

Be a Sequence Pro to Avoid Bad Con Sequences

Presenters: Jeff Vance, Jeff Montesano Contributors: Mark Litterick, Jason Sprott

Introduction

UVM sequences are vital for verification success

Need Control

- **Reach scenarios**
- Find and isolate bugs
- **Close coverage**

Manage Complexity

- Debug constraint failures
- **Reduce** mistakes
- Transfer knowledge

Need Reuse

- Within a sequence library •
- With derivative projects •
- For generic VIP •

UVM sequences are often not applied appropriately

- Can't control from tests
- Can't isolate features

- Intractable constraint failures
- Invalid stimulus

Not Reusable

- Copy/pasted routines
 - Tied to a specific DUT

Poor visibility of project status

No risk-management of features

Outline

- Introduction to sequences
- Sequence guidelines improve control, complexity, & reuse
- **Sequence execution** masters, reactive slaves, streaming data
- **Verification productivity** *strategies to manage features*
- **Portable Stimulus Considerations** how PSS impacts sequences
- Conclusion & references

What are UVM sequences and why do we care?

INTRODUCTION TO SEQUENCES

© Accellera Systems Initiative & Verilab

What is a Sequence?

A sequence encapsulates a scenario

Why Bother Using Sequences?

accel

SYSTEMS INITIATIVE

Why Bother Using Sequences?

© Accellera Systems Initiative & Verilab

Why Bother Using Sequences?

© Accellera Systems Initiative & Verilab

accellera

SYSTEMS INITIATIVE

Sequence API Strategy

Sequence Layer Roles

LAYER		CONSTRAINTS	PRIMARY PURPOSE		
TEST		Test scenario	Highest-level sequence		Reduce complexity at each layer
ТОР	User	DUT use cases/scenarios	API for test writer		
	Lower	System requirements	Scenario building blocks		Control with intuitive APIs
UVC	User	Protocol use cases	Encapsulates sequencer(s)		
	Middle	Protocol operations	Encapsulates basic operations		
	Low	Low-level requirements	Data formatting		Sequences decoupled
	Item	Enforce legality	Support all possible scenarios		and reusable

 \checkmark

Each layer resolves a subset of random options

Benefits both directed and random tests

Existence of some layers is application dependent

How to maximize the benefits of using sequences

SEQUENCE GUIDELINES

© Accellera Systems Initiative & Verilab

Produce legal stimulus by default

SYSTEMS INITIATIVE

acceller

Legality Guideline

Legality Guideline

Legality Guideline

Control Knob Debug Guideline

Constrain control knobs with class constraints, then pass results with inline constraints

Control Knob Debug Guideline

start sequence

class ahb burst seq extends ahb base seq; rand hwrite t hwrite; rand hburst t hburst;

Debug randomization in isolated steps

Two-Step Randomization:

- 1. Randomize class variables
- 2. Run **body()** to randomize lower sequences

API Guideline

Minimize the number of control knobs

Users can't misuse sequence and cause unexpected errors

Reuse Guideline

Make tests independent of testbench architecture

Test sequences are generic and reusable on derivative projects

Adaptability Guideline

Use **configuration objects** and **accessor methods** to adapt to project-specific configurations

```
class ahb cfg extends uvm object;
                                                          Keep project-specific configuration
    rand int slv fifo depth;
                                                          constraints outside of sequences
     . . .
    constraint {
       slv_fifo_depth inside {[1: `MAX FIFO DEPTH]};
    };
    function int get fifo depth();
       return(this.slv fifo depth);
    endfunction
                                 class fifo test seq extends fabric base seq;
          Sequence is generic
                                   task body();
             and reusable
                                     for(int i=0; i<=p sequencer.cfg.get_fifo_depth();</pre>
                                 i++) begin
            Changes in spec
                                        `uvm do with(master seq, {
            are transparent
                                                       hsize == HSIZE 32;
accellera
                                                       hburst == SINGLE; })
SYSTEMS INITIATIVE
                                      © Accellera Systems Initiative & Verilab
```


accelle

SYSTEMS INITIATIVE

Self-tuning Guideline

Use **utility methods** to support self-tuning sequences

- Derive values using formulas
- Calculate delays for transactions
- Calculate timeouts for waiting

Avoid code duplication between sequences

Sequences adapt to changes in calculations

Constraint Placement Guideline

Constraint Strategy	Ideal Purpose		
class constraints	legal requirements		
inline constraints	scenarios		
configuration objects	configuration register dependencies		
descriptor objects ^[1]	bundle sets of control knobs		
policy classes ^[3]	dynamically redefine constraints or impose constraints that bypass many layers		

[3] SystemVerilog Constraint Layering via Reusable Randomization Policy Classes – John Dickol, DVCon 2015

acceller

SYSTEMS INITIATIVE

Sequence Library Tip

Use typedef header at top of sequence library file

More Guidelines

Guidelines				
Use Dedicated Constraint Blocks	Inheritance vs. Composition			
Use Soft Constraints Carefully	Manage Control Knobs Hierarchically			
Use Enumerated Types	Provide Random and Directed Flavors			
Use Descriptor Objects	Messaging at Sequence Start and End			

[1] Use the Sequence, Luke – Verilab, SNUG 2018

SEQUENCE EXECUTION

© Accellera Systems Initiative & Verilab

Sequence Execution Overview

- Sequences execute on sequencers to control stimulus
 - virtual sequences coordinate and execute one or more sequences
 - physical sequences generate items which are passed to drivers
 - drivers interact with DUT via signal interface
- Sequence execution affected by:
 - verification component role proactive or reactive
 - sequencer type virtual (no item) or physical (item)
 - item content single transaction or streams of data

Proactive Masters & Reactive Slaves

• **Proactive Masters**:

- Test controls when sequences are executed on the UVC and timing of requests to DUT
- Stimulus blocks test flow waiting for DUT response
- Reactive Slaves:

- Timing of DUT requests is unpredictable (e.g. due to embedded FW execution)
- UVC must react to request and respond autonomously without blocking test flow

SYSTEMS INITIATIVE

Proactive Master Operation

SYSTEMS INITIATIVE

Reactive Slave Operation

Sequence Types

- Normal Sequences: Generate a *single* transaction
- Virtual Sequences: Start other sequences
- Streaming Sequences: Generate *autonomous* stimulus

Normal Sequences

- Normal sequences use a sequence item to:
 - Generate stimulus via a driver
 - Describe required transaction-level stimulus
 - Define a single finite transaction
- Key characteristics:
 - Driver is not autonomous
 - Fully controllable from virtual sequences
 - Sequence handshake is blocking
 - Sequence items handled consecutively

- bus transactions
- data packet
- power on/reset

Return after **complete** transaction (& response)

Proactive Master Sequence

Proactive Master Driver

UVC ENV

Reactive Slave Sequence

Reactive Slave Driver

UVC ENV

Virtual Sequences

- Virtual sequences:
 - do not directly generate an item
 - coordinate & execute other sequences
 - define scenarios, interaction & encapsulation

• Key characteristics

- full control over all child sequences
- may be blocked by time-consuming sequences
- multiple virtual sequences may run at same time (nested or parallel) on same virtual sequencer

- high-level scenarios
- parallel transactions
- multiple agents/UVCs

Virtual Sequence

execute on *this* virtual sequencer (targets different physical sequencer)

```
`uvm_do_on_with(send_data_seq, p_sequencer.i2c_sequencer,{
```

fork multiple sequences in parallel

slave == 1; data == local::data;

class my_virtual_seq extends uvm_sequence;

my poll fifo seq poll fifo seq;

timeout == 1ms;

i2c send data seq send data seq;

`uvm do with(poll fifo seq, { 🚽

// rand fields ...;

// constraints ...;

task body();

fork

})

join

. . .

})

```
execute on referenced physical sequencer
```


Streaming Sequences

- Streaming is a stimulus pattern where:
 - Item defines repetitive autonomous stimulus
 - Driver generates derived patterns on its own

clock generators

- background traffic
- analog waveforms
 (real number models)

Sequences can run forever

- Key characteristics for successful streaming include:
 - Sequences (& config) control the autonomous behavior
 - Sequence handshake must be non-blocking .
 - Operation can be **interrupted** by a new operation

Safely stopped and started again

Streaming Sequence

^[*] Or use random integers with scaling factor for real and time values

SYSTEMS INITIATIVE

Streaming Driver

UVC ENV

Strategies to apply sequence API to reach project goals

VERIFICATION PRODUCTIVITY

© Accellera Systems Initiative & Verilab

How do we use our Sequence API?

Project Goals

- Meet milestone deadlines
- Maximize chance of finding bugs
- Report status to stakeholders

Project Challenges

- Massive state space to verify
- Need to track progress
- Need a strategy to meet goals

Project Risks

- Features ready at later milestones
- Bugs block progress
- Changes in requirements
- Changes in priorities

Our sequence API is a powerful tool for solving this

Feature Group Isolation

Configuration	Data	Timing						
FIXED	FIXED	FIXED						
RAND	RAND	RAND						
RAND	RAND	FIXED (Low)						
RAND	RAND	FIXED (High)						
FIXED	RAND	RAND						
RAND	FIXED	RAND						
MAX	RAND	MAX						
TYPICAL	RAND	TYPICAL						
	FIXED RAND RAND RAND FIXED RAND MAX	FIXEDFIXEDRANDRANDRANDRANDRANDRANDFIXEDRANDRANDFIXEDMAXRAND						

Virtual Sequence Control Knob Options

Feature Group Isolation

Identify design features that partition *major* DUT functionality

accellera

SYSTEMS INITIATIVE

Can stress any feature in isolation per test

Can control mix of features per test

We can't isolate **every** feature. Choose strategically!

Test Suite Example

Test Name	Configuration		Data	Timing			
	DUT_MODE	CH_CFG	Input	TR_DELAY	DUT_FLOW		st scope is obvious
seq_flow_test	RAND	RAND	RAND	FIXED	SEQUENTIAL		
par_flow_test	RAND	RAND	RAND	FIXED	PARALLEL	Bu	Bugs less likely to block progress Debug issues rapidly: Timing, Data, or Config
fast_mode_test	FAST_MODE	SINGLE	RAND	RAND	RAND	10	
basic_data_test	RAND	RAND	FIXED	RAND	RAND		
max_thput_test	FAST_MODE	ALL_CHAN	RAND	MIN_DELAY	PARALLEL	De Tir	
use_case_test	NORM_MODE	TYPICAL	RAND	TYPICAL	PARALLEL		

Can adapt to changing

 \swarrow

Regression results are implicitly mapped to features

Easy to allocate regressions to close feature coverage

Easy to target corner-cases and use-cases

requirements and schedules

© Accellera Systems Initiative & Verilab

Where does portable stimulus fit in?

PORTABLE STIMULUS

© Accellera Systems Initiative & Verilab

What is Portable Stimulus?

• Portable Test and Stimulus Standard (PSS) ^[5]

"[**PSS**] defines a specification for creating a single representation of stimulus and test scenarios ... enabling the generation of different implementations of a scenario that run on a variety of execution platforms..."

- Key features:
 - higher level of abstraction for describing test intent
 - test intent is **decoupled** from implementation details
 - declarative domain-specific system modeling language
 - allows test portability between implementations and platforms
 - executes implementation-specific methods and sequences
- Does PSS replace all our UVM sequences and stimulus?
 - no, but it can replace the test layer and some virtual sequences

PSS addresses reuse of test intent

- reuse from (block to) sub-system to full-system (within UVM)
- reuse of tests on different **target implementations** (*e.g. UVM or SW*)
- reuse of tests on different target platforms (e.g. simulation or hardware)

© Accellera Systems Initiative & Verilab

What Changes

- High-level test scenarios & use-cases delegated to PSS
 - almost^[*] all test sequences & test components **replaced** by PSS
 - many sub-system and full-system scenario virtual sequences replaced
- We do not implement these tests in UVM
 - we generate UVM tests from the PSS tools
 - we conceive test scenarios using PSS modeling paradigm
- PSS tests are responsible for corresponding high-level checks
- PSS also has built-in (stimulus) functional coverage capability

^[*] Retain some pure UVM tests to sign-off & regress UVM environment

What Does Not Change

- Intermediate virtual sequences in environment: *unaffected*
 - these are used by PSS execution to actually stimulate DUT
- UVC virtual and physical sequences: *unaffected*
 - these are used by PSS execution and enclosing environment layer
- Block-level test scenarios : unaffected (in most cases)
 - validate comprehensive operation of block independent of system environment
- UVC and environment checks: unaffected, still required
 - signal protocol checks (interface assertions)
 - transaction content (monitors)
 - transaction relationships (scoreboards)
- UVC and environment functional coverage: still required

PSS coverage is only stimulus intent, not observed effect (we need both)

SYSTEMS INITIATIVE

PSS Tests & UVM Sequences

CONCLUSION

SYSTEMS INITIATIVE

Conclusion (cont.)

Project Challenges

Poor visibility of project status

No risk-management of features

Apply Sequence API Strategically

Prioritize features efficiently

Track and report status easily

Anticipate and manage project risks

UVM Sequences Remain Vital

PSS benefits from high quality sequences

References

- 1 Use the Sequence, Luke Verilab, SNUG 2018
- 2 Mastering Reactive Slaves in UVM Verilab, SNUG 2016
- 3 SystemVerilog Constraint Layering via
 Reusable Randomization Policy Classes, John Dickol, DVCon 2015
- 4 Advanced UVM Tutorial Verilab, DVCon 2014
- 5 Portable Test and Stimulus Standard, Version 1.0, Accellera

Verilab **papers** and **presentations** available from: <u>http://www.verilab.com/resources/papers-and-presentations/</u>

Q&A jeff.vance@verilab.com jeff.montesano@verilab.com

The following images are licensed under <u>CC BY 2.0</u>

- <u>Verdi_Requiem 008</u> by <u>Penn State</u>
- <u>Sheet music</u> by <u>Trey Jones</u>
- Flutist by operaficionado
- <u>Cello Orchestra</u> by <u>Malvern St James</u>
- Folk_am_Neckar_4915 by Ralf Schulze
- Flute by Bmeje
- Cello by Lori Griffin

