
Beyond UVM: 

Creating Truly Reusable Protocol Layering 
 

Janick Bergeron, Fabian Delguste, Steve Knoeck, Steve McMaster, Aron Pratt, Amit Sharma 

Synopsys, Inc 

Mountain View, CA 

 
Abstract—Protocols that are transported by other lower-level 

protocols are modeled using a layering structure that mirrors the 

layering of the protocol. In UVM, it is recommended that the 

layering be performed using a layering sequence. However, the 

many examples of protocol layering sequences in the UVM 

literature show that it requires implementation techniques that 

are not scalable and often not reusable. This paper details a UVM 

protocol layering approach that uses a layering driver as an 

implementation that is both scalable and reusable. 

Keywords—UVM; protocol; layering; delayering; reusable; 

scalable; sequence 

I.  INTRODUCTION 

Communication protocols are specified and implemented 
according to layers. These layers are often labeled using the 
popular OSI modelError! Reference source not found.. A 
higher-layer protocol is transparently transported on a lower-
layer protocol. That lower-layer protocol may in-turn be 
transparently transported on an even lower-layer protocol. For 
example, as illustrated in Figure 1. , TCP protocol packets can 
first be segmented into IPv4 frames; the IPv4 frames can then 
be encapsulated into Ethernet frames then transmitted over a 
XAUI interface onto a fiber optic medium. Another example 
illustrated in Figure 2. , USB transfers are composed of USB 
transactions which are composed of USB packets. 

 

Figure 1.  TCP/IP over Ethernet 

Because the transport layer is transparent to the higher-
layers it carries, a higher-layer protocol may be transported on 
a variety of lower-level protocols. For example, a TCP packet 
may be transported over an IPv4, IPv6 or PPP protocol. 
Conversely, a lower-layer protocol may transport different 
higher-layer protocols, often at the same time. For example, an 
Ethernet link may transport a mix of IPv4 frames, IPv6 frames 
or UDP packets. To complicate matters even further, lower-

level protocols can be transparently tunneled through a higher-
layer protocol. For example, an IP stream (itself carrying a 
variety of higher-layer protocols) can be encrypted then 
wrapped into TCP packets and tunneled through a TCP 
transport layer to be decrypted and processed at the other end 
as if they had been natively transported. 

 

Figure 2.  USB Protocol Layers 

When implementing protocol verification IP, it is important 
that the independence of the protocol layering structure be 
maintained, The output of a higher-layer protocol VIP can thus 
be transported by different lower-layer protocol VIPs. 
Similarly, a single instance of a lower-layer protocol VIP must 
be able to transport multiple higher-layer protocols coming 
from multiple instances of different higher-layer protocol VIPs. 
Conversely, lower-layer protocol monitors must be able to feed 
a variety of higher-layer protocol monitors. 

II. PROTOCOL LAYERING IN UVM 

A. UVM Stimulus Generation 

As illustrated in Figure 3. UVM dictates that stimulus be 
generated using sequences executing on a sequencer. While 
executing, sequences create transactions using a random, 
algorithmic or directed specification that are then executed by a 
driver, usually by transmitting them over physical signals. 

 

Figure 3.  Architecture of UVM Stimulus Agent 

Transfers 

Host 

Transactions 

Master 

Packets 

Serializer 

Serial 1’s & 0’s 

Transfers 

Endpoint 

Transactions 

Device 

Packets 

Deserializer 

Serial 1’s & 0’s 

TCP Packets 

Segmentation 

IPv4 Frames 

Encapsulation 

Ethernet Frames 

Media Access 

XAUI 8b10b 

TCP Packets 

Reassembly 

IPv4 Frames 

Decapsulation 

Ethernet Frames 

Signal Decode 

 XAUI 8b10b 



Conversely, UVM dictates that a monitor observes the 
execution of transactions and reports them on an analysis port, 
usually using the same transaction objects that are exchanged 
between the sequencer and driver. 

This abstraction level works well if the protocol 
functionality under verification is at the same layer as the 
transactions that are executed by the driver. But if it is at a 
higher layer, it becomes cumbersome to create stimulus that is 
relevant to the verification objectives at hand, and to interpret 
the low-level transaction stream into higher-level response. It 
thus requires more effort and increases the time required to 
verify the design to the desired degree of confidence. 

B. Layering Sequences 

Transaction-based verification is about abstracting the low, 
signal-level operations into higher-level transactions. The same 
abstraction process can be recursively applied to lower-level 
transaction: verification can be performed at a higher level of 
abstraction by abstracting the low-level transactions into 
higher-level ones. 

One possible approach would be to create a set of 
monolithic protocol VIPs, each using a different higher-level 
protocol on the testbench side that can be connected to the 
same physical signals. But this would require one VIP for 
every combination of higher-level and low-level protocols.  
Furthermore, it would be next-to-impossible to combine 
different higher-level protocols onto the same lower-level 
protocol. 

That is why UVM recommends the use of protocol layering 
sequences. Just like drivers execute transactions by wiggling 
physical signals, a layering sequence will execute higher-layer 
transactions by executing a set of lower-level transactions. 
Similarly, a delayering monitor will observe lower-level 
transactions on a lower-level analysis port and report higher-
layer transactions onto its analysis port. 

 

Figure 4.  Layered Sequencers and Monitors 

Because layering sequences have a function that is very 
similar to drivers, they are significantly different from usual 
sequences in a several aspects. 

Firstly, layering sequences execute continuously throughout 
the run phase. Regular sequences are started on demand and 
terminate once they have completed their stimulus 
requirements by returning from their body() task. But just like 
drivers never return from their run_phase() task, layering 
sequences must always be available to execute higher-layer 
transactions and thus cannot ever return. 

Secondly, layering sequences must be started at the 
beginning of the run phase so they can be ready to execute 
higher-layer transactions as soon as possible. This is just like 
drivers implementing their functionality in their run_phase() 
task which is automatically started at the beginning of the run 
phase. 

Thirdly, UVM recommends that layering sequences accept 
higher-layer transactions to be executed via a sequencer port. 
Whereas regular sequence take their input from local variables 
defined before the execution of their body() task, layering 
sequences take their input using the same mechanism as a 
driver. As shown in Figure 4. , this allows a higher-level 
sequencer to be connected to a layering sequencer in the same 
way it could be connected to a driver.  

 

Figure 5.  Complex Protocol Stack 

A layering sequence, even though it behaves like a driver, 
remains a sequence. And because a sequencer can concurrently 
execute multiple sequences, it is possible to execute multiple 
layering sequences on the same sequencer, each layering 
different protocol or additional streams of the same protocols 
onto the same lower-layer protocol. And because a layering 
sequence is fed by a higher-layer sequencer, that higher-layer 
sequencer may also be executing a layering sequence, 
executing even higher-layer transactions. As shown in Figure 5. 
, this allows an arbitrary number of protocol layers to be 
stacked and multiplexed in arbitrary (but compatible) 
combinations. 

Layering sequences can concurrently execute with regular 
sequences to inject lower-level stimulus (such as errors or 
spurious traffic or protocol exception transactions) in a protocol 
stack. Furthermore, the relative priority of the layering and 



normal sequences can be adjusted to shape the resulting traffic. 
Although traffic shaping is a fascinating topic, it is outside the 
scope of this paper. 

III. PRIOR ART 

Several examples of layering sequences have been 
published[1][3]. However, each exhibit limitations that prevent 
them from being truly reusable and scalable. 

A. Layering inside one Sequencer 

Section 6.5.2.3.1 of the UVM User’s Guide[2] shows how a 
higher-layer transaction is created, randomized then translated 
into lower-level sequence items that are then executed on the 
driver: 

task body(); 

   `uvm_create(hli) 

   hli.randomize(); 

   send_high_layer(hli); 

endtask: body 

 

task send_high_layer(hli_typ hli); 

   while (...) begin 

      `uvm_create(lli); 

      // Slice and dice hli to form lli’s 

      lli.data[i] = ...; 

      ... 

      `uvm_send(lli) 

   end 

endtask : send_high_layer 

This layering sequence is reusable only by extending it to 
redefine its body() task and create different higher-layer 
transaction items to reuse the layering send_high_layer() task. 
Because SystemVerilog lacks multiple inheritance, it is 
impossible to leverage existing higher-layer sequences and 
combine them with the layering send_high_layer() task without 
re-implementing them for each lower-layer sequence. In an 
environment where N higher-layer protocols, each with S 
higher-layer sequences, need to be layered on M lower-layer 
protocols, it requires N x S x M additional sequences. Adding a 
new higher-layer protocol requires N x M additional sequences. 
Adding a new lower-layer protocol requires N x S additional 
sequences. This approach is clearly not scalable. 

B. Layered Sequencer 

Section 6.5.2.6 of the UVM User’s Guide[1] shows how a 
layering sequence can pull higher-layer items from a sequence 
port on the parent sequencer accessed via p_sequencer, 
translate them into lower-level sequence items and execute 
those. 

class hli_to_lli_sqr extends 

      uvm_sequencer#(lli_typ); 

   uvm_seq_item_pull_port#(hli_typ) hli_port; 

endclass 

 

class hli_to_lli_seq extends 

      uvm_sequence#(lli_typ); 

task body(); 

   forever begin 

      p_sequencer.hli_port. 

         get_next_item(hli); 

      while (...) begin 

         `uvm_create(lli) 

         // Slice and dice hli to form lli’s 

         lli.data[i] = ...; 

         ... 

         `uvm_send(lli) 

      end 

      p_sequencer.hli_port.item_done(); 

   end 

endtask 

This second example is more reusable than the first one: it 
only needs to be started on the appropriate sequencer without 
requiring any modifications. It is also more scalable as the 
higher-layer sequences are executed independently on the 
higher-layer sequencer and the layering sequence takes care of 
the layering. All existing higher-layer sequence can be reused, 
without modifications on any layering sequence. In an 
environment where N higher-layer protocols, each with S 
higher-layer sequences, need to be layered on M lower-layer 
protocols, it requires N x M additional sequences. 

The problem though lies in the location of the higher-layer 
sequencer port: in a specialization of the lower-level sequencer. 
This is approach hinders reusability and scalability in three 
ways: 

First, should the lower-layer sequencer not be of the 
appropriate type, it will not be able to execute the layering 
sequence. In an environment where N higher-layer protocols 
need to be layered on M lower-layer protocols, this approach 
requires N x M additional sequencer types (to go with the N x 
M additional layering sequences). Adding a new higher-layer 
protocol does not require any additional sequences. Adding a 
new lower-layer protocol requires N additional layering 
sequences. However, should the environment already have 
specialized a lower-level sequencer to provide configuration 
information to the normal sequences it runs, the single-
inheritance nature of SystemVerilog will make this approach 
unusable. 

Second, should it be necessary to layer more than one 
protocol stream on the same lower-layer sequencer, there is 
only one higher-layer sequencer port to connect to. It is not 
possible to connect more than one sequencer to the same 
sequencer port, thus it will be impossible to connect more than 
one sequencer to the layering sequence.  

Third, should it be necessary to layer different protocols on 
the same lower-layer sequencer, it becomes necessary to 
declare multiple sequencer ports of different higher-layer 
protocol types in the same lower-layer sequencer to enable 
their respective layering sequence to refer to their respective 
higher-layer port. In an environment where N higher-layer 
protocols need to be layered on M lower-layer protocols, this 
approach requires N different sequencer ports in N x M 
additional sequencer types. Adding a new higher-layer protocol 
requires modifying M sequencer types. Adding a new lower-
layer protocol requires one new sequencer with N sequencer 
ports and N new layering sequences. 

Reusable? Yes. Scalable? Definitely not. 



C. Reference to Higher-Layer Sequencer 

The layering example shown in [3] recommends putting a 
reference to the high-layer sequencer in the layering sequence. 
The layering sequence then directly accesses the 
implementation of the get_next_item() and item_done() 
methods. 

class hli_to_lli_seq extends 

   uvm_sequence#(lli); 

task body(); 

   forever begin 

      hl_sequencer.get_next_item(hli); 

      while (...) begin 

         `uvm_create(lli) 

 

         // Slice and dice hli to form lli’s 

         lli.data[i] = ...; 

         ... 

         `uvm_send(lli) 

      end 

      hl_sequencer.item_done(); 

   end 

endtask 

This approach can be a lot more reusable and scalable than 
the previous ones. Layering different protocols or multiple 
streams of the same protocol onto a lower-layer sequencer 
simply requires that the appropriate number of layering 
sequences be started. In an environment where N higher-layer 
protocols need to be layered on M lower-layer protocols, this 
approach requires N x M layering sequences. Adding a new 
higher-layer protocol requires creating only one new layering 
sequence. Adding a new lower-layer protocol requires N new 
layering sequences. 

The major fault with this approach is that it violates the 
TLM connection methodology that is integral to UVM by 
calling the implementation methods directly. Further, should 
multiple layering sequence instances be erroneously connected 
to the same higher-layer sequencer, they will interfere with 
each other, resulting in difficult-to-explain behavior. 

IV. DELAYERING 

If protocols are layered on the way down, they must 
similarly be “delayered” on the way up. Reference [3] does 
show how a delayering monitor can observe lower-level 
transactions through an analysis export and report observed 
higher-layer transactions through its own analysis port. 

function write(lli_typ lli); 

   // Only consider lower-level items 

   // that belong to us 

   if (lli.dest != addr) return; 

 

   // Collect lower-level items and 

   // re-constitute higher-layer items 

   hli.data[i] = lli.data; 

   if (hli.data.size() == hli.len) begin 

      ap.write(hli); 

      hli = hli_typ::type_id::create(“hli”); 

   end 

endfunction 

As shown in Figure 4. , delayering monitors are connected 
in a structure that mirrors the layering sequence structure. 
Because an analysis port can be connected to multiple analysis 
exports, as many delayering monitors can be connected as there 
are layering sequences running on the sequencer. 

All of the sequence layering examples in the existing literature 
use a straight forward unidirectional protocol layering. The 
timing and content of the lower-level layer transactions are 
solely determined by the timing and content of the higher-level 
transactions. Unfortunately, the behavior of real-world 
protocols are often affected by the responses received from the 
lower layer. For example, executing a USB transaction 
involves the correct back-and-forth exchange of several USB 
packets. Should a reply packet contain a negative response or 
go missing, the transfer must be aborted. Or should forward 
packets be send without waiting for the preceding response, the 
rules of the protocol will have been broken.  In other protocols, 
such as PCIe, a lower-layer transaction may not be sent unless 
the layering sequence possesses the necessary data flow credits. 

Therefore, the sequence layering mechanism must be able 
to handle duplex protocol, where the result and timing of the 
layering is a function, not only of the upper-layer sequencer, 
but of transactions observed by the lower-level monitor. Thus, 
the layering sequence must be connected to the analysis port of 
the lower-level agent as well, as shown in Figure 6. . 

 

Figure 6.  Layered Duplex Protocol 

The only problem with connecting the analysis port of a 
monitor to the layering sequence (or any sequence for that 
matter) is that analysis exports must be implemented by a 
write() method located in a uvm_component type. 
Unfortunately, because sequences are not components, they 
cannot have analysis exports. That is why [3] encapsulates the 
layering sequence and delayering monitor in a layering 
uvm_subscriber component that includes an analysis export for 
the lower-layer protocol. 

This puts the onus on the users to encapsulate each protocol 
layering operation into individual components so the analysis 
ports can be properly connected. In an environment where N 



higher-layer protocols need to be layered on M lower-layer 
protocols, this approach requires N x M layering sequences 
encapsulated in N x M components. Adding a new higher-layer 
protocol requires creating M new layering components. Adding 
a new lower-layer protocol requires N new layering 
components. 

V. LAYERING AGENTS 

All of the existing layering examples seem to assume that 
higher-level protocols can only be layered onto a lower-level 
protocol and that no agent already exists for that protocol. They 
assume that the user is free to create and instantiate a sequencer 
for those higher-level protocols. But what if a sequencer for 
that particular protocol already exists? What if it needs to be 
connected to the monitor or driver in specific ways because of 
the reactive nature of the protocol? What if the protocol 
transactions require configuration information from the agent 
context to be properly randomized? That is why UVM defines 
the agent as the smallest unit of protocol-level reuse, not the 
sequencer or the monitor. 

Furthermore, some higher-level protocols may very well 
have a physical transport implementation and thus need not 
necessarily be layered. For example, Ethernet frames can be 
transmitted over a variety of physical interfaces for which a 
driver would be available. But they may also be transported by 
another protocol (for example Ethernet-over-PPP) and thus 
would require layering. 

Layering agents is a more efficient reuse strategy, as it 
enables reusing the sequencer and monitor they contain instead 
of instantiating and connecting new one. The only component 
that needs replacing is the driver: should it remain in place, it 
will compete with the layering sequence for the agent’s 
sequence items and break the execution of the higher-layer 
protocol. 

VI. A REUSABLE AND SCALABLE IMPLEMENTATION 

Because the driver in a protocol agent needs to be replaced 
or shut down when that protocol needs to be layered, and since 
layering sequences connect sequencers and are therefore 
essentially components, the layering should be implemented in 
a layering driver, more specifically in its run_phase() method. 
A layering driver is implemented using the same familiar 
techniques used to implement a “regular” driver, except that a 
sequence item is executed in terms of lower-level transactions 
instead of pin wiggling through a virtual interface. 

class h2l_layering_driver extends ll_driver; 

... 

virtual task run_phase(uvm_phase phase); 

   forever begin 

      seq_item_port.get_next_item(hli); 

      while (...) begin 

         `uvm_create(lli) 

 

         // Slice and dice hli to form lli’s 

         lli.data[i] = ...; 

         ... 

         execute(lli) 

      end 

      seq_item_port.item_done(); 

   end 

endtask 

 

endclass 

The layering driver should be implemented as an extension 
of the default agent driver. This will make it possible to replace 
the original driver in the higher-level agent using the factory. 

 

Figure 7.  Layering Drivers 

The layering driver should be connected to the lower-layer 
sequencers using a simple passthru sequence. That passthru 
sequence is functionally equivalent to the virtual interface of a 
“regular” driver and thus should similarly be passed via the 
configuration database. A passthru sequence is used in 
preference to using the uvm_sequencer_base::send_request() 
or uvm_sequencer_base::execute_item() methods so it can be 
configured with state information, such as priority, to shape the 
lower-level protocol traffic. 

class ll_passthru_seq extends 

   uvm_sequence#(lli_typ); 

 

   lli_typ req; 

   int priority = -1; 

 

   task body(); 

      forever begin 

         wait (req != null); 

         start_item(req, priority); 

         finish_item(req, priority); 

         req = null; 

      end 

   endtask 

endclass 

 

class h2l_layering_driver extends ll_driver; 

 

virtual task run_phase(uvm_phase phase); 

  ll_passthru_seq ll_seq; 

  uvm_config_db#(ll_passthru_seq)::get(this, 



    “seq”, ll_seq); 

   forever begin 

      seq_item_port.get_next_item(hli); 

      while (...) begin 

         `uvm_create(lli) 

 

         // Slice and dice hli to form lli’s 

         lli.data[i] = ...; 

         ... 

         ll_seq.req = lli; 

         wait (ll_seq.req == null); 

      end 

      seq_item_port.item_done(); 

   end 

endtask 

 

class layered_env extends uvm_env; 

... 

ll_passthru_seq ll_seq; 

 

function build_phase(uvm_phase phase); 

  hl = hl_agent::type_id::create(“hl”, this); 

  set_inst_override_by_type(“hl.drv”, 

     ll_driver::get_type(), 

     h2l_layering_driver::get_type()); 

endfunction 

 

function connect_phase(uvm_phase phase); 

  ll_seq = new(); 

  uvm_config_db#(ll_passthru_seq)::set(this, 

    “”, “seq”, ll_seq); 

endfunction 

 

task run_phase(uvm_phase phase); 

   ll_seq.start(hl.sqr); 

endtask 

... 

endclass 

Because the layering driver is a component, it can have and 
implement an analysis export for duplex protocols. 

class h2l_layering_driver extends ll_driver; 

   uvm_analysis_imp#(lli_typ) ap; 

 

   function write(lli_typ lli); 

      // Only consider lower-level items 

      // that belong to us 

      if (lli.dest != addr) return; 

 

      // Process the response/credits 

      ... 

   endfunction 

endclass 

Different higher-level protocols or multiple streams of the 
same higher-level protocol may be layered onto the same 
lower-level agent by simply starting multiple concurrent 
passthru sequences on the lower-level sequencer. 

In an environment where N higher-layer protocols need to 
be layered on M lower-layer protocols, this approach requires 
N x M layering drivers and M passthru sequences. Adding a 
new higher-layer protocol requires creating M new layering 
drivers. Adding a new lower-layer protocol requires only one 
passthru sequence. 

The concept of the layering driver is also in keeping with 
the current concept of a driver in UVM. What is a driver if not 
a layering device between a sequence item and physical 
signals? 

VII. SUMMARY 

TABLE I. shows a comparative summary of using layering 
sequences vs. layering drivers for N higher-level protocols and 
M lower-level protocols, and the incremental effort for adding 
a high-level and low-level protocol. It clearly shows that using 
layering drivers is the more scalable approach. 

TABLE I.  COMPARISON OF LAYERING APPROACHES 

Number Of 
Layering Sequence 

(as in [3]) 
Layering Driver 

Protocols NxM N+1 M+1 NxM N+1 M+1 

Sequences NxM M N M 0 1 

Sequencers N 1 0 0 0 0 

Components NxM M N NxM M N 

VIII. LOOKING FORWARD 

In most networking application, it is necessary to verify the 
dynamic reprovisioning of components and the ability of 
components to adapt to changes in the protocol topology. For 
example, adding and removing devices and hubs from a USB 
network is a normal operation of that protocol. Similarly, it is 
normal for TCP sessions to appear and disappear, or for the 
bandwidth of an OC-192 channel to be reconfigured between a 
variable number of tributaries of different lower bandwidth. 

Therefore, it should be possible for the layered protocol 
VIP structure to adapt to dynamic changes in the modeled 
network, and be able to add and remove additional protocol 
layers and sibling protocol streams. 

These normal protocol network operations must be verified. 
In keeping with the constrained-random philosophy of UVM, it 
would be desirable to be able to randomly modify the protocol 
structures at random times. Using layering, these varied 
protocol structures can be implemented in a reusable and 
scalable way. Unfortunately, due to the static nature of UVM 
components, the entire protocol hierarchy cannot be 
dynamically modified at run-time. All alternative protocol 
hierarchies must be created entirely at build time. 

To support these verification scenarios, a future UVM 
should allow the dynamic modification of the component 
hierarchy. 

REFERENCES 

[1] Open Systems Interconnection (OSI) model, ISO/IEC 7498-1. 

[2] Accellera, “Universal Verification Methodology (UVM) 1.1 User’s 
Guide, May 2011 

[3] Mentor Graphics, “Layering in UVM”, Verification Horizon, Vol 7, no 
3, pp 25-27 


