveforms, like add 
or mask, while others consume waveforms and return a scalar value, like max or integrate.  Likewise, user-defined functions 
can return either waveform or scalar data.  Waveforms are visualized with line charts, letting us see the activity in a test over the 
course of simulation time.  Scalar values are visualized with bar charts, letting us compare how tests or groups of tests performed 
against user-defined metrics.  Bar charts that group tests by their configuration settings could answer the question, “What 
configuration settings are best at stressing features of the floating-point unit?”  Bar charts that group tests by week could answer 
the question, “As weeks pass by, are our regressions getting better at stressing the floating-point unit?” 



The user-defined functions that engineers create are valuable metrics for understanding our simulations and we want outside 
scripts and tools to have access to those metrics.  A REST data service can provide that access, so that any script that knows the 
names of a specific metric and a test filter (test filters select which tests to calculate the metric across) can ask how the selected 
tests performed against that metric and receive a reply across the network.  A watchdog process can use the service to check on the 
health of nightly regressions and automatically e-mail an alert if a metric shows an unusual change.  Web pages can use the service 
to update tables of coverage information.  Potentially, an adaptive testing algorithm could use the data service to check the metrics 
of past simulations before deciding what tests to run next. 

Though our work on big data coverage is not complete, we’ve seen some challenges that come from this approach.  First, the 
ability to visualize coverage data is most useful if charts can be generated interactively, within a couple minutes or preferably 
within seconds.  The web application must be written with performance in mind.  For example, if a particular, intermediate 
calculation is used on new data every day, then it is worthwhile to automatically precalculate and cache intermediate results in the 
database so that when higher-level functions are run interactively, they can use the cached results to reduce calculation time.  
Second, to limit storage requirements we must thoughtfully choose what data to record and how long to keep it.  Tools must make 
it easy to adjust the storage policy. 

Big data coverage can reduce the need for traditional functional coverage, replacing many SystemVerilog coverpoints with user-
defined metrics that are more powerful and flexible.  However, it is unlikely to replace corner-case coverpoints that are hit rarely 
and unpredictably.  That is because we don’t want to instrument 100% of our simulations, overwhelming our database.  Traditional 
functional coverage is a more efficient tool for those coverpoints. 

VII. BIG DATA TOOLKIT 
While tools exist in the industry to help manage Big Data in Verification [7], we’ve created our own Big Data Toolkit mostly 

comprised of open source and a few commonly available commercial tools. We’ve created scripted flows around these tools to 
collect, analyze, and present the data that guides our decisions. We’ve summarized how we use these tools across these different 
tasks in Table 2. 

 
TABLE 2: A Big Data Toolkit 

Collect Analyze Present 
Structured DBs Unstructured DBs Data Queries Tools 

   
Web Frameworks Plotting Textual 

MariaDB Hadoop Perl/Python ORMs JavaScript/Jquer
 

Excel* Perl 
Postgres Vertica* (DBIx/SQL Alchemy) Python/PHP GNUPlot Python 
MySQL  Excel* with pivot tables and filtering (Django/Yii) ChartJS Ruby 

  MySQL Workbench Jenkins Grafana  
   Custom   

* = commercial tool 
 
A typical flow to maximize your ROI with minimal effort using the Big Data Toolkit above involves defining a database schema, 

collecting the data, inserting the data into a database, and presenting the data for analysis. To accomplish this you would first design 
the schemas around the data you want to capture in MySQL Workbench or an Object Relational Mapping (ORM) tool like DBIx 
or SQL Alchemy. You would then write scripts in Perl or Python that extract the data you need (either from logfiles, recurring 
Jenkins jobs that sample the data, or other data sources) and insert that into the database schema. Next, you would write query 
scripts in Perl or Python that provide a rich command line interface to the user to query the database with ease. You would also 
ensure the scripts can return the queried data in an ASCII table, CSV, or JSON format. You would then setup a web server using a 
custom web framework that uses a plotting engine like ChartJS or Grafana that defines the set of plots you want to see. ChartJS 
parses the data from your query scripts, and Grafana parses the data directly from your database (avoiding the need to create query 
scripts). These tools produce interactive charts that can be customized by the user to see the data they want, and can be exported to 
Excel for further analysis. We’ve found that this tool flow can be created by a small team with a few resources in about one engineer 
month of effort and maintained by a few engineer hours a month. 

VIII. FUTURE USE CASES 
Although we are using Big Data to answer these types of questions every day in our development activities, there is even more 

we want to do. In order to stimulate thoughts for the reader, we will briefly share some of the opportunities we will explore in the 
future.   

Coverage data is often stored by EDA vendors in structured databases and is heavily summarized. Working with EDA vendors 
to store this data in higher performing unstructured databases using the Big Coverage Data ideas above would help us answer more 
questions about how effectively our tests are reaching deeper state spaces within our designs. We would like to see improvements 
in intelligent test grading.  

Our Test Results data is currently stored in a structured MySQL database. We’d like to store it as unstructured data and use 
Hadoop to analyze it. This would enable us to store more dynamic and varied information per test. Engineers would then decide 
what test attributes (test modes, testbench configurations, error signatures, regression durations and conditions, failing modes, 
register programming, coverage points hit, etc) they want to store per test and analyze when they need it most (while debugging a 
failure, closing coverage, etc).  



Additionally, we would like to expand our use of Big Data to get even more value from our cycles. Big Data can help our team 
drive improvements in intelligent stimulus generation and coverage driven stimulus. From an analysis standpoint, we see excellent 
opportunities in stimulus generation to leverage modern artificial intelligence (AI) and machine learning (ML) techniques. For data 
visualization, we will be exploring improvements such as heatmaps to summarize and visualize the data and the anomalies in that 
data. To date, we have been analyzing data within the domains in which the data was generated.  There are additional opportunities 
to take a bigger picture view by querying and merging Big Data across multiple data domains. Data is often segregated into multiple 
databases and performing queries across these databases will let us gain even more insight. 

IV. CONCLUSION 
While even more can be done with Big Data than was discussed here, we have shown how anyone can quickly jump into the 

world of Big Data and leverage these concepts in their own environments to bring value to their teams.  We have shown how asking 
the right questions about the data you collect can lead to insights that make your engineers smarter, letting them overcome design 
and verification challenges. With the Big Data Toolkit, mostly comprised of open source and freely available tools, readers can 
create their own Big Data infrastructure using databases for storage, query libraries for analysis, and web frameworks for 
presentation and analysis. What questions can you ask to make your verification more intelligent? What data can you start collecting 
today to answer those questions?  Now is the time to collect and go beyond simply answering questions with Big Data. Now is the 
time to enable that data to drive action and change to improve your design and verification abilities. 
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