
Best Practices in Verification Planning

Benjamin Ehlers - Verification Engineer, Freescale Semiconductor

Carmen Vargas - Verification Engineer, Freescale Semiconductor

Paul Carzola – Architect, Cadence Design Systems

Abstract

Creating meaningful verification plans is an

art form yet to be fully codified. Failure to

plan means planning to fail. The

development of verification plans is the most

crucial step in the functional verification

process. Oddly, not every company takes the

time to establish an in-house prescriptive

and repeatable approach. This paper

articulates a codified process for verification

planning based on actual experience at

Freescale Semiconductor. The verification

planning process described in this paper is

streamlined for derivatives and compressive

enough for new design and verification

development. It explains a complete

verification flow including verification

strategy, planning, change management and

closure.

I. Introduction

Let's face it, effective planning is not a

perfectly easy process that every engineer

naturally understands or enjoys. Yet, effective

verification planning can be quite beneficial in

providing a significant return on investment

in the quality and efficiency of the resulting

verification product. By starting with a culture

of methodology driven verification, an

acceptance that effective planning must span

the entire verification flow, and by following

some fairly simple structured and well

organized practices, the process of

verification planning can be made effective,

easy, and efficient and generate a high quality

result. One of the more exciting elements of

best verification planning practices discussed

in this paper is in the development of a

codified and executable verification plan.

Some other best practice elements of the

larger verification planning methodology

presented in this paper may seem less

obvious or even unrelated, but when

considered with respect to a complete

verification planning methodology should not

be quickly disregarded.

II. Problems and Challenges

There are numerous barriers and challenges

that exist counter to effective verification

planning, many of which can be traced to the

overall approach and culture of functional

verification methodologies and strategies

within a company or group. Human and

technical factors contribute to the problems

creating barriers to planning. One significant

barrier to verification planning is a cultural

issue, where some verification engineers

would like to treat verification planning as an

afterthought if it is done at all. This often

leads to an ad hoc approach to the planning

process, little to no consistency among

verification documentation, and a lower

sense as to the certainty of closure and

completion. Another barrier to verification

planning comes in the form of those who

recognize the value of verification planning

but do not have an established and well

organized planning flow. This tends to result

in the verification engineers fighting a battle

of inconsistency and incoherency in the

structure and content of the verification plans

and verification documentation. Additionally,

a barrier exists for those who recognize the

need for verification planning, but who also

believe the notion that there is a large

unrecoverable cost associated with spending

time in proper planning due to the required

time investment. Many of the barriers to

planning at a company can be attributed in

some manner to an absence of verification

methodology adoption, gaps in the

company's established verification

methodology, and/or gaps in existing

technology.

Some of the many challenges faced during

verification planning which can interfere with

or even nullify the effectiveness of the

verification plan include the need for a large

number of verification engineers working in

parallel on a given project, the level of quality

of design documentation and requirements,

undefined or under-defined design blocks,

frequent and significant change requests, and

late design changes. Unless a verification

project is a small block level design in a

standalone environment, chances are that the

verification done on any given project uses a

distributed approach where many different

verification engineers are working in parallel

on the project and need the ability to bring

together all of their individual plans and work

together. This distributed approach presents

a challenge to effective planning regarding

the consistency and coherency of verification

plans and verification documentation, which

directly affects the ease of which the

verification results can coalesce and be

reported in a clear fashion. Another

significant challenge in the verification

planning process involves the quality of the

design specification documents and the set of

design requirements. Design specifications

and design requirements are the primary

input source needed for effective verification

planning. The higher the quality of the design

documentation is at the start of the

verification effort, there is less of an inherent

challenge for verification planning. The worst

case scenario for verification planning is when

there is an undefined design component or

design feature which has no documented

description and requires a significant amount

of research and effort on the part of the

verification engineer to develop a meaningful

verification plan. Other challenges to be

aware of include the likelihood of frequent

design change requests and late design

changes which can often invalidate a large

portion of work already done in the

verification planning process, resulting in lots

of re-work, iterations, and sometimes a

complete overhaul of the entire plan and

verification effort altogether.

Another major challenge to effective

verification planning is related to the

technology of the tool set available for

planning and documentation. The primary

objective for the verification planning tool set

is to provide organization and structure.

There are industry tools available for

verification planning purposes. However,

internal company tool sets including custom

scripts can also be developed to meet the

required objective for providing structure and

organization. A limited number of built for

purpose verification planning tools are

available that have been specifically designed

for verification plan development. Yet even

with the existence of some built for purpose

verification planning tools, given the wide

variety of possible customized verification

planning flows and approaches and

methodologies, there is still the potential for

these tools not to satisfy every single planning

feature desired or needed across all customer

use models. Therefore a need to support user

specific customizations is vital for purpose

built verification planning tools. Even if the

capability for customizations is well

supported within a verification planning tool,

the need for the creation and maintenance of

custom scripts outside the planning tool most

certainly still exists and can be a significant

amount of effort. In order for a purpose built

tool to be effective for verification planning, it

needs to be a flexible customizable tool that

is easy to use, implements all of the basic

verification planning methodology

fundamentals, and whose source data format

supports a wide possible range of scripting.

Essentially, a built for purpose verification

planning tool must support the concept of

creating an executable verification plan.

III. Executable and Living Codified

Verification Plan

Verification methodology is a large subject in

itself, but one of significant importance and

interest across the industry. Companies

throughout the industry are invested in

creating, maintaining, and continuously

improving their verification methodology. In

the area of verification planning

methodology, the concept of a codified

executable verification plan, where the plan

takes an active and participatory role in

verification, is showing great benefits through

the entire verification flow. Based on

experience, establishing a flow that begins

with and gives adequate time to the creation

of a codified executable verification plan

implementation is a solution that has

addressed many of the barriers and

challenges to both the process of effective

verification planning and the overall

verification flow all the way through closure

and completion. Combined with automation,

this executable verification plan becomes a

single point of source for the entire

verification flow.

Figure 1: Executable Verification Plan Concept

An executable verification plan is a plan that

defines the scope of a verification project,

describes all of the key features of the design

to be verified within the established scope,

has a well defined list of

testcases/checks/coverage objects identified

per feature, and has the necessary design

requirements linkage connected to the

testcase/check/coverage object level. What

makes the plan “executable” is the notion of

using it to define and refine your test

strategy, and the notion of collecting all run

time data and results to make the plan

dynamic and alive with the execution process.

An executable verification plan also needs to

have the capability of generating or being

able to extract a complete simulation

regression list of testcases from the codified

feature set and correlating the regression

pass/fail results to the objects in the

verification plan. Finally, an executable plan

needs to have the capability of supporting

design requirements linkage from a set of

input requirements to the endpoint

testcase/check/coverage objects.

Considering the cost of the time needed to

implement a well structured and coherent

executable verification planning flow, the

benefits are typically recovered during the

testcase and testbench development because

of the structured plan. With the codified

structure implemented in the plan, testbench

code and testcases can be written more easily

as an out-flowing of the planned objects.

Additionally with the concept of the

executable plan, the final verification result

which includes the completion criteria and

coverage is already built-in to the verification

plan, such that the regression results and

coverage are mapped directly to the plan

structure and objects.

The following sections will provide details of

this claim shown in an example verification

planning flow detailed through

implementation and closure.

IV. Verification Planning Flow: A

Complete Methodology

The following example planning flow

presented in this paper is one possible

implementation of an organized structure

which proved to be a good fit for a large scale

SoC level verification project within Freescale.

It is by no means the only way to achieve

effective verification planning, but it does

take into consideration the planning process

in the context of a larger verification

methodology. It has proved to be useful and

successful based on experience using it on a

large design with a widely distributed

verification team.

1. Create a Template

a. Maintain Consistency

2. Verification Planning

a. Verification Needs

b. Reuse Assessment

i. Design Maturity

ii. Know Who and What

You're Working With

c. Verification Assumptions

d. Verification Scope Assessment

i. SoC vs. Block Level

ii. System vs. Peripheral

vs. Integration

iii. Directed vs.

Randomized vs.

Formal

3. Implementation Planning

a. Requirements Driven

b. From Specification: Feature

Driven

c. Prioritization of Features

d. Organization of

Features/Requirements

4. Closure Planning

a. Coverage Correlated to

Verification Plans

b. Completion Criteria

5. Reviews / Reporting

Create a Template

Creating a solid verification plan template is

crucial in order to establish and maintain

consistency across the individual verification

plans feeding into a larger verification guide.

The importance of having a verification plan

template is to provide the multiple individual

verification plan developers on a project with

a prescriptive development approach to

follow, guiding each individual through a

consistent plan creation process.

The template for the verification plan should

be created directly within the target

documentation/planning tool that is to be

used in the project for all the verification

planning, i.e. if the verification plan tool to be

used is a spreadsheet, the verification plan

template should be created as a spreadsheet

with the basic template structure. The

template should contain well defined sections

with all the necessary subsections, and clear

description within each section regarding the

expected content and style required for that

section. The following picture shows an

example template structure with the basic

plan sections ready to be modified by the

individual verification engineers:

Figure 2: Example Verification Plan Template

The verification plan template should also

include detailed explanation descriptions (not

shown in figure 2) in the information field of

each section folder which describes clearly

what each verification engineer should

include for that section. For example, the

section for "Verification Needs" has an

information field which states:

"You shall create a documentation

object in this Verification Needs folder

for each need associated with your

verification project. The needs you

indicate shall include the following

required objects: design document

locations, special testbench drivers/

monitors, etc..."

Verification Planning

The next step in the planning process is to

edit the template and enter specific

information into all of the planning sections

for the target verification project. In this

example, the planning sections are:

• Verification Needs

• Reuse Assessment

• Verification Assumptions

• Verification Scope Assessment

In the section for Verification Needs, the

verification engineer needs to investigate and

document all of the verification needs for

their target verification project. This should

include identifying needs such as:

• All of the design documents that will

be used as inputs for the target

Device Under Verification (DUV)

• What is the requirements tool to be

used for linkage, and how will the

requirements be identified for the

target DUV?

• Whether there will be behavioral

models or functional models needed

as part of a system in the target

verification project?

• What are all of the design blocks

which will be needed to interact in the

system that can't be modeled?

• What are all the protocols used in the

target DUV?

• What are the testbench components

that are necessary for the target

verification project?

• Purchase vs. make: needs analysis

Reuse Assessment

Each project is a unique and complex

amalgam of design and testbench

components. While not directly related to the

concept of a living codified executable

verification plan, the reuse assessment is a

crucial part of an effective and complete

verification planning methodology in order to

identify up front what is the maturity of

existing design and verification components

that will be used, and if the components

identified during the Verification Needs

analysis are not available and need to be

developed. The reuse assessment of

verification collateral also provides an

opportunity to review the verification and

design material up front in the project in

order to understand what exists and what is

needed going forward.

It is also vital to identify who are the

designers that the verification team will be

working with on the project. This should be

done during the reuse assessment in order to

establish the expectations of engagement and

establish what the verification team can

expect to receive regarding the level of reuse.

Another area of potential reuse to assess is

what other verification resources are

available during various stages of the project.

Often times, projects utilize some level of

reuse both in the design and the testbench,

but without a careful and proper assessment

of the realistic level of reuse, too often the

assumption is that "reuse" means 100% reuse

and the project ends up under-resourced and

under-scoped.

The importance of the reuse assessment is to

identify for every piece of design code and

verification code, what exists and to what

extent is the code reused, modified, or new.

Verification Assumptions

The next step in planning should be to

document and review any assumptions being

made by the verification team for the project.

All of the assumptions should be reviewed by

the verification team with the designers such

that there are no surprises late in the project

and such that the team has a chance to

challenge any bad assumptions. For this

review to have the best effect face to face

meetings are crucial and it is common to have

several reviews to cover all the assumptions

before alignment is reached.

Some examples of verification assumptions

could be similar to the following:

• "Feature X cannot be verified in digital

simulations; requires Analog Mixed

Signal(AMS) simulations to verify, not

verified under this verification plan."

• "Feature X should be checked by

Block Z instead of Block W - not

verified in this plan."

• "System level signal Y cannot be

adequately modeled in this

standalone block level testbench,

corresponding feature X must be

verified during SoC verification."

• "Use of the standard protocol driver

does not implement the custom

extension to the protocol mentioned

in the design spec, but the project will

not implement the custom extension.

Thus the existing standard driver is

adequate as-is."

Assumptions all too often are left unspoken

and undocumented, and can lead to design

features falling through the cracks. All

assumptions should be very closely tracked,

reviewed, and scrutinized. One method of

tracking the verification assumptions

resolution is to document all the findings and

conclusions arrived during the reviews in this

same "Verification Assumptions" section of

the plan.

Verification Scope Assessment

The purpose of the Verification Scope

Assessment is to identify the target

verification approach to be used for the

verification project. A limiting factor may be

identified during the reuse assessment in the

case a legacy verification flow or

methodology was previously used and the

cost of rewriting the verification testbench for

a newer and better approach might not be

feasible. Another limiting factor might be the

limited skill set of the verification engineers

assigned to the project. Apart from these

limitations, the Verification Scope Assessment

should identify the best approach to follow

for the target verification project. Assessing

the following criteria can help identify what is

the scope of the verification approach for the

project:

• Identify your group's documented and

prescribed verification methodology

standard to be used for the project.

• What is the availability and quality of

the design requirements and

specification documentation?

• Is the target DUV SoC level, Sub-

System level, or Standalone block

level?

• Is the verification project primarily an

integration focus or a full feature

focus?

• What is the level of analog content of

the DUV and what type of analog

views will be used?

• What metrics will be used to measure

coverage and closure - assertions,

self-checking, visual inspection?

• Are there any checklists which are

required by the methodology

standard or project procedure that

affect verification decisions?

This assessment should help identify the

verification scope, whether the target

verification project should use a directed self-

checking stimulus approach, or use a

transaction level constrained random

stimulus approach, or if a formal verification

approach is the best solution. Additionally,

this assessment should help identify what

amount of check and coverage assertions

should be necessary in the verification project

to satisfy the coverage and closure criteria.

Also, the verification methodology should be

able to identify what types of coverage

should be required for the verification project

as a result of the verification scope

assessment - i.e. HDL Toggle coverage only,

full HDL code coverage, functional coverage,

testbench coverage, etc...

It is worth noting that there are a wide range

of valid verification approaches that should

be considered in determining the appropriate

solution for each verification project. The

purpose of the scope assessment is to

determine how to best use the limited

amount of verification resources available in

the most effective and efficient manner to

attain the highest overall value of quality,

time, and effort. The identified solution

should always be in line with the established

verification methodology guidelines. If

guidelines or checklists exist in the

verification methodology, the scope decisions

should be driven by these guidelines.

Implementation Planning

Planning the implementation of the

verification project is really the essence of

successful verification planning. The

implementation planning should be driven

from the following sources:

• Requirements Driven - for

requirements linkage

• Feature Driven - from design

specification documentation

• Priority Driven - for projects with a

design priority implementation flow

The organization of the features to be verified

in the verification plan should be well ordered

to maintain coherency. There are many

different valid verification approaches that

might lend themselves towards different

organizational structures within the

verification plan implementation section. The

following example verification plan (see figure

3) shows a picture of a directed self-checking

stimulus flow for a serial interface block to be

integrated in an SoC. The structure pictured in

this example is just one possible method to

organize the plan according to a feature

based verification flow:

Figure 3: Example Feature-Based Organization

The benefit of this level of organization during

verification planning is that the actual

implementation of the testbench and

stimulus should be a direct out-flowing of the

structure identified in planning. The actual

work of writing stimulus and testbench

components from a well ordered organized

plan is substantially more complete than an

ad hoc approach and the structure of the

stimulus in the executable verification plan

means that the regression list of stimulus is

already created and maintained in a single

source, and the linkage to requirements,

coverage, and pass/fail results is also already

created and maintained in a single source.

This ability to roll up the results for closure in

a single executable verification plan brings

the process of planning to closure into a full

circle.

Utilizing Tool Customizations and Creating

Custom Scripts

The example Freescale SoC verification

project discussed in this paper required a

number of verification planning tool

customizations to support the identified

verification planning needs. Two examples of

customizations Freescale needed were:

• Custom field for requirement tags

linkage

• Custom field for codified target

simulation configurations, i.e.

rtl/gls/ams

Regarding the requirement tags linkage,

Freescale added a user specified field in the

verification plan which allows the verification

engineers to insert requirements tags directly

connected to the testcase and coverage

objects. These requirements tags and

corresponding testcase/coverage objects are

then linked to the design requirements using

a separate requirements traceability linkage

tool.

Regarding the customization for supporting

target simulation configurations, another

user specified field was added to the

verification plan allowing verification

engineers to specify the target simulation

session per testcase object. For example, one

testcase might be targeted to only run in rtl

simulations, and another testcase might be

targeted for gls and ams simulations. In the

example verification project, this

customization is important because the

executable verification plan is used as the

single source for the regression testcase list,

and therefore the verification plan needs the

capability to add the target simulation

configuration attribute to each testcase.

Creation of a custom script was also required

in conjunction with the target configuration

customization mentioned in this example.

The executable verification plan needs the

ability to generate or have extracted the full

simulation regression list of testcases with

the target configuration parameters codified

in the list. However, the verification planning

tool used in this example does not have the

built in feature to natively generate the

necessary regression list in the target format

needed. Therefore, the need to create a

custom script to automate this extraction

process directly from the verification plan

source was critical to the success of using the

verification plan in the project. The example

custom script is written in PERL and it parses

the verification plan source to locate valid

testcases and extract all of the relevant

parameters codified in the plan for the

regression list. A crucial element of this

process is that the verification plan tool must

provide a format of the data that can be

parsed in a reliable and repeatable manner.

Closure - Metrics

In planning, it is important to determine the

signoff and completion criteria according to

the verification methodology. This should

correlate with the assertions identified during

the implementation planning, and should also

be consistent with the verification approach

identified during the scope assessment. The

benefit of creating and using an executable

verification plan is that it serves as a single

point of source throughout the entire

verification flow that allows the results to be

correlated according to the plan and in

conjunction with the plan of record. Closure

should include the ability to link all of the

coverage and pass/fail results to the feature

set created during planning, and support any

requirements linkage identified during

planning. The picture shown in figure 4 gives

a visual example of how the pass/fail

simulation results and the coverage results

can be linked directly back to the example

executable verification plan structure seen

previously in figure 3:

Figure 4: Simulation Results Metrics Report

Reviews / Reporting

Planning for proper reviews and reporting

should identify the reporting methods to be

used and the stages where different reviews

need to be held during the verification flow.

The topic of reviews is indeed a large subject

in itself, but it is worth noting the extreme

importance of holding proper verification

reviews with the proper audience at various

prescribed stages of planning,

implementation, debug, and closure.

Representatives from the design team, test

team, systems team, and verification peers

should all be included to participate in the

verification reviews. A major benefit of an

executable verification plan is that the review

records can be linked directly to the plan

objects and easily accessible in the case of

audits and quality reviews.

V. Summary/Conclusion

Verification planning is not simply a task that

is done once and forgotten at the start of a

verification project to satisfy some

management check box. Verification planning

is a living, breathing and executable

methodology for saving time and valuable

resources throughout the life of a

project. Like most methodology changes

however, there is always a cost. In the case of

verification planning, the cost is in adherence

and discipline, but with a tremendous set of

benefits. With an organized verification

planning methodology and management

solution, the typical manual and arduous

reporting process comes for free, the analysis

of what was tested and what was n

automatic, and the implementation details to

achieve closure takes virtually no work as

information is alive and independent of the

testbench. In our experience, a meaningful

verification planning process may

20% to the verification frontend. But in return

the verification planning investment can save

10% to 40% in the overall verification

schedule, plus recover the planning

plus provide reduced direct effort around

verification implementation and closure by at

least 20% (see figure 5)

Figure 5: Value of Verification Planning

When verification planning is given proper

focus and priority, the overall verification

project flow has coherency using a single

point of source for development of the

verification collateral by strongly correlating

simulation results to feature closure.

Implementing an executable codified and

rification planning

is a living, breathing and executable

methodology for saving time and valuable

roughout the life of a

Like most methodology changes

In the case of

in adherence

but with a tremendous set of

verification

and management

solution, the typical manual and arduous

reporting process comes for free, the analysis

of what was tested and what was not is fully

ic, and the implementation details to

achieve closure takes virtually no work as

information is alive and independent of the

n our experience, a meaningful

 add 10% to

But in return

the verification planning investment can save

10% to 40% in the overall verification

the planning costs,

plus provide reduced direct effort around

verification implementation and closure by at

Figure 5: Value of Verification Planning

When verification planning is given proper

focus and priority, the overall verification

project flow has coherency using a single

point of source for development of the

ongly correlating

simulation results to feature closure.

Implementing an executable codified and

feature based verification plan is a highly

beneficial enhancement to any verification

methodology.

feature based verification plan is a highly

beneficial enhancement to any verification

