
Automation of Reusable Protocol-Agnostic 
Performance Analysis in UVM Environments

1

Daniel Carrington, Alan Pippin, Timothy Pertuit
Hewlett Packard Enterprise



Outline

2

Performance measurement is the key to 
performance verification

Our solution
Automated Performance Testing (Autoperf)

• Performance Verification Workflow Improvements
• Performance Measurement Tools (Bandwidth, Utilization, Latency)



Performance Verification

3

• Develop initial design and testbench

• Run performance tests once your design is “pretty functional”

• Measure the DUT performance realized in simulation

• Iterate until everything is fixed or you run out of time



Performance Verification

4

• Develop initial design and testbench
– Solved by UVM

• Run performance tests once your design is “pretty functional”
– Partly solved by UVM (with help expected from Portable Stimulus)

• Measure the DUT performance realized in simulation
– Not solved; write a script yourself or work within the limits of industry tools

• Iterate until everything is fixed or you run out of time
– Coverage tooling, checklists, management



Performance Verification

• Protocol-specific commercial tools
• Easy enough to read wave database and write a script

State of bandwidth measurement

• Round-trip latency measurement: match requests to responses
• More granular measurements: do it manually, or write limited 

latency tests

State of latency measurement

5



Our Solution: Autoperf

• Define a performance measurement API from UVM components
• Leverage UVM configuration
• Enable reuse of performance measurement

Value from UVM reuse

• Architectural metrics and measurements across multiple tests
• Optional pass/fail criteria on regression tests
• Logs performance data into database for analysis

Set and track performance goals

6



Autoperf

7

UVM Testbench

Module 
UVC iUVCiUVC

Test

Config

Perf 
Database

Transactions

Analysis 
Tools

Summary 
Database

Detailed 
Results

Verify Device 
Performance

Monitors

Packets

Monitor Pairs

Packet Links



Autoperf

8

• Performance instrumentation implemented by UVM testbench
– Doing performance instrumentation once per iUVC is a fantastic model
– Doing latency measurement in each module UVC at block-level and 

composing those into a system simulation Just Works and it’s great

• Performance measurement tool is protocol-agnostic
– Measurement tool is easy to understand
– Validating performance model is easy



Components of Autoperf
• Specman using UVM-e
• SystemVerilog using UVM-ML and UVM-SV
• 3.5kloc

Verification 
Libraries

• Structured log messages report data from sim
• Performance database schemasAPI

• Process performance data (13.5kloc Perl, SQL)
• Web database interface (3.5kloc Perl, JS, HTML)
• Autoperf unit tests (3kloc Perl)

Scripts
9



Autoperf Verification API

10

• UVCs use Autoperf classes to print messages to an Autoperf file
• Messages are processed and performance results are produced

UVM Component Autoperf Log Message Printed During Purpose

Testbench test_message Time 0 Provide user-defined parameters describing the test

Testbench config_message Time 0 Override any special Autoperf config options for this test

uvm_monitor mon_message First clock cycle Declare existence of hardware interface

uvm_monitor pkt_message Main test Report packet activity

uvm_scoreboard mon_mon_pair_msg First clock cycle Declare relation of two hardware interfaces

uvm_scoreboard pkt_pkt_link_msg Main test Report relation of two previous pkt_messages

trans_message Main test Identify packet as originating from a sequence



Autoperf Post-Simulation Flow

11

Read Simulation 
Activity

Configure 
Measurements

Measure 
Bandwidth and 

Utilization

(optionally)
Measure Latency

(opt.) Check 
Performance 

against 
Expectations

Summarize 
Measured 

Performance

Store Summary 
in a Database

Optional Steps

Optionally

New Future 
Measurements 

(Buffer Fullness, 
Ops/Clock, …)



“Just Measure Performance”

12

• Reusable performance measurement in verification components
– Expose performance data from the simulation environment
– Where to measure? What activity occurred? How much? When?

• Reusable Bandwidth, Utilization, and Latency analysis tools
– Consume performance data without configuration or special set-up

• Accessible by any user of UVM
– Purchase your VIP from anyone or develop your own



Protocol-Agnostic Performance 
Measurement

13

Partition protocol-
agnostic performance 
data over the problem 

domain

Graphs of 
performance 

results (BW vs 
time, etc)

Test-Level 
Performance 

Summary

Optional: Store 
summary into 
performance 

database

Expose 
performance data 
via database API 

to other tools

Write textual 
summary of 

results
(min/avg/max 

BW)

Aggregate performance 
data into data sets

Perform protocol-
agnostic processing on 

each set of data



Protocol-Agnostic Performance 
Measurement

14

For each UVM monitor*, process each packet seen

Calculate BW: moving 
average, bits per unit time

Calculate utilization: ditto, 
active cycles vs total

One or more data series for each interface

GraphsText reports API Summary Data

Consider a data series for packets of each reported type, 
and a TOTAL series for the grand total

Partition

Protocol-agnostic 
measurement 
definition

Aggregate



Autoperf: Bandwidth and 
Utilization Results

15

BW
 (?

?/
s)

Time (ns)

Avg_BW ##.253 ??/s
Peak_BW ##.286 ??/s Worst_BW ##.375 ??/s

BW monitor: fabric->myblk3-inst0



Autoperf Latency Measurement

16

• Cache coherency is everyone’s 
favorite tricky performance 
verification task

• Measuring latency and figuring out 
latency defects can be challenging

• Read+Snoop+Rsp has a lot of 
places to introduce latency

Processor 1

Memory 
Controller

Processor 2

1: Read Exclusive

2: Snoop Exclusive

3: Snoop Response

4: Data Writeback

5: Response Data



Autoperf Latency Measurement

17

• Big Questions:
– How long did each phase take?
– Which phase caused the 

performance issue?
– What logic is causing the 

problem?

Processor 1

Memory 
Controller

Processor 2

1: Read Exclusive

2: Snoop Exclusive

3: Snoop Response

4: Data Writeback

5: Response Data



Autoperf Latency Measurement

18

Read 
Exclusive
@Proc1

Read 
Exclusive

@MC

Snoop 
Exclusive

@MC

Snoop 
Exclusive
@Proc2

Snoop 
Response
@Proc2

Data 
Writeback

@Proc2

Snoop 
Response

@MC
Data 

Writeback
@MC

Response
Data
@MC

Response
Data

@Proc1



Autoperf Latency Measurement

19

• Dotted lines – in-DUT flows
• Solid lines – out-of-DUT flows

• Want measurements of each 
dotted-line flow

• Solid-line flows are someone 
else’s problem at this stage

Read 
Exclusive
@Proc1

Read 
Exclusive

@MC

Snoop 
Exclusive

@MC

Snoop 
Exclusive
@Proc2

Snoop 
Response
@Proc2

Data 
Writeback

@Proc2

Snoop 
Response

@MC
Data 

Writeback
@MC

Response
Data
@MC

Response
Data

@Proc1



Autoperf Latency Measurement

20

• Distinguish in-DUT from out-of-DUT flows
• Autoperf then measures in-DUT latency

• Each dotted-line subflow is 
summarized as a one-way 
measurement, and broken 
down into hops for bug RCA

Read 
Exclusive
@Proc1

Read 
Exclusive

@MC

Snoop 
Exclusive

@MC

Snoop 
Exclusive
@Proc2

Snoop 
Response
@Proc2

Data 
Writeback

@Proc2

Snoop 
Response

@MC
Data 

Writeback
@MC

Response
Data
@MC

Response
Data

@Proc1



Protocol-Agnostic Performance 
Measurement

21

For each injected transaction, find all of the transactions 
observed in the testbench that were caused by it.

Identify the types of flows 
seen in the test based on the 

message sequence charts 
for each flow.

Look at places on the 
message sequence chart 

to figure out latency 
measurements to make.

Subtract start time from end time for each corresponding 
pair of transactions inside of each injected flow.

GraphsText reports API Summary Data

Partition

Aggregate

Protocol-agnostic 
measurement 
definition



Autoperf: Latency Results

22

hop latency: BLK1->BLK2 -> BLK2->BLK3 for DATA_BURST_PKT to DATA_TRANSFER_PKT

Co
un

t i
n 

bi
n

Latency (ns) ##.0 ns groups

Avg ##.11 ns Max ###.00 ns

Pseudo-mode ##.73 ns

Min ##.00 ns



Autoperf: Latency Results

23

Time (ns)

La
te

nc
y 

(n
s)

hop latency: BLK1->BLK2 -> BLK2->BLK3 for DATA_BURST_PKT to DATA_TRANSFER_PKT



Reusability Limitations

24

• Interface UVCs need to summarize the wire format in terms of 
“application data bits” and “overhead bits”
– Software-defined transfer formats may not be tractable to measure

• Variable clock speeds not explicitly supported
• Assumes that each wire transfers one bit per clock period

• Easy to work around for DDR interfaces
• Difficulty of doing latency modeling in the Module UVC can vary

depending on the application and your scoreboard implementation



Our Solution: Results

25

Measured BW of pkt_type=DATA vs measure end-to-end
latency of pt1_name=__START pt2_name=txn_end_A pkt1_type=RD pkt2_type=DATA

over values of parameter mem_ranks

nanoseconds

GB
/s



Autoperf

26

• Minimum investment enables bandwidth/utilization measurements
– Data mover block can measure output bandwidth vs. control utilization
– Serial link block can measure link utilization achieved

• Optional pass/fail criteria for individual tests
– Some tests are more important than others
– Latency regressions are very important to us
– Bandwidth measurements in directed random testing can be noisy



Autoperf

27

• Finer data granularity available than round-trip latency measurements
– Round-trip: Time from sending read request to receiving read response
– One-way: Time from sending read request until it reaches destination
– Hop: Time it takes for read request to traverse each block of my design

• Ability to analyze the root cause of bandwidth issues using latency data
– Can find head-of-line blocking issues by looking for the hop latency with a 

suspicious distribution of values
– Can reduce time to fix performance bugs significantly



Future Work

28

• Power Optimization detection and awareness
– Lane width reduction
– Dynamic frequency scaling

• Should the database schema/log format implement clocking domains?
– Fine-grained clock gating

• Should this be scored as “partially utilized”?
• Should this be scored as “utilized by a CLOCK_DISABLED packet”?
• Should this be its own separate measurement? Correlation with utilization?

• Modeling, modeling, modeling



Future Work

29

• Instructions Per Clock measurement
– Perhaps this is easily implemented as a (verification-only) interface which 

can retire instructions at a certain maximum rate?
• Report the utilization of this interface

– Producing a measurement that is clear is of greater importance!
– Formalizing our performance models is also important!

• Support for CPU design was not an initial design goal for Autoperf



Future Work

30

• Buffer fullness measurement capability
– Count transactions entering and leaving a block
– Graph on-chip RAM and register file utilization over time
– Problem: support different kinds of buffer allocation strategies
– Problem: pipelined network-on-chip

• How to account for multiple storage devices inside of a logical “block”?
• Combinatorial explosion of “allocation” and “residency” strategies

– Problem: sequence number acknowledgements
– Is this an application that we need at HPE to verify performance?



Future Work

31

• Other modeling improvements:
• Simplify latency measurement setup workflow

– Infer packet causation from other properties
– Updating scoreboards is highly reusable but can be difficult

• Improve monitoring of performance in test
– Defining test failure criteria seems insufficient
– Spreadsheet dashboard defining your test plan and measurements?
– Consider the data entry burdens for any use of this kind of feature



Future Work

32

• Should this be a complement to the UVM standard?
– Pro: reusable performance goodness
– Pro: adds value to commercial VIP offerings
– Con: I would not recommend SV or DPI implementation of measurement

• We have had success with post-processing simulation results into Autoperf 
format and getting performance results out of that

– Con: could be difficult to update the performance model
• EG remove clock_period_ps field from monitor log message, add clock 

domains to implement support for dynamic frequency adjustment
– Pragmatically: disrupts EDA industry investment in performance tools


	Automation of Reusable Protocol-Agnostic Performance Analysis in UVM Environments
	Outline
	Performance Verification
	Performance Verification
	Performance Verification
	Our Solution: Autoperf
	Autoperf
	Autoperf
	Components of Autoperf
	Autoperf Verification API
	Autoperf Post-Simulation Flow
	“Just Measure Performance”
	Protocol-Agnostic Performance Measurement
	Protocol-Agnostic Performance Measurement
	Autoperf: Bandwidth and Utilization Results
	Autoperf Latency Measurement
	Autoperf Latency Measurement
	Autoperf Latency Measurement
	Autoperf Latency Measurement
	Autoperf Latency Measurement
	Protocol-Agnostic Performance Measurement
	Autoperf: Latency Results
	Autoperf: Latency Results
	Reusability Limitations
	Our Solution: Results
	Autoperf
	Autoperf
	Future Work
	Future Work
	Future Work
	Future Work
	Future Work

