
© Accellera Systems Initiative & Verilab

Be a Sequence Pro
to Avoid Bad Con Sequences

1

Presenters: Jeff Vance, Jeff Montesano

Contributors: Mark Litterick, Jason Sprott

© Accellera Systems Initiative & Verilab

Introduction

2

UVM sequences are often not applied appropriately

UVM sequences are vital for verification success

Need Control
• Reach scenarios

• Find and isolate bugs

• Close coverage

Manage Complexity
• Debug constraint failures

• Reduce mistakes

• Transfer knowledge

Need Reuse
• Within a sequence library

• With derivative projects

• For generic VIP

Insufficient API
• Can’t control from tests

• Can’t isolate features

Too Complex
• Intractable constraint failures

• Invalid stimulus

Poor visibility of project status No risk-management of features

Not Reusable
• Copy/pasted routines

• Tied to a specific DUT

© Accellera Systems Initiative & Verilab

Outline

• Introduction to sequences

• Sequence guidelines – improve control, complexity, & reuse

• Sequence execution – masters, reactive slaves, streaming data

• Verification productivity – strategies to manage features

• Portable Stimulus Considerations – how PSS impacts sequences

• Conclusion & references

3

© Accellera Systems Initiative & Verilab

INTRODUCTION TO SEQUENCES

What are UVM sequences and why do we care?

4

© Accellera Systems Initiative & Verilab

class access_seq extends base_seq;

rand master_enum source;

rand cmd_enum cmd;

rand bit[31:0] addr;

rand bit[31:0] data[];

constraint legal_c{ ...}

task body();

...

if(p_sequencer.cfg.chmode == ENABLED)

...

What is a Sequence?

5

Random control knobs for users

A sequence encapsulates a scenario

Constraints on random options

Procedural body()

Access resources via sequencer

© Accellera Systems Initiative & Verilab

class access_seq extends base_seq;

rand master_enum source;

rand cmd_enum cmd;

rand bit[31:0] addr;

rand bit[31:0] data[];

constraint legal_c{ ...}

task body();

...

Why Bother Using Sequences?

6

Both have procedural body

Both sequences and tasks

encapsulate a scenario

task access_dut (master_enum source,

cmd_enum cmd,

bit[31:0] addr,

ref bit[31:0] data[]);

...

//Task body

Both provide

options

© Accellera Systems Initiative & Verilab

Why Bother Using Sequences?

7In the most basic cases, tasks and sequences can be equivalent

start

sequence

class access_seq extends base_seq;

rand master_enum source;

rand cmd_enum cmd;

rand bit[31:0] addr;

rand bit[31:0] data[];

constraint legal_c{ ...}

task body();

...

class read_test extends uvm_test;

task run_phase(uvm_phase phase);

`uvm_do_with(access_seq,

{source == PORT_A;

cmd == WRITE;

addr == 'hA0;

data == 'h55;})

...

call task

task access_dut (master_enum source,

cmd_enum cmd,

bit[31:0] addr,

ref bit[31:0] data[]);

...

//Task body

class read_test extends uvm_test;

task run_phase(uvm_phase phase);

access_dut(PORT_A, WRITE,

'hA0, 'h55);

...

© Accellera Systems Initiative & Verilab

SequencesTasks

Why Bother Using Sequences?

8

Legal randomization is built-in

Arguments are optional

(random by default)

Constraints validate user options

Caller can access any data

(with sequence handle)

Access to resources via sequencer

Adding options has minimal impact

Arguments are mandatory

(or fixed by default)

Users must randomize args

No built-in arg validity checks

Awkward to return data

(use ref arguments)

No built-in access to resources

Adding args breaks existing code

With

guidelines

© Accellera Systems Initiative & Verilab

test

configuration

constraints

virtual
sequencer

Sequence A Sequence B Sequence C

Driver A Driver B Driver C

© Accellera Systems Initiative & Verilab

Sequence API Strategy

10

vbus
sqr

driver

vbus
seq lib

vbus
agent#1

i2c
sqr

driver

i2c
seq lib

i2c
agent

vbus
sqr

driver

vbus
seq lib

vbus
agent#2

UVC env

uvc_env
seq lib

UVC env
sequencer

environment
sequencer env

seq lib

test
seq lib

tests

v
ir

tu
a
l

s
e
q

u
e
n

c
e
rs

p
h

y
s
ic

a
l

(a
g

e
n

t)

s
e
q

u
e
n

c
e
rs

”test sequences”

”top environment

sequences”

UVC env

”UVC sequences”

p
h

y
s
ic

a
l

(a
g

e
n

t)

s
e
q

u
e
n

c
e
rs

© Accellera Systems Initiative & Verilab

Sequence Layer Roles

11

LAYER CONSTRAINTS PRIMARY PURPOSE

TEST Test scenario Highest-level sequence

TOP
User DUT use cases/scenarios API for test writer

Lower System requirements Scenario building blocks

UVC

User Protocol use cases Encapsulates sequencer(s)

Middle Protocol operations Encapsulates basic operations

Low Low-level requirements Data formatting

Item Enforce legality Support all possible scenarios

Each layer resolves a subset of random options

Benefits both directed and random tests

Sequences decoupled

and reusable

Reduce complexity

at each layer

Control with

intuitive APIs

Existence of some layers is

application dependent

© Accellera Systems Initiative & Verilab

SEQUENCE GUIDELINES

How to maximize the benefits of using sequences

12

© Accellera Systems Initiative & Verilab

Legality Guideline

Users can provide 0 or

more inline constraints

class top_seq extends base_seq;

…

task body();

`uvm_do(ahb_burst_seq_inst)

start sequence

class ahb_burst_seq extends base_seq;

constraint legal_c{

dir inside {WRITE, READ};

addr + length < p_sequencer.cfg.get_max_addr();

…

}

No knobs provided

Enforce legal stimulus

Produce legal stimulus by default

© Accellera Systems Initiative & Verilab

Legality Guideline

14

start sequence

Inline constraints are

optional, but legality is

always guaranteed

class top_seq extends base_seq;

…

task body();

`uvm_do_with(ahb_burst_seq_inst,

{addr == ‘hFF00;})

class ahb_burst_seq extends base_seq;

constraint legal_c{

dir inside {WRITE, READ};

addr + length < p_sequencer.cfg.get_max_addr();

…

}

Address set by user

Length still random and legal

© Accellera Systems Initiative & Verilab

Legality Guideline

15

start sequence

May produce illegal burst length

Users must manage legal rules in

higher sequences

class top_seq extends base_seq;

…

task body();

`uvm_do_with(ahb_burst_seq_inst,

{addr == ‘hFF0;

length == 1024;})

class ahb_burst_seq extends base_seq;

constraint legal_c{

dir inside {WRITE, READ};

addr < p_sequencer.cfg.get_max_addr();

…

}

What if length is invalid?

(User error or bug)

Wasted time debugging

invalid simulations

Without this guideline, we risk

wasting significant time!

No constraint

on length

© Accellera Systems Initiative & Verilab

Legality Guideline

16

start sequence

Protect users from illegal

stimulus

Constraint solver fails

on illegal options

class top_seq extends base_seq;

…

task body();

`uvm_do_with(ahb_burst_seq_inst,

{addr == ‘hFFFF_FFF0;

length == 256;}) Illegal address and length

class ahb_burst_seq extends base_seq;

constraint legal_c{

dir inside {WRITE, READ};

addr + length < p_sequencer.cfg.get_max_addr();

…

}

© Accellera Systems Initiative & Verilab

Control Knob Debug Guideline

17

start sequence

All constraints solved concurrently,

making solver failures hard to debug

Constrain control knobs with class constraints,

then pass results with inline constraints

class ahb_write_burst_seq extends ahb_base_seq;

…

`uvm_do_with(ahb_seq,

{ahb_seq.hwrite == HWRITE_WRITE;

ahb_seq.hburst inside {HBURST_SINGLE, HBURST_INCR};}

class ahb_burst_seq extends ahb_base_seq;

rand write_enum hwrite;

rand burst_enum hburst;

…

}

Don’t pass inline

© Accellera Systems Initiative & Verilab

class ahb_write_burst_seq extends ahb_base_seq;

rand hburst_t hburst;

constraint c_hburst {

hburst inside {HBURST_SINGLE, HBURST_INCR};

}

task body();

`uvm_do_with(ahb_seq,

{ahb_seq.hwrite == HWRITE_WRITE;

ahb_seq.hburst inside {HBURST_SINGLE, HBURST_INCR};

ahb_seq.hburst == local::hburst;}

Control Knob Debug Guideline

18
Debug randomization in isolated steps

start sequence

class ahb_burst_seq extends ahb_base_seq;

rand hwrite_t hwrite;

rand hburst_t hburst;

Use class constraint

Pass result to sequence

Two-Step Randomization:

1. Randomize class variables

2. Run body() to randomize

lower sequences

© Accellera Systems Initiative & Verilab

class ahb_master_write_seq extends ahb_base_seq;

rand int slave_num;

…

protected rand int slave_id;

constraint id_c {

slave_id == p_sequencer.cfg.get_slave_id(slave_num);

}

virtual task body();

ahb_seq_item req;

`uvm_do_with(req,{req.hwrite == HWRITE_WRITE;

req.hprot3 == p_sequencer.cfg.get_hprot3();

req.haddr[31:24] == local::slave_num;

req.id == local::slave_id})

API Guideline

19

Sequences are easier to use
Users can’t misuse sequence

and cause unexpected errors

Minimize the number of control knobs

Exposed control knob

Hidden control knob

Users can’t control these

Keep fixed and derived

variables in body()

© Accellera Systems Initiative & Verilab

class ahb_fabric_master_write_seq extends ahb_base_seq;

...

task body();

ahb_master_write_seq ahb_master_write_seqs[string];

...

`uvm_do_on_with(ahb_master_write_seqs[b],

p_sequencer.agent_sequencer[b],

{…})

class ahb_fabric_write_seq extends base_seq;

task body();

ahb_fabric_master_write_seq master_write_seq;

`uvm_do(master_write_seq)

endtask: body

Reuse Guideline

start mid-level sequence

Test sequences are generic and reusable on derivative projects

Make tests independent of testbench architecture

Test-level sequence decoupled

from testbench architecture

Only mid-level sequences

reference sequencers

© Accellera Systems Initiative & Verilab

class ahb_cfg extends uvm_object;

rand int slv_fifo_depth;

...

constraint {

slv_fifo_depth inside {[1:`MAX_FIFO_DEPTH]};

};

function int get_fifo_depth();

return(this.slv_fifo_depth);

endfunction

Adaptability Guideline

Sequence is generic

and reusable

Changes in spec

are transparent

Use configuration objects and accessor methods

to adapt to project-specific configurations

class fifo_test_seq extends fabric_base_seq;

...

task body();

for(int i=0; i<=p_sequencer.cfg.get_fifo_depth();

i++) begin

`uvm_do_with(master_seq, {

hsize == HSIZE_32;

hburst == SINGLE;})

Keep project-specific configuration

constraints outside of sequences

© Accellera Systems Initiative & Verilab

class write_word_seq extends base_seq;

rand bit[31:0] addr;

task body();

bit[31:0] ram_addr = addr / DATA_WORDS_PER_ADDR;

`uvm_do_with(write_single_seq, {

addr == local::ram_addr;

word_sel == calc_data_offset_from_addr(local::addr)})

function automatic int calc_data_offset_from_address(ADDR_t addr);

return(addr / DATA_WORD_SIZE) % DATA_WORDS_PER_ADDR);

endfunction

Self-tuning Guideline

Avoid code duplication between sequences

Sequences adapt to changes in calculations

Use utility methods to support self-tuning sequences

Package-scope methods perform

common calculations

package ahb_pkg;

`include “ahb_common.sv”

... //etc

endpackage

• Derive values using formulas

• Calculate delays for transactions

• Calculate timeouts for waiting

© Accellera Systems Initiative & Verilab

Constraint Placement Guideline

23

Constraint Strategy Ideal Purpose

class constraints legal requirements

inline constraints scenarios

configuration objects configuration register dependencies

descriptor objects[1] bundle sets of control knobs

policy classes [3] dynamically redefine constraints or impose
constraints that bypass many layers

[3] SystemVerilog Constraint Layering via Reusable

Randomization Policy Classes – John Dickol, DVCon 2015

© Accellera Systems Initiative & Verilab

typedef class power_on_seq; // powers on DUT

typedef class reset_seq; // hard reset of DUT

typedef class por_seq; // powers on and hard resets DUT

...

class power_on_seq extends base_seq;

...

endclass

class reset_seq extends base_seq;

...

endclass

class por_seq extends base_seq;

power_on_seq power_seq;

reset_seq rst_seq;

...

endclass

Sequence Library Tip

allows sequences

used in any order

documents content

Use typedef header at top of sequence library file

typically multiple classes per file

(normal UVM has one class per file)

© Accellera Systems Initiative & Verilab

More Guidelines

25

[1] Use the Sequence, Luke – Verilab, SNUG 2018

Guidelines

Use Dedicated Constraint Blocks Inheritance vs. Composition

Use Soft Constraints Carefully Manage Control Knobs Hierarchically

Use Enumerated Types Provide Random and Directed Flavors

Use Descriptor Objects Messaging at Sequence Start and End

© Accellera Systems Initiative & Verilab

SEQUENCE EXECUTION

26

© Accellera Systems Initiative & Verilab

Sequence Execution Overview

• Sequences execute on sequencers to control stimulus
– virtual sequences coordinate and execute one or more sequences

– physical sequences generate items which are passed to drivers

– drivers interact with DUT via signal interface

• Sequence execution affected by:
– verification component role - proactive or reactive

– sequencer type - virtual (no item) or physical (item)

– item content - single transaction or streams of data

27

I/
F

SEQUENCER DRIVER
ITEM

DUTV
IF

SIGNALS
VIRTUAL

SEQUENCER

SEQSEQ ITEM

HANDLE HANDLETLM CONNECT

© Accellera Systems Initiative & Verilab

Proactive Masters & Reactive Slaves

28

• Proactive Masters:

– Test controls when sequences are executed on the UVC and timing of requests to DUT

– Stimulus blocks test flow waiting for DUT response

• Reactive Slaves:

– Timing of DUT requests is unpredictable (e.g. due to embedded FW execution)

– UVC must react to request and respond autonomously without blocking test flow

DUT REACTIVE

SLAVE

REQ

RESP

3

2IMPLICIT OR REMOTE

DUT PROVOCATION

1

DUT
PROACTIVE

MASTER

RESP

REQ

1 2

3

EXPLICIT

TEST STIMULUS

© Accellera Systems Initiative & Verilab

Proactive Master Operation

29

UVC ENVIRONMENT

IN
T

E
R

F
A

C
E

S
V

A

SEQUENCER DRIVER

MASTER AGENT

MONITOR

• coverage

• checks

REQ

TRANSACTION

DUT

(SLAVE)RESP

REQ

V
IF

V
IFITEM

drive request signals

according to protocol

(& wait for response)

generate sequence item

& pass to driver via TLM

test or higher-level:

start / do sequence

on sequencer

monitor publishes full transactions

via TLM analysis port (REQ & RESP)

decode response

& return to sequence

1
2 3

4

5

© Accellera Systems Initiative & Verilab

Reactive Slave Operation

30

UVC ENVIRONMENT

IN
T

E
R

F
A

C
E

S
V

A

SEQUENCER

ITEM

DRIVER

SLAVE AGENT

MONITOR

• coverage

• checks

RESP

TRANSACTION

DUT

(MASTER)

RESP

REQ

V
IF

V
IF

TLM FIFO

REQ

decode request whenever DUT

initiates it & publish to sequencer

test or higher-level:

start / do / default

forever sequence

that waits for REQ

monitor publishes full transactions

via TLM analysis port (REQ & RESP)

drive response signals

according to protocol

(based on request)

generates sequence item

& passed to driver via TLM

1

2
0

3

4

© Accellera Systems Initiative & Verilab

Sequence Types

• Normal Sequences: Generate a single transaction

• Virtual Sequences: Start other sequences

• Streaming Sequences: Generate autonomous stimulus

31

© Accellera Systems Initiative & Verilab

Normal Sequences

• Normal sequences use a sequence item to:

– Generate stimulus via a driver

– Describe required transaction-level stimulus

– Define a single finite transaction

• Key characteristics:

– Driver is not autonomous

– Fully controllable from virtual sequences

– Sequence handshake is blocking

– Sequence items handled consecutively

32

Return after complete

transaction (& response)

• bus transactions

• data packet

• power on/reset

© Accellera Systems Initiative & Verilab

Proactive Master Sequence

33

class my_master_request_seq extends

uvm_sequence #(my_master_seq_item);

rand cmd_enum cmd;

rand bit[31:0] addr;

rand bit[31:0] data[];

...

my_master_seq_item m_item;

...

task body();

`uvm_do_with(m_item,{

m_item.m_cmd == local::cmd;

m_item.m_addr == local::addr;

foreach (local::data[i]) m_item.m_data[i] == local::data[i];

...

})

...

UVC ENV

DUT

MASTER AGENT

S D

M

generate request item

based on sequence knobs

© Accellera Systems Initiative & Verilab

Proactive Master Driver

34

class my_master_driver extends uvm_driver#(my_master_seq_item);

my_master_seq_item m_item;

...

task run_phase(...);

...

forever begin

seq_item_port.get_next_item(m_item);

drive_item(m_item);

seq_item_port.item_done();

end

endtask

task drive_item(my_master_seq_item item);

...

endtask

endclass

standard driver-sequencer interaction

drive request signals to DUT

(based on sequence item fields)

UVC ENV

DUT

MASTER AGENT

S D

M

© Accellera Systems Initiative & Verilab

Reactive Slave Sequence

35

class my_slave_response_seq extends

uvm_sequence #(my_slave_seq_item);

my_slave_seq_item m_item;

my_transaction m_request;

...

task body();

forever begin

p_sequencer.request_fifo.get(m_request);

case (m_request.m_direction)

READ :

`uvm_do_with(m_item,{

m_item.m_resp_kind == READ_RESPONSE;

m_item.m_delay <= get_max_delay();

m_item.m_data == get_data(m_request.m_addr);

...

})

...

wait for a transaction request

(fifo.get is blocking)

generate response item

based on observed request

UVC ENV

DUT

SLAVE AGENT

S D

M
call forever loop inside sequence

(sequence runs throughout phase:

...do not raise and drop objections!)

© Accellera Systems Initiative & Verilab

Reactive Slave Driver

36

class my_slave_driver extends uvm_driver #(my_slave_seq_item);

my_slave_seq_item m_item;

...

task run_phase(...);

...

forever begin

seq_item_port.get_next_item(m_item);

drive_item(m_item);

seq_item_port.item_done();

end

endtask

task drive_item(my_slave_seq_item item);

...

endtask

endclass

standard driver-sequencer interaction

drive response signals to DUT

(based on sequence item fields)

UVC ENV

DUT

SLAVE AGENT

S D

M

identical code structure

to proactive master

[2] Mastering Reactive Slaves in UVM – Verilab, SNUG 2016

© Accellera Systems Initiative & Verilab

Virtual Sequences

• Virtual sequences:

– do not directly generate an item

– coordinate & execute other sequences

– define scenarios, interaction & encapsulation

• Key characteristics

– full control over all child sequences

– may be blocked by time-consuming sequences

– multiple virtual sequences may run at same time
(nested or parallel) on same virtual sequencer

37

Must target different resources

(not possible for physical sequencers)

• high-level scenarios

• parallel transactions

• multiple agents/UVCs

© Accellera Systems Initiative & Verilab

Virtual Sequence

38

class my_virtual_seq extends uvm_sequence;

// rand fields ...;

// constraints ...;

...

task body();

my_poll_fifo_seq poll_fifo_seq;

i2c_send_data_seq send_data_seq;

fork

`uvm_do_with(poll_fifo_seq, {

timeout == 1ms;

})

`uvm_do_on_with(send_data_seq, p_sequencer.i2c_sequencer,{

slave == 1;

data == local::data;

})

join

...

execute on this virtual sequencer

(targets different physical sequencer)

execute on referenced

physical sequencer

ENV

DUT

AGENT

S D

Mfork multiple sequences in parallel

VS

© Accellera Systems Initiative & Verilab

Streaming Sequences

• Streaming is a stimulus pattern where:

– Item defines repetitive autonomous stimulus

– Driver generates derived patterns on its own

• Key characteristics for successful streaming include:

– Sequences (& config) control the autonomous behavior

– Sequence handshake must be non-blocking

– Operation can be interrupted by a new operation

39

Safely stopped and started again

Sequences can run forever

• clock generators

• background traffic

• analog waveforms

(real number models)

© Accellera Systems Initiative & Verilab

Streaming Sequence

40

class my_ramp_seq extends uvm_sequence #(my_analog_seq_item);

rand real start;

rand real step;

rand time rate;

...

my_analog_seq_item m_item;

...

// constraint start inside {[0.0:0.75]};

// constraint rate inside {[1ps:100ns]};

...

task body();

`uvm_do_with(m_item,{

m_item.m_start == local::start;

m_item.m_step == local::step;

m_item.m_rate == local::rate;

})

...

UVC ENV

DUT

STREAM AGENT

S D

M

generate normal sequence item

constrained by control knobs

real and time constraints

random real and time control knobs[*]

totally normal physical

sequence structure

[*] Or use random integers with scaling factor for real and time values

© Accellera Systems Initiative & Verilab

class my_analog_driver extends uvm_driver #(my_analog_seq_item);

my_analog_seq_item m_item;

...

task run_phase(...);

...

forever begin

seq_item_port.get_next_item(m_item);

seq_item_port.item_done();

fork

seq_item_port.peek(m_item);

drive_item(m_item);

join_any

disable fork;

end

endtask

...

endclass

task drive_item(my_analog_seq_item item);

real value = item.start;

forever begin // ramp generation

vif.data = value;

#(item.rate);

value += item.step;

... // saturation & looping

end

...

endtask

Streaming Driver

41

call item_done before drive_item

to pass control back to sequencer

drive request pattern forever

(unless new item received)

UVC ENV

DUT

ANALOG

AGENT
S D

M

blocking peek waits for new item

kill drive_item task when new item

© Accellera Systems Initiative & Verilab

VERIFICATION PRODUCTIVITY

Strategies to apply sequence API to reach project goals

42

© Accellera Systems Initiative & Verilab

How do we use our Sequence API?

43

Our sequence API is a powerful tool for solving this

Project Goals
• Meet milestone deadlines

• Maximize chance of finding bugs

• Report status to stakeholders

Project Challenges
• Massive state space to verify

• Need to track progress

• Need a strategy to meet goals

Project Risks
• Features ready at later milestones

• Bugs block progress

• Changes in requirements

• Changes in priorities

Number of Tests
R

a
n
d
o
m

iz
a
ti
o
n

Directed Testing

One Fully Random Test

Balance control

and randomization

© Accellera Systems Initiative & Verilab

Feature Group Isolation

44

Test Type Configuration Data Timing

Smoke FIXED FIXED FIXED

Bug-Hunt RAND RAND RAND

Feature RAND RAND FIXED (Low)

Feature RAND RAND FIXED (High)

Feature FIXED RAND RAND

Feature RAND FIXED RAND

Corner MAX RAND MAX

Use-Case TYPICAL RAND TYPICAL

Coarse-grained Isolation

Virtual Sequence Control Knob Options

© Accellera Systems Initiative & Verilab

Map features to sequence control knobs (enum types)

• CH_ALL, CH_1, CH_2
• FAST_MODE, …
• M256, M512, M1024

Feature Group Isolation

Identify design features that partition major DUT functionality

Configurations
• number of channels
• mode of operation
• memory size

Data Patterns
• directed/random
• corner cases
• use-case

Timing
• directed / random
• corner / use-cases
• flow patterns

45

• FIXED, RAND
• ADC_MAX, ADC_MIN
• DEFAULT, CASE1, …

• FIXED, RAND
• DELAY_MAX, DELAY_MIN
• SEQUENTIAL, PARALLEL

Can stress any feature in isolation per test

Can control mix of features per test

We can’t isolate every feature.

Choose strategically!

© Accellera Systems Initiative & Verilab

Test Suite Example

46

Test Name Configuration Data Timing

DUT_MODE CH_CFG Input TR_DELAY DUT_FLOW

seq_flow_test RAND RAND RAND FIXED SEQUENTIAL

par_flow_test RAND RAND RAND FIXED PARALLEL

fast_mode_test FAST_MODE SINGLE RAND RAND RAND

basic_data_test RAND RAND FIXED RAND RAND

max_thput_test FAST_MODE ALL_CHAN RAND MIN_DELAY PARALLEL

use_case_test NORM_MODE TYPICAL RAND TYPICAL PARALLEL

Test scope is obvious

Bugs less likely

to block progress

Debug issues rapidly:

Timing, Data, or Config bug?

Can adapt to changing

requirements and schedules

Easy to target corner-cases

and use-cases

Regression results are implicitly mapped to features

Easy to allocate regressions to close feature coverage

Easy status reporting with test-naming conventions

Only possible with properly designed sequence API

© Accellera Systems Initiative & Verilab

PORTABLE STIMULUS

Where does portable stimulus fit in?

47

© Accellera Systems Initiative & Verilab

What is Portable Stimulus?
• Portable Test and Stimulus Standard (PSS) [5]

• Key features:
– higher level of abstraction for describing test intent
– test intent is decoupled from implementation details
– declarative domain-specific system modeling language
– allows test portability between implementations and platforms
– executes implementation-specific methods and sequences

• Does PSS replace all our UVM sequences and stimulus?
– no, but it can replace the test layer and some virtual sequences

48

“[PSS] defines a specification for creating a single representation of stimulus and test scenarios

... enabling the generation of different implementations of a scenario that run on a variety of

execution platforms...”

© Accellera Systems Initiative & Verilab

Test Reuse

– reuse from (block to) sub-system to full-system (within UVM)

– reuse of tests on different target implementations (e.g. UVM or SW)

– reuse of tests on different target platforms (e.g. simulation or hardware)

49

PSS Test Specification & Generation

S

CTRL

D M

CTRL

ADC

A D

S

SENSOR

D M

SIDEBAND

RESET POWERCLOCK

Y ZX

REG

MODEL

P

A
F

S

BUS

D M

UVM

SUB-SYSTEM

SIMULATION

S

CTRL

D M

DUT

CTRL

ADC

A D

CPU

MEM

SW

S

SENSOR

D M

SIDEBAND

RESET POWERCLOCK

Y ZX

REG

MODEL

P

A

BUS

M

UVM

FULL-SYSTEM

SIMULATION

CTRL

DUT

CTRL

ADC

A D

CPU

MEM

SENSOR

SIDEBAND

Y ZX

SWTE CTRL

POST-SILCON

VALIDATION

PSS addresses reuse of test intent

© Accellera Systems Initiative & Verilab

What Changes

• High-level test scenarios & use-cases delegated to PSS
– almost[*] all test sequences & test components replaced by PSS

– many sub-system and full-system scenario virtual sequences replaced

• We do not implement these tests in UVM
– we generate UVM tests from the PSS tools

– we conceive test scenarios using PSS modeling paradigm

• PSS tests are responsible for corresponding high-level checks

• PSS also has built-in (stimulus) functional coverage capability

50

[*] Retain some pure UVM tests to sign-off & regress UVM environment

© Accellera Systems Initiative & Verilab

What Does Not Change
• Intermediate virtual sequences in environment: unaffected

– these are used by PSS execution to actually stimulate DUT

• UVC virtual and physical sequences: unaffected
– these are used by PSS execution and enclosing environment layer

• Block-level test scenarios : unaffected (in most cases)
– validate comprehensive operation of block independent of system environment

• UVC and environment checks: unaffected, still required
– signal protocol checks (interface assertions)
– transaction content (monitors)
– transaction relationships (scoreboards)

• UVC and environment functional coverage: still required
– PSS coverage is only stimulus intent, not observed effect (we need both)

51

© Accellera Systems Initiative & Verilab

PSS Tests & UVM Sequences

52

UVM

PSS

PSS/UVM

vbus
sqr

driver

vbus
seq lib

vbus
agent#1

i2c
sqr

driver

i2c
seq lib

i2c
agent

vbus
sqr

driver

vbus
seq lib

vbus
agent#2

UVC env

uvc_env
seq lib

UVC env
sequencer

environment
sequencer env

seq lib

test
seq lib

tests

”test sequences”

”top environment

sequences”

UVC env

”UVC sequences”

PSS potentially

replaces some UVM

PSS potentially

duplicates UVM

Sequence guidelines, execution, and productivity strategies still apply

Keep some UVM to

regress environment

PSS/UVM

© Accellera Systems Initiative & Verilab

CONCLUSION

53

© Accellera Systems Initiative & Verilab

Conclusion

54

Apply Sequence API Guidelines

Achieved Control Managed Complexity Enabled Reuse

Common Problems We All Face

Insufficient API Too Complex

Poor visibility of project status No risk-management of features

Not Reusable

Control Advanced Scenarios

Control Reactive Slaves Autonomous Streaming Sequences

© Accellera Systems Initiative & Verilab

Conclusion (cont.)

55

Apply Sequence API Strategically

Project Challenges

Poor visibility of project status No risk-management of features

UVM Sequences Remain Vital

Anticipate and

manage project risks

Track and report

status easily

Prioritize features

efficiently

PSS benefits from high quality sequences

© Accellera Systems Initiative & Verilab

References

56

Verilab papers and presentations available from:

http://www.verilab.com/resources/papers-and-presentations/

1 Use the Sequence, Luke – Verilab, SNUG 2018

2 Mastering Reactive Slaves in UVM – Verilab, SNUG 2016

3 SystemVerilog Constraint Layering via
Reusable Randomization Policy Classes, John Dickol, DVCon 2015

4 Advanced UVM Tutorial – Verilab, DVCon 2014

5 Portable Test and Stimulus Standard, Version 1.0, Accellera

© Accellera Systems Initiative & Verilab

57

Q & A
jeff.vance@verilab.com

jeff.montesano@verilab.com

mailto:jeff.vance@verilab.com
mailto:jeff.montesano@verilab.com

© Accellera Systems Initiative & Verilab

58

The following images are licensed under CC BY 2.0

• Verdi_Requiem 008 by Penn State

• Sheet music by Trey Jones

• Flutist by operaficionado

• Cello Orchestra by Malvern St James

• Folk_am_Neckar_4915 by Ralf Schulze

• Flute by Bmeje

• Cello by Lori Griffin

https://creativecommons.org/licenses/by/2.0/
https://flic.kr/p/9vTHtf
https://www.flickr.com/photos/pennstatelive/
https://flic.kr/p/zNfaW
https://www.flickr.com/photos/starrise/
https://flic.kr/p/dCUBAR
https://www.flickr.com/photos/91364698@N04/
https://flic.kr/p/wjiFrn
https://www.flickr.com/photos/malvernstjames/
https://flic.kr/p/w66vzY
https://www.flickr.com/photos/rs-foto/
https://flic.kr/p/dQyCze
https://www.flickr.com/photos/bmeje/
https://flic.kr/p/bpr6ro
https://www.flickr.com/photos/shutterthis/

