Be a Sequence Pro
to Avoid Bad Con Sequences

Presenter: Mark Litterick
Contributors: Jeff Vance, Jeff Montesano

verillabs:

IIIIIIIIIIIIIIIIIIIIIII

EEEEEEEEEEEEEEEEEEEEEEE

UVM Overview

e —— « Application-specific code
&7. Uses UVM & SystemVerilog UVM provides:

base class
o « Open source (Apache) library
Universal Verification Methodology « Class library & methodology * methodology
(UVM) - Facilitates interoperability | for using it

R EEEEE—— « Uses SystemVerilog /
« Supported by all simulators allows flexibility
: : * itis necessary
vesv PEIN Multi-language simulators . best practices
« VHDL, Verilog, SV, SC

IIIIIIIIIIIIIIIIIIIIIII

accellera | - DV
© Verilab & Accellera Systems Initiative 2

SYSTEMS INITIATIVE

SYSTEMS INITIATIVE

Tutorial Content

Behind the Scenes

[1] DVCon EU 2014 — Advanced UVM

of the UVM Factory

Advanced UVM Register
Modeling & Performance

[2] DVCon EU 2015 — UVM Reuse

[3] DVCon EU 2018 — UVM Audit

Demystifying the UVM

Configuration Database

DVCon EU 2019 — UVM Sequences

Effective Stimulus
& Sequence Hierarchies

<«
Vertical & Horizontal Reuse 0 ‘ @
of UVM Environments

Configuration Object
& config_db Usage

Parameterized Classes,
Interfaces & Registers

e~ o

Adaptive Protocol Checks
- Config Aware Assertions

Self-Tuning
Functional Coverage

© Verilab & Accellera Systems Initiative 3

PORTABLE

C{_STI’F’I ULUS

2019

DESIGN AND VERIFICATION™

DVLCLOIN

CONFERENCE AND EXHIBITION

Problem Statement

UVM sequences are vital for verification success

Need Control Manage Complexity Need Reuse

* Reach scenarios « Debug constraint failures * Within a sequence library
* Find and isolate bugs * Reduce mistakes » With derivative projects

* Close coverage « Transfer knowledge « For generic VIP

UVM sequences are often not applied appropriately

Insufficient API §¢] | Too Complex %2l | Not Reusable
« Can'’t control from tests * Intractable constraint failures —- . Copy/pasted routines
« Can't isolate features Invalid stimulus « Tied to a specific DUT

3¢l | Poor visibility of project status 3! | No risk-management of features

IIIIIIIIIIIIIIIIIIIIIII

accellera DV

SYSTEMS INITIATIVE

Tutorial Outline

* Background to tutorial

* Introduction to sequences — what are they & why do we care

* Sequence execution — masters, reactive slaves, streaming data
* Sequence guidelines —improve control, complexity, & reuse

* Verification productivity — strategies to manage features

* Portable Stimulus Considerations — how PSS impacts sequences
* Conclusion & references

IIIIIIIIIIIIIIIIIIIIIII

accellera | . DV
© Verilab & Accellera Systems Initiative 5

SYSTEMS INITIATIVE

What are UVM sequences and why do we care?

INTRODUCTION TO SEQUENCES

IIIIIIIIIIIIIIIIIIIIIII

accellera | - DV
© Verilab & Accellera Systems Initiative 6

SYSTEMS INITIATIVE

What is a Sequence?

UVM sequence class encapsulates constrained-random stimulus

cl

ass access_seq extends base seq;
rand master enum source;
rand cmd enum cmd;

rand bit[15:0] addr; ‘\‘\\\\\\\\\\\
bit[15:0] data;

constraint legal c { $__-~§§§§§§§~§§-

cmd != NOP;
addr <= MAX ADDR C;
}

Seqguences can be reused, extended,
randomized, and combined sequentially
and hierarchically in interesting ways to
produce realistic stimulus... [UVM ref. man.]

‘\\\\\\\\

\

Random control knobs for users

Constraints on random options

task body(); =

Procedural body

if (p_sequencer.cfg.mode ACTIVE)+

SYSTEMS INITIATIVE

© Verilab & Accellera Systems Initiative 7

Access resources via sequencer

IIIIIIIIIIIIIIIIIIIIIII

EEEEEEEEEEEEEEEEEEEEEEE

Comparing Sequences and Tasks

class access seq extends base seq; task access task (
rand master enum source; master enum source,
rand cmd enum cmd; cmd enum cmd,
rand bit[15:0] addr; bit[15:0] addr,
bit[15:0] data; ref bit[15:0] data) ;
constraint legal c {...}
Lok BEeH () // task body

Both sequences and tasks:
e encapsulate a scenario
« provide control options

* have procedural body

2019

DESIGN AND VERIFICATION™

accellera | - DV
© Verilab & Accellera Systems Initiative 8

SYSTEMS INITIATIVE

Executing Sequences and Tasks

class read test extends uvm test; class read test extends uvm test;
task run phase (uvm phase phase); task run phase (uvm phase phase);
access_seq a_seq; bit[15:0] rdata;
‘uvm;dq_with(a_seq,{ access_task (
source == PORT A; .source (PORT A),
cmd == READ; .cmd (WRITE),
addr == 'hAO; .addr ('hal) ,
1) .data (rdata)
)
if (a_seq.data == 'h55) 1f (rdata == 'hb5)

In the most basic cases, tasks and sequences can be equivalent...

2019

DESIGN AND VERIFICATION™

accellera | - DV
© Verilab & Accellera Systems Initiative 9

SYSTEMS INITIATIVE

Why Bother Using Sequences?

Tasks Sequences

Arguments are mandatory
(or fixed by default)

Arguments are optional
(random by default)

Users must randomize args Legal randomization is built-in

No built-in arg validity checks Constraints validate user options

Caller can access any data
(with sequence handle)

Awkward to return data
(use ref arguments)

No built-in access to resources Access to resources via seqguencer

Adding args breaks existing code Adding options has minimal impact

2019

DESIGN AND VERIFICATION™

accellera DV

© Verilab & Accellera Systems Initiative 10

Olﬂmlﬂmmm

SYSTEMS INITIATIVE

Orchestrating Stimulus

test
scenario
constraints

virtual
sequencer
Sequence || Sequence ||| Sequence

Driver
il B

accellera e — DV
© Verilab & Accellera Systems Initiative

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

Sequence API Strategy

3
ml/ =,

environment| [“top environment
2 sequencer | env sequences”
S seq lib
[
O
& : uvcC 1l I
’ e \ ”UVC sequences” [
I sequencer uvc_env qu I
I seq lib g
: h I
_ 2 i1 l
c O i <> I <> I
o 9 vbus ~ | ~
—_ C I = - I
oS seq lib i1l
> 5 | I
S| | ariver [ariver
al I :
2019
DV OIN

CONFERENCE AND EXHIBITION

, © Verilab & Accellera Systems Initiative 12
SYSTEMS INITIATIVE

Sequence Layer Roles

LAYER CONSTRAINTS PRIMARY PURPOSE

Reduce complexity
at each layer

| Control with
intuitive APIs

|l | Sequences decoupled
and reusable

Existence of some layers is
application dependent

TEST Test scenario Highest-level sequence
o User DUT use cases/scenarios API for test writer
Lower System requirements Scenario building blocks
User Protocol use cases Encapsulates sequencer(s)
Ve Middle Protocol operations Encapsulates basic operations
Low Low-level requirements Data formatting
Item Enforce legality Support all possible scenarios
A Each layer resolves a subset of random options
ﬂ Benefits both directed and random tests

accellera | .
© Verilab & Accellera Systems Initiative 13

SYSTEMS INITIATIVE

2019

DESIGN AND VERIFICATION™

DVLCLOIN

CONFERENCE AND EXHIBITION

How different types of sequences are executed

SEQUENCE EXECUTION

IIIIIIIIIIIIIIIIIIIIIII

accellera | . DV
© Verilab & Accellera Systems Initiative 14

SYSTEMS INITIATIVE

Sequence Execution Overview

HANDLE TLM HANDLE CONNECT
X\ /S N
VIRTUAL SEQUENCER ITEM DRIVER SIGNALS
SEQUENCER —> LL n
> =
SEQ SEQ ITEM

* Sequences execute on sequencers to control stimulus

— virtual sequences coordinate and execute one or more sequences
— physical sequences generate items which are passed to drivers
— drivers interact with DUT via signal interface

* Sequence execution affected by:
— verification component role - proactive or reactive
— sequencer type - virtual (no item) or physical (item)
— item content - single transaction or stream description

o201
a@ DV

. L. L CONFERENCE AND EXHIBITION
© Verilab & Accellera Systems Initiative 15

SYSTEMS INITIATIVE

Proactive Masters & Reactive Slaves

REQ

 Proactive Masters:

EXPLICIT mPROACTIVE

TEST STIMULUS MASTER

RESP
— Test controls when sequences are executed on the UVC and timing of requests to DUT

— Stimulus blocks test flow waiting for DUT response

e Reactive Slaves:

IMPLICIT OR REMOTE 0

DUT PROVOCATION = VE

SLAVE

— Timing of DUT requests is unpredictable (e.g. due to embedded FW execution)
— UVC must react to request and respond autonomously without blocking test flow

IIIIIIIIIIIIIIIIIIIIIII

accellera | - DV
© Verilab & Accellera Systems Initiative 16

SYSTEMS INITIATIVE

Proactive Master Operation

test or higher-level:
start / do sequence
on sequencer

generate sequence item
& pass to driver via TLM

\

\

UVC ENVIRONMENT

\1 SEQUENCER
H ITEM

\

MASTER AGENT
DRIVER

MONITOR

» checks

TRANSACTION

?

/

monitor publishes full transactions
via TLM analysis port (REQ & RESP)

accellera | .
© Verilab & Accellera Systems Initiative 17

SYSTEMS INITIATIVE

drive request signals
according to protocol
(& wait for response)

/]

REQ

ESP

decode response
& return to sequence 2019

IIIIIIIIIIIIIIIIIIIIIII

EEEEEEEEEEEEEEEEEEEEEEE

Reactive Slave Operation

test or higher-level: generates seguence item drive response signals
start / do / default & passed to driver via TLM according to protocol
forever sequence \ (based on request)

that waits for REQ JVC ENVIRONMENT)
S SLAVE AGENT e

0 SEQUENCER DRIVER

ITEM

TLM FIFO

SVA

j
W

(MASTER)

|INTERFA

» checks \

monitor publishes full transactions decode request whenever DUT
via TLM analysis port (REQ & RESP) Initiates it & publish to sequencer 2019

IIIIIIIIIIIIIIIIIIIIIII

accellera | - DV
© Verilab & Accellera Systems Initiative 18

SYSTEMS INITIATIVE

" TRANSACTION

Sequence Types

* Virtual Sequences: Control other sequences
* Normal Sequences: Generate a single transaction

e Streaming Sequences: Generate autonomous stimulus

IIIIIIIIIIIIIIIIIIIIIII

accellera | - DV
© Verilab & Accellera Systems Initiative 19

SYSTEMS INITIATIVE

Virtual Sequences

e Virtual sequences: high-level scenqrios
_ . parallel transactions
— do not directly generate an item . sequential transactions
— coordinate & execute other sequences * multiple agents/UVCs
defi . on & ati * constraint wrapper
— define scenarios, interaction & encapsulation . resource encapsulation

* Key characteristics
— full control over all child sequences
— may be blocked by time-consuming sequences

— multiple virtual sequences may run at same time
(nested or parallel) on same virtual sequencer

Must target different resources (not possible for physical sequencers) | cesonawverincadon-

Y7 DVCLOIN

accellera | 2 - e
© Verilab & Accellera Systems Initiative 20

SYSTEMS INITIATIVE

Virtual Sequence s o

class my virtual seq extends uvm_ sequence; AGENT

// rand fields ...;
// constraints ...; S D €
ot Teat () - fork multiple sequences in parallel <_+E<_
bus poll fife seq poll fifo seq;

12c_sen ata seqg send data seq;
fork
‘uvm_do_with(poll fifo seq, { .. |execute on this virtual sequencer
Slieonie. == L (targets different physical sequencer)

})

‘"uvm _do on with (send data seq, p sequencer.i2c sequencer, {

slave == 1;
data == local::data; execute on referenced

2 physical sequencer
Jjoin

2019

DESIGN AND VERIFICATION™

accellera | - DV
© Verilab & Accellera Systems Initiative 21

SYSTEMS INITIATIVE

Normal Sequences

* Normal sequences use a sequence item to:

— Generate stimulus via a driver « bus transactions
« data packet

* power on/reset

— Describe required transaction-level stimulus

— Define a single finite transaction

* Key characteristics:

— Driver is not autonomous

Return after complete
transaction (& response)

— Fully controllable from virtual sequences

— Sequence handshake is blocking
— Sequence items handled consecutively

IIIIIIIIIIIIIIIIIIIIIII

accellera | . DV
© Verilab & Accellera Systems Initiative 22

SYSTEMS INITIATIVE

Proactive Master Sequence

class my master request seq extends

rand cmd enum cmd;
rand bit[31:0] addr;
rand bit[31:0] datal];

my master seq item m item;

task body () ;

})

uvm_sequence i (my master seq item);

"uvm _do with(m item, { *”,,/””/

m item.m cmd == local::cmd;
m item.m addr == local::addr;
foreach (local::data[i]) m item.m data[i] == local::dataf[i];

UVC ENV

MASTER AGENT

\#s+->n<—

—M e

generate request item
based on sequence knobs

accellera | .
© Verilab & Accellera Systems Initiative

SYSTEMS INITIATIVE

23

2019

DESIGN AND VERIFICATION™

DVLCLOIN

CONFERENCE AND EXHIBITION

Proactive

Master Driver

UVC ENV

my master seq item m item;
task run phase(...);

forever begin

class my master driver extends uvm driver# (my master seq item) ;

MASTER AGENT

ol
—M

seq item port.get next item(m item);

drive item(m item);
seq;item;port.item;done(;:\\\\\

end

standard driver-seguencer interaction

endtask

task drive item(my master seqg item item);

en{j{c;lsk \ drive request signals to DUT
(based on seqguence item fields)

endclass

2019

accellera | .
© Verilab & Accellera Systems Initiative

SYSTEMS INITIATIVE

24

DESIGN AND VERIFICATION™

DVLCLOIN

CONFERENCE AND EXHIBITION

Reactive Slave Sequence

UVC ENV

class my slave response seq extends

my slave seq item m item;

uvm_sequence # (my slave seqg item);

SLAVE AGENT
S D €

my transaction m request; |call forever loop inside sequence

. (sequence runs throughout phase:
task body () ; / ...do not raise and drop objections!)

M €

forever begin
case (m _request.m direction)

READ
"uvm _do with(m item, {

})

p_sequencer.request fifo.get (m request);

\

wait for a transaction request
(fifo.get is blocking)

m;item.m_resp_kind == READ RESPONSE;
m item.m delay <= get max delay();
m item.m data == get data(m request.m addr);

™~

generate response item
based on observed request

accellera | .
© Verilab & Accellera Systems Initiative

SYSTEMS INITIATIVE

25

2019

DESIGN AND VERIFICATION™

DVLCLOIN

CONFERENCE AND EXHIBITION

Reactive Slave Driver S

SLAVE AGENT
<

class my slave driver extends uvm driver # (my slave seq item);
my slave seqg item m item; S

<

task run phase(...);

forever begin
seq_item _port.get_next item(m_item); | siandard driver-sequencer interaction
drive item(m item) ;

. : |
seq item port.item done () ; : :
T P = drive response signals to DUT

end
endtask / (based on sequence item fields)

task drive_item(my_slave_seq_item item) ; identical code structure

T to proactive master
endtask |
[4] Mastering Reactive Slaves in UVM — Verilab, SNUG 2016
| 2019

DESIGN AND VERIFICATION™

accellera | - DV
© Verilab & Accellera Systems Initiative 26

SYSTEMS INITIATIVE

endclass

Streaming Sequences

* Streaming is a stimulus pattern where: - clock generators
« background traffic

« analog waveforms
— Driver generates derived patterns on its own (real number models)

— Item defines repetitive autonomous stimulus

* Key characteristics for successful streaming include:

— Sequences (& config) control the autonomous behavior
— Sequence handshake must be non-blocking .

Sequences can run forever

— Operation can be interrupted by a new operation

\ Safely stopped and started again

accellera | . DV
© Verilab & Accellera Systems Initiative 27

SYSTEMS INITIATIVE

Streaming Sequence

UVC ENV

class my ramp seq extends uvm_sequence # (my analog seg item); ANALOG AGENT
rand real start;

S 6> D €

rand real step; :
rand time rate; ™~ random real and time control knobsl’

—M e

|
: — real and time constraints

my analog seq item m item;

// constraint start inside {[0.0:0.75]}
// constraint rate inside {[1lps:100ns]}

14

task body () ; generate normal sequence item

‘uvm _do with (m item, { | constrained by control knobs
m item.m start == local::start;
1tem. t == 1 1l::step; -
BT ESH-TLStEep Chel e EeEe totally normal physical
m item.m rate == local::rate;
o - sequence structure
'l Or use random integers with scaling factor for real and time values 2o L

accellera | - DV
© Verilab & Accellera Systems Initiative 28

SYSTEMS INITIATIVE

Streaming Driver

UVC E

NV

class my analog driver extends uvm driver # (my analog seqg item

my analog seqg item m item;

task run phase(...);

call item_done before drive_item
to pass control back to sequencer

forever begin

seq item port.item done () ;
fork
seq item port.peek (m item) ;

seq item port.get next Atem(m item

ANALOG AGENT

blocking peek waits for new item

drive item(m item); .
join_ any
disable fork;

end \\\\

endtask
ond Kill drive_item task when new item

SYSTEMS INITIATIVE

© Verilab & Accellera Systems Initiative

task drive item(my analog seq item item);

real value = item.start;
forever begin // ramp generation
vif.data = value;
(item.rate) ;
value += item.step;
// saturation & looping

end

endtask

\ drive request pattern forever
(unless new item received)

29

CONFERENCE ANG EXHIBITI

b2

Z

How to maximize the benefits of using sequences

SEQUENCE GUIDELINES

IIIIIIIIIIIIIIIIIIIIIII

accellera | - DVLCEIN
© Verilab & Accellera Systems Initiative 30

SYSTEMS INITIATIVE

Sequence Constraint Guidelines

* Produce legal stimulus by default

e Use sequence layers to isolate constraints

* Minimize the number of control knobs

* Use dedicated constraint blocks to support extensibility!>]

* Use soft contraints carefully and sparingly!!

* Use descriptor objects to encapsulate complex contraint sets!°]
* Use policy classes to redefine constraints and bypass layers!®!

[5] Use the Sequence, Luke — Verilab, SNUG 2018

[6] SystemVerilog Constraint Layering via Reusable
Randomization Policy Classes — John Dickol, DVCon 2015 ccoron s v D

accellera . - DV
© Verilab & Accellera Systems Initiative 31

SYSTEMS INITIATIVE

Produce legal stimulus by default

class bus burst seq extends base seq; 12 Pnnﬂde()zlorrnore

: . \ ..)
rand }nt addr; // start address iy i T
rand int length; // burst length
// other fields (direction, data, etc.' |

Legal stimulus

constraint legal c { guaranteed
addrs4 == 0; |
length inside {16,64,256,1024}; 12 Constraint solver

addr + length <= p sequencer.cfg.get max addr(); s detects illegal values
} |

// user code examples |address misaligned? Illegal combination? | |
"uvm_do (burst_ seq) \\ /// any burst
‘uvm_do with (burst seq, {addr == ‘h4321;}) /// any length
‘uvm _do with (burst seq, {length == 256;}) / // any address
‘uvm_do with (burst seq, {addr == ‘hFFF0; length == 1024;})

2019

DESIGN AND VERIFICATION™

accellera | - DV
© Verilab & Accellera Systems Initiative 32

SYSTEMS INITIATIVE

Use sequence layers to isolate constraints

class bus burst seq extends base seqg;
rand int addr; // start address
rand burst t burst; // burst type
// other fields

constraint legal c ({
burst inside {WRAP, INCR};
(burst == INCR) -> addr%4 == 0;

}

(direction,

// INCR m

M Two-Step Randomization:

1. randomize local variables
2. randomize lower sequences
« easy to debug

4ol | Without layer isolation:
== |+ unexpected distribution
* illegal combinations
 hard to debug

I
only does WRAP bursts!

N

‘uvm_do with (burst seq, {addr==‘h4321; bufgt inside {WRAP, INCR}; })

rand burst t burst;

‘uvm_do with (burst seq, {addr==‘h4321;

constraint burst c¢ {burst inside {WRAP,INCR}; } //
burst == local::burst;})

constraint violation detected!

SYSTEMS INITIATIVE

© Verilab & Accellera Systems Initiative 33

2019

DESIGN AND VERIFICATION™

DVLCLOIN

CONFERENCE AND EXHIBITION

Minimize the number of control knobs

class master write seq extends base seq;
. = - — "a Sequences are
rand int addr; // address_ | A
exposed control knob easy to use
protected rand int slave; // derived field
o . "I hidden control knob /]| Seduences are
constraint slave c { hard to abuse
slave == p sequencer.cfg.get slave id(addr);
} :
Typically lower-level
: n hav
task body() ; fixed lower-level knob >eque (;esl ka GE)
slave bus seq bus_se?;/// IS SOl N1k
‘uvm_do_with (bus_seq,/{ s background config
bus seqg.dir == WRITE;
bus seqg.prot == p sequencer.cfg.get prot();
bus seqg.addr == local::addr;
bus seqg.slave == local::slave;
} 2019

accellera | - DV
© Verilab & Accellera Systems Initiative 34

SYSTEMS INITIATIVE

Sequence Reuse Guidelines

* Make test sequences independent of testbench architecture
e Use configuration objects and accessor methods to adapt to setup
e Use utility methods to support self-tuning sequences

IIIIIIIIIIIIIIIIIIIIIII

accellera | - DV
© Verilab & Accellera Systems Initiative 35

SYSTEMS INITIATIVE

Make tests independent of architecture

class test feature seq extends base test seq; // test seq

- Y/ Test sequences
"uvm _do with (config seq, {mode == FAST; crc en == 0;}) decoupled from
‘uvm_do with (write seq, {addr == ‘hFFF0; data == ‘h5555;}) testbench

architecture

class dut config seq extends haca coace [/ mid loual cox
_~ only mid-level seq references regmodel ‘

regmodel block.CTRL REG.SPEED.set (int’ (mode)) ;

regmodel .block.CTRL REG.CRCEN.set (crc _en); = Tests are generic
regmodel.block.CTRL REG.update (status); VA 9
— and reusable on

derivative projects

class bus write Seq extoﬁﬁlc hococo corye [/ miA—T1coxral [a¥aYas

e only mid-level seq references structure
‘uvm _do on with(cmd send seq, /
p_sequencer .master sequencer[0], {
cmd send seqg.addr == local::addr;
cmd send seqg.data == local::data;} 2019

DESIGN AND VERIFICATION™

accellera | . DV
© Verilab & Accellera Systems Initiative 36

SYSTEMS INITIATIVE

Use config & access methods to adapt seqgs

class bus config extends uvm object;
rand int fifo depth;
rand time clk period;

Keep project-specific configuration
constraints outside of sequences

constraint fifo ¢ {fifo depth inside {[1l: MAX DEPTH]};
constraint clk c¢ {clk period inside {[10ns:100ns]};

function int get fifo depth(); // current fifo depth
function time get transfer time(int len); // len * clk period

(////’

class fifo seq

Use config access methods in sequences

repeat (p_sequencer.cfg.get_fifo:hepth())
// do something
"uvm_do (start_seq)
(p_sequencer.cfg.get transfer time (length));
‘uvm_do with (status_seq,

evel seq

|l | Sequence adapts to
current configuration

Seqguence is generic

and reusable

{exp flag == 1; exp error == 0;})

2019

accellera | .
© Verilab & Accellera Systems Initiative 37

SYSTEMS INITIATIVE

DESIGN AND VERIFICATION™

DVLCLOIN

CONFERENCE AND EXHIBITION

Use utility methods to support self-tuning

Define utility methods in package scope, base seq, or config
il (depends on who needs to use it — e.g. driver, monitor, or just seq)

function automatic int calc base address(int addr); |

return (addr / DATA WORDS PER ADDR C) ; Be aware — default lifetime:
* inclass is automatic
function automatic int calc data offset(int addr); * in package is static

return ((addr / DATA WORD SIZE C) % DATA WORDS PER ADDR C);

class write word seq extends base seq;

cemne. e[JLeb] Feeiy Avoid code duplication between sequences
. |
Easls Dody () 7 | | /|l | Sequences adapt to changes in calculations
uvm do with(write single seq,
write single seqg.addr == calc_base address (addr);
write single seqg.word sel == calc data_ offset (addr) ;

) - . Va

Use utility methods in sequences

2019

DESIGN AND VERIFICATION™

accellera | . DV
© Verilab & Accellera Systems Initiative 38

SYSTEMS INITIATIVE

Sequence Library Tips

* Use typedef header at top of sequence library file

* Provide random and fixed versions of configuration sequences
* Implement start and end messages in base sequence

* Group related sequences into sequence library files!®]

e Construct sequences using inheritance or composition!!

e Use enumerated types for improved clarity!!

IIIIIIIIIIIIIIIIIIIIIII

accellera | - DV
© Verilab & Accellera Systems Initiative 39

SYSTEMS INITIATIVE

SYSTEMS INITIATIVE

Use typedef header at top of seq lib file

typedef class init seq; // initialization

typedef class power on seq; // power ramp typedef header

typedef class reset seq; // hard reset

class init seq exitends base sedj typically multiple classes per file
power_on_Seq pwr_Sedq; (normal UVM has one class per file)
reset_ seq rst seqg;

typically many lines of code per file
endclass (sequence libraries are large files)

class power on_seq extends base seq;

documents content

endclass

class reset seq extends base seq;
— — allows sequences

used in any order

endclass

2019

DESIGN AND VERIFICATION™

DVLCLOIN

CONFERENCE AND EXHIBITION

© Verilab & Accellera Systems Initiative 40

Provide random and fixed config seqs

rand speed mode t mode;
rand int trim;

constraint mode c¢ {mode
constraint trim c {trim

regmodel .block.CTRL REG.
regmodel .block.CTRL REG.
regmodel .block.CTRL REG.

class config random seq extends base seq; // mid-level seqg

rand bit crc_en; |hard legal constraints

/

inside {FAST,SLOW}; }
inside {[1:15]11};}

SPEED.set (int’ (mode)),
CRCEN.set (crc_en) ;
update (status) ;

strong seq API enables user
to target & isolate features

good seq base for scenario
development & PSS tests

constraint fixed c {
soft mode == SLOW;

soft crc en == 1;
soft trim == 1; ‘\\\\\\

class config fixed seq extends config random seq;

"uvm_do (random_seq)
"uvm_do (fixed seq)
"uvm_do with (fixed seq, {mode == FAST;})

) soft tuning constraints

2019

DESIGN AND VERIFICATION™

accellera | .
© Verilab & Accellera Systems Initiative 41

SYSTEMS INITIATIVE

DVLCLOIN

CONFERENCE AND EXHIBITION

Implement start and end messages in base seqg

class base seq extends uvm sequence;
task pre_start(); «— use pre/post_start()
super.pre start();
‘uvm_info(..., "Starting...", UVM MEDIUM)
‘uvm_info (..., {"Sequence:\n",this.sprint}, UVM HIGH)
endtask Do not use pre/post_body()
task post start(); ==|+ not called by "'uvm_do*(seq)
super.post start(); '
‘uvm info (..., "Completed.", UVM HIGH) Do not use pre/post_do()
endtask * not called by seq.start()

/|l | Generic non-verbose messages inherited by all sequences

1l | Use pre/post_start() called by seqg.start() and 'uvm_do*(seq)

2019
accellera | - DV
© Verilab & Accellera Systems Initiative 42

SYSTEMS INITIATIVE

Strategies to apply sequence API to reach project goals

VERIFICATION PRODUCTIVITY

IIIIIIIIIIIIIIIIIIIIIII

accellera | - DV
© Verilab & Accellera Systems Initiative 43

SYSTEMS INITIATIVE

How do we leverage our Sequence API?

Few Fully Random Tests |~

S %) /,.l’/ i
S) 4 Balance control 2 O e
CG S k . . (= F I ,’
N N and randomization o Vg
= A T ,’, PR
S Q -, R P4
®) \\ o 7 ,,’ V4
TCJ S = 9‘,/ ,/
© AN E Directed Testing A 7 7
D: \\ / O /,/”/ ”,
A S e -
7 -
» > d‘ : : : >
Number of Tests Project Timeline

__ ‘Sequence architecture is key part of strategy to meet goals I oo 2019
——— © Verilab & Accellera Systems Initiative 44 m

SYSTEMS INITIATIVE

Feature Group Isolation

Test Type | Configuration m

Smoke FIXED FIXED FIXED
Bug-Hunt RAND RAND RAND

Corner RAND MAX

Virtual Sequence Control Knob Options

Coarse-grained Isolation

CONFIG L

© Verilab & Accellera Systems Initiative 45

SYSTEMS INITIATIVE

Mapping features to control knobs

Identify design features that partition major DUT functionality
Configurations Data Patterns Timing
* number of channels directed/random directed / random
* mode of operation * corner cases e corner / use-cases
* memory size * use-case * flow patterns
Map features to sequence control knobs (enum types)
* CH ALL CH 1,CH 2 * FIXED, RAND * FIXED, RAND
* FAST _MODE, ... * ADC_MAX, ADC_MIN * DELAY_MAX, DELAY_MIN
* M256, M512, M1024 * DEFAULT, CASE], ... * SEQUENTIAL, PARALLEL
/]| | Stress features in isolation We can'’t isolate every feature.
i |
/|l | Combine features in groups Choose strategically! et

accellera DV

SYSTEMS INITIATIVE

TestName | Configuration |Data | Timing
| DUT_MODE CH.CFG Input TRDELAY ~ DUT_FLOW

seq_flow_test
par_flow_test
fast_mode_test
basic_data_test
max_thput_test

use_case_test

Test Suite Example

RAND RAND RAND FIXED SEQUENTIAL

RAND RAND RAND FIXED PARALLEL =
FAST_MODE SINGLE RAND RAND RAND 4
RAND RAND FIXED RAND RAND p—
FAST_MODE ALL_CHAN RAND MIN_DELAY PARALLEL 4
NORM_MODE TYPICAL RAND TYPICAL PARALLEL

A

Regression results are implicitly mapped to features

Test scope is obvious

Bugs less likely
to block progress

Debug issues rapidly:
Timing, Data, or Config bug?

Can adapt to changing
requirements and schedules

Easy to target corner-cases
and use-cases

Easy to allocate regressions to close feature coverage

Easy status reporting with test-naming conventions

Only possible with properly
designed sequence API

Onna

accellera

SYSTEMS INITIATIVE

© Verilab & Accellera Systems Initiative

a7

2019

DESIGN AND VERIFICATION™

DVCLOIN

CONFERENCE AND EXHIBITION /

Where does portable stimulus fit in?

PORTABLE STIMULUS

IIIIIIIIIIIIIIIIIIIIIII

accellera | o DV
© Verilab & Accellera Systems Initiative 48

SYSTEMS INITIATIVE

What is Portable Stimulus?

* Portable Test and Stimulus Standard (PSS) [7]

‘[PSS] defines a specification for creating a single representation of
stimulus and test scenarios ... enabling the generation of different
Implementations of a scenario that run on a variety of execution platforms...”

e Key features:
— higher level of abstraction for describing test intent
— test intent is decoupled from implementation details
— declarative domain-specific system modeling language
— allows test portability between implementations and platforms
— executes implementation-specific methods and sequences

* Does PSS replace all our UVM sequences and stimulus?
— no, but it can replace the test layer and some virtual sequences... 2019

IIIIIIIIIIIIIIIIIIIIIII

accellera | . DV
© Verilab & Accellera Systems Initiative 49

SYSTEMS INITIATIVE

Test Reuse

PSS addresses reuse of test intent
— vertical reuse from (block to) sub-system to full-system (within UVM)

— reuse of tests on different target implementations (e.g. UVM or SW)
— reuse of tests on different target platforms (e.g. simulation or hardware)

PSS Test Specification & Generation

FULL-SYSTEM POST-SILCON

SIMULATION
el
ADC

SUB-SYSTEM
SIMULATION

SENSOR SENSOR SENSOR

) ASY

[D][m]] [D]m]| AlilD , oo
: A

CTRL CTRL 1 CTRL

B [0

o] o] BUS 00

CLOCK || RESET ||POWER CLOCK || RESET |[POWER 000 @ 2019

DESIGN AND VERIFICATION™

SIDEBAND SIDEBAND SIDEBAND
accellera DV

© Verilab & Accellera Systems Initiative 50

SYSTEMS INITIATIVE

What Changes

* High-level test scenarios & use-cases delegated to PSS
— (almost™) all test sequences & test components replaced by PSS
— some sub-system and full-system scenario virtual sequences replaced by PSS

* We do not implement these tests in UVM
— we generate UVM tests from the PSS tools
— we conceive test scenarios using PSS modeling paradigm

e PSS tests are responsible for corresponding high-level checks
PSS also has built-in (stimulus) functional coverage capability

() Retain some pure UVM tests to sign-off & regress UVM environment 2019

IIIIIIIIIIIIIIIIIIIIIII

accellera | . DV
© Verilab & Accellera Systems Initiative 51

SYSTEMS INITIATIVE

SYSTEMS INITIATIVE

PSS Tests & UVM Sequences

“test sequences”
environment | " ”top environment
sequencer \&b sequences”

L]

PSS

——y

UVC env » .
sequencer \ uvc_e UVC sequences

seq lib

— <> <>
vbus | Vvbus —~
seq lib seq libJ §

=
n
‘ i

PSS replaces
all UVM

PSS replaces
some UVM

PSS potentially
duplicates UVM

All UVM checks and
functional coverage
still available

2019

Sequence execution, guidelines and productivity still apply |

DVLCLOIN

© Verilab & Accellera Systems Initiative 53

CONFERENCE AND EXHIBITION

CONCLUSION

2019

DESIGN AND VERIFICATION™

DVLCLOIN

@Ebell—e\,.a CONFERENCE AND EXHIBITION
N —

© Verilab & Accellera Systems Initiative 54
SYSTEMS INITIATIVE

Conclusion

Common Problems We All Face
E Insufficient API E Too Complex E Not Reusable

X | Poor visibility of project status %€ | No risk-management of features

il

Apply Sequence API Guidelines

Control Advanced Scenarios

accellera © Verilab & Accellera Systems Initiative

SYSTEMS INITIATIVE

Conclusion (cont.)

Project Challenges

X | Poor visibility of project status E No risk-management of features

Apply Sequence API Strategically

UVM Sequences Remain Vital

© Verilab & Accellera Systems Initiative 56

IIIIIIIIIIIIIIIIIIIIIII

(accellera
it

EEEEEEEEEEEEEEEEEEEEEEE

SYSTEMS INITIATIVE

References

Advanced UVM Tutorial — Verilab, DVCon Europe 2014
UVM Reuse Tutorial — Verilab, DVCon Europe 2015

UVM Audit Tutorial — Verilab, DVCon Europe 2018
Mastering Reactive Slaves in UVM — Verilab, SNUG 2016
Use the Sequence, Luke — Verilab, SNUG 2018

SystemVerilog Constraint Layering via
Reusable Randomization Policy Classes, John Dickol, DVCon 2015

A 1 & W N R

N

Portable Test and Stimulus Standard, Version 1.0, Accellera

Verilab papers and presentations available from:
http://www.verilab.com/resources/papers-and-presentations/ 2019

IIIIIIIIIIIIIIIIIIIIIII

accellera | - DV
© Verilab & Accellera Systems Initiative 57

IIIIIIIIIIIIIIIII

Q& A

mark.litterick@verilab.com

IIIIIIIIIIIIIIIIIIIIIII

accellera | - DVLCEIN
© Verilab & Accellera Systems Initiative 58

SYSTEMS INITIATIVE

mailto:mark.litterick@verilab.com

The following images are licensed under CC BY 2.0

* Verdi_Requiem 008 by Penn State

« Sheet music by Trey Jones

 Flutist by operaficionado

* Cello Orchestra by Malvern St James
 Folk am_Neckar 4915 by Ralf Schulze
« Flute by Bmeje

« Cello by Lori Griffin

accellera © Verilab & Accellera Systems Initiative 39

SYSTEMS INITIATIVE

IIIIIIIIIIIIIIIIIIIIIII

EEEEEEEEEEEEEEEEEEEEEEE

https://creativecommons.org/licenses/by/2.0/
https://flic.kr/p/9vTHtf
https://www.flickr.com/photos/pennstatelive/
https://flic.kr/p/zNfaW
https://www.flickr.com/photos/starrise/
https://flic.kr/p/dCUBAR
https://www.flickr.com/photos/91364698@N04/
https://flic.kr/p/wjiFrn
https://www.flickr.com/photos/malvernstjames/
https://flic.kr/p/w66vzY
https://www.flickr.com/photos/rs-foto/
https://flic.kr/p/dQyCze
https://www.flickr.com/photos/bmeje/
https://flic.kr/p/bpr6ro
https://www.flickr.com/photos/shutterthis/

