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Abstract – In this paper we propose a sign-off criteria for configurable digital IP verified using formal methods, which is 

based on a configuration metrics definition and collection. Once the target metrics is declared in a verification document, 

this paper propose a method and flow to automate the verification closure towards the defined sign-off target. 

The proposed solution overcomes the limitation of exhaustive configuration verification whenever this will lead to 

unacceptable run time. It also adds verification robustness by mean of randomization. A case of study shows how to 

automate and optimize the proposed flow making use of one of the verification automation platforms currently available 

on the market. 

 

I.   INTRODUCTION 

The increasing complexity of HW systems requires nowadays maximizing reuse and automation. To make this 

feasible the configuration complexity of Digital IP’s is also increasing. The verification of such digital IP’s needs to 

cope with this trend providing configurable testbenches that are able to handle any of the possible HW 

implementations. The sign-off of such configurable IP’s requires that a minimum subset of configurations have been 

tested. While this process is quite well defined in a dynamic verification sign-off flow, it is not the same in a formal 

static sign-off flow. 

Configurability in formal testbench may apply to both property instantiation and property body implementation. A 

testbench has therefore different properties sets for each selected configuration and may easily lead to successful runs 

for some of the verified configurations and failures or complexity issues for some others. Any issue found may be due 

to both RTL and testbench coding errors. It is key to early identify and address all these issues in order to optimize 

verification re-use and avoid delays when going to verify any new configuration of the IP. 

When the size of the total space of possible configurations is small, an exhaustive verification of all of them is often 

applied, by executing the formal proof of each configuration. In such cases automation is applied to formal runs in 

order to reduce the manual effort of re-running. EDA verification automation platforms not only allow to handle multi 

configurations execution, but also provides a way to collect and combine, whenever is needed, coverage metrics from 

the various runs. Collected results may be linked to a verification plan, where the achieved results can be compared 

with what has been planned and agreed as valid sign-off criteria by the verification project stakeholders. 

Unfortunately, very few IP’s nowadays allow to run exhaustive formal verification. The consequence is that the 

verification is often limited to what strictly required by the integrated version in the current SoC or at most extended 

to a few configurations agreed between design and verification and which may result far from what will be required 

for next products embedding the same IP.  

The intent of this paper is to overcome this limitation by mean of automation of HW configurations generation, 

collection and verification for all those digital IP’s which are highly configurable. A parametric verification plan 

defines not only the usual coverage metrics to be achieved, but also the configuration coverage requirements. 

Therefore, the IP can be signed-off if and only if a subset of all possible configurations achieving the agreed 

configuration metrics target has been successfully executed. 

 

II.   CONFIGURATION SPACE 

In the context of highly parametric designs, having many parameters is a great advantage because the design can be 

reused in different contexts, but it will require a very high verification effort, since the design space can become easily 

huge. A high design configurability has also an impact in terms of execution run time and disk space consumption, 

because the same verification flow must be iterated many times. 

The main questions related to the verification of a highly parametric design are the following: 



 
 Is it reasonable to verify millions of combinations or is it possible to choose a good subset of this? 

 Which should be the 'best' subset of combinations? 

 When is it possible to consider a configurable design fully verified? 

 

Ideally, the verification flow for a parametric design should be applied for all the possible configurations of the 

design as described in the following loop: 

 

 
Figure 1. Ideal verification flow for a parametric design 

 
The ideal flow is very often not feasible because of a limited amount of time and/or resources available. Therefore, 

it is necessary to find a reduced space on which we can apply the verification flow. Moreover, an accurate analysis of 

the quality of the reduced list selected becomes fundamental to meet the final quality metrics requirements of the 

whole verification activity. The real flow now becomes like this: 

 

 
Figure 2. Real verification flow for a parametric design 

 
The difference between the ideal flow and the real flow is in the selection and analysis of the reduced space. The 

first step can be iterated as many times as necessary until an acceptable reduced space is identified.  

Covering multiple combinations of configurable parameters is somehow very similar to cover multiple 

combinations of input stimuli (functional coverage items definition).  Nevertheless, the selection process of the valid 

combination of parameters has been so far based on an arbitrary direct choice approach, without any measure on the 

quality of this choice. The outcome was to have a very different practical handling of the two very similar processes.  

We decided to fully extend the coverage approach also to the definition of the configurations of the reduced space. 

A pseudo-random generation has been used to generate valid configurations sets. Coverage items on individual 

parameters and on their correlation are implemented. The collected metrics can be used to make sure that the analysis 

target are met by the reduced configuration space. 

 

The definition of the coverage metrics and coverage targets used to identify the configurations subset is a matter of 

individual judgment based on the knowledge of the design. Depending on the nature of the design, the cover items 

can be a simple cross between the parameters or a function of the parameters values.  

For example, assuming the parameters control the bus width of two interfaces, the requested configuration metrics 

can be: 

 full cross coverage of the two parameter values 

 only a subset of the whole space of combinations 

 all possible results values of a defined function (ex. equality: equal, greater than, less than)  

compute total_space;  

foreach configuration C in total_space 

{ 

  do complete verification flow for configuration C; 

} 

analyze verification results; 

repeat 

{ 

  select reduced_space; 

  analyze reduced_space; 

} until reduced_space meets analysis target; 

 

foreach configuration C in reduced_space 

{ 

  do complete verification flow for configuration C; 

} 

analyze verification results; 



 
 

To better clarify the concept, let us make a generic example using a verification tool like Specman, which has both 

the capability of constrained random generation and coverage collection.  

The small example of the Figure 3 describes an IP with three parameters having 128 different possible combinations. 

This example of code generates a given number (CFG_NB) of random configurations and it is able to produce a 

functional coverage model where all the parameters (and relevant cross) are covered.  

 

Analyzing the functional coverage, it’s easy to verify that 4 configurations are enough to consider it exhaustive 

(because of the cross coverage ParamX, ParamY), while modifying the cross coverage item in cross ParamX, ParamY, 

ParamZ, the minimum set of random configuration satisfying the functional coverage is 12. The choice of the cover 

item, very specific to the design under test, is then fundamental for the selection of the configurations of the reduced 

space. 

 

 
Figure 3. Small IP with 3 parameters 

 

The output of this Specman run is also a set of cfg_<x>.yml files containing the selected configuration parameter 

values: 

 

 

 
Figure 4. Generated configuration files 

 

struct cfg_s is { 

  ParamX: bool; 

  ParamY: bool; 

  ParamZ: uint; 

    keep ParamZ in [0..31]; 

   

  event cfg_param_cover_e; 

 

  cover cfg_param_cover_e { 

     item ParamX; 

     item ParamY; 

     item ParamZ using ranges ={ 

       range([0] ,      “Min Value”); 

       range([1..30] ,  “Mid values”); 

       range([31] ,     “Max Value”); 

     }; 

  

     cross ParamX, ParamY using name=”Basic_configs”; //4 combinations     

     cross ParamX, ParamY, ParamZ  using name=”Extended_configs”; //12 combinations     

  }; 

}; 

 

extend sys { 

  cfg_list: list of cfg_s; 

    keep cfg_list==CFG_NB; 

  post_generate() is also { 

    for each (cfg) in cfg_list { 

      emit cfg.cfg_param_cover_e; 

    }; 

  }; 

}; 

ParamX: True 

P 

P 
ParamX: True 

Pa 

Pa ParamX: False 

ParamY: True 

ParamZ: 23 

Cfg1.yml 

Cfg2.yml 

CfgN.yml 



 
These files can be used as inputs to major scripting languages which provide built-in libraries for parsing the YAML 

format. The implemented script can then be used to execute the verification formal proof. 

 
III.   CONFIGURABILITY IN FORMAL VERIFICATION 

Formal testbenches to address the verification of configurable Digital IPs are often inheriting the same parametrized 

structure of the HW which has to be verified. 

 
Figure 5. Configurable RTL vs formal testbench configuration 

 

Somehow similar to the configurability in the RTL coding, the parameters are used to control: 

 the property set structure, by creating a direct dependence between the parameter value and the existence 

and/or the kind of one or more properties 

 the property functionality, by the use of one or more parameters in the body of the property itself 

Since properties represent the allowed stimuli when configured as assumptions, the implemented checkers when 

configured as assertions and the functional scenarios when configured as cover, the achieved verification target 

becomes highly dependent on the selected parameters configuration set. 

It is recommended to track the sign-off target intent as a function of the parameter values combination, but this 

becomes often too heavy to be handled in a reasonable time when the total number of combinations is high and the 

dependency is widely spread among the properties code. 

Ideally, the verification intent should declare for each set of the parameters value which property applies, how it 

applies (assume, assert, cover) and the coverage target for all those parameters which control the body of the property 

itself. This intent should then be mapped to the testbench actual implementation in order to be sure that no unwanted 

assumptions are present or wanted checkers are missed. 

As the intent of this paper is to reach an overall sign-off target and not a per-configuration sign-off target the 

proposed mapping is approaching this problem from a global point of view.  

 
IV. AUTOMATED FLOW 

Verification automation platforms are nowadays widely adopted to manage multiple job execution and results 

collection and analysis. With the target of reducing the manual effort on handling multi-configuration verification, it 

is natural to make use of such tools also to integrate the configurations generation and reduction step. Many different 

algorithms of reduction of the verification space can be applied. Such algorithms are out of the scope of this document 

and are not described in here. Whatever will be the selected reduction algorithm it is always required to perform a 

coverage analysis step to make sure the reduced space is optimized with respect to the planned coverage requirements.  

Two approaches can be followed: 

 full metrics driven 

 configuration metrics driven 

A full metric approach requires the generation and full execution of the various configurations runs. Metric analysis 

will be more reliable since it already includes the whole space of the planned metrics. Unfortunately, such approach 

Block A 

f(p1,p3) 

Block C 

f(p2) 

Opt(p4) 

Block B 

f() 

property f_A_1(p1,p3)… ; 

… 

property f_A_n(p1,p3)… ; 

 

property f_C_1(p2)… ; 

… 

property f_C_m(p2)… ; 

 

if (p4) generate { 

   property f_B_1 … ; 

   … 

   property f_B_k … ; 

} 



 
is very expensive from a run time point of view, since the initial size of the pseudo-random configuration may be quite 

big in order to reach the wanted coverage target. 

A configuration metrics approach requires only the generation of the configuration, but does not require the 

execution step on a first iteration. The metrics of the generated configuration space can be collected and analyzed with 

respect to the configuration metrics target in relatively smaller time compared to the full verification execution. 

Ranking techniques can be applied to select the subset of configurations which maximize the coverage target. 

Execution is performed only in a second iteration step and it is normally faster with respect to the full metrics approach, 

since the total number of selected configurations has been already optimized. Full coverage metrics of executed runs 

require to be collected during the execution step and results may be less effective than the ones obtained using a more 

extensive number of runs. Therefore, the initial speed-up in run-time can be degraded by the overall coverage metrics 

effectiveness achieved.   

The selection among the two flow is often not so trivial, but some rule of thumb can be given. Design where the 

configuration is mainly controlling code instantiation (parameters mainly used in HDL “if/for generate” blocks) are 

more likely to converge faster using a configuration driven approach. Design where a configuration is mainly 

controlling code functionality (parameters value used in code implementation) are more likely to converge faster using 

a full metrics driven approach. 

Both flow can be automated using a verification automation platform although the approach is slightly different. A 

graphic representation of both implementations is showed in the following figures. 

 

 
Figure 6 Regression automated flow full metric driven 
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Figure 7. Regression automated flow configuration metric driven 

 

 

To make the sign-off coverage target easier to be understood and reviewed, also by non-verification experts, it is 

recommended to gather together the required metrics in a verification document. Such practice can be extended to 

configurable IP’s adding configuration requirements directly into a global verification plan which can be mapped to 

the overall achieved results. 
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V. PLANNING 

For what concerns the verification plan, a configurable IP design is normally associated to a parametric verification 

plan. Such plan is valid for a specific HW implementation in terms of functionality to be addressed and related 

checkers. Some functionality may exist or not depending on the configuration value, while in some other case the 

function itself depends on the value of one or more parameters. 

An alternative approach will be to have a global verification plan covering all possible functionality.  

Users may be tempted to reduce the planning to the simple coverage of individual functionality, merging the multi-

configuration runs results into a union of functional coverage items. Once a function has been exercised in any of the 

executed configurations, it is marked as covered. Such simplification can be dangerous because it is neglecting the 

impact of the changes in the design microarchitecture that may influence the input scenarios to the given function or 

the parametric dependence of function use modes. 

A more robust approach would be to guarantee that all functionalities are exercised in all possible ways in which 

these can be configured and/or combined together. The coverage implementation for such kind of plan should expect 

not only the given function to be exercised in one configuration, but to be exercised in all possible HW context (all 

possible microarchitectures where the function is implemented) and in all function configuration dependent modes. 

Achieved results can be mapped to the planned items accordingly to the selected approach and assure that each 

functionality is exercised as required. 

 

VI. REAL CASE STUDY 

To prove the effectiveness of the proposed flows we apply an implementation of both to an actual configurable HW 

design, whose parameters enable, control and instantiate several different functionalities. 

The implementation relies on Cadence Verification Automation Platform. 

 

A. Design Under Test (DUT) 

The DUT is an event controller able to handle up to 96 events and to generate Interrupts and Events to one or more 

CPUs. It has 6 parameters allowing a great flexibility in the number and kind of events supported. The TABLE I 

shows the DUT configurability with a brief explanation of the various parameters. 

 
TABLE I 

DUT PARAMETERS DESCRIPTION 

Parameter Name Parameter Description Parameter Range 

nb_of_events Number of events 16 to 96 

nb_of_cpu Number of CPU interrupt controller 1 to 4 

trig_cfg Type of event, a selection among two different kind of 

events 

96 bits mask (only the lower Number of Events bits are 

valid) 

cpu_rxev_en Optional propagation of enabled events to dedicated CPU 

outputs 

4 bits mask (only the lower Number of CPU bits are valid) 

rxev_cfg Mask bit vector for events enabled to CPU propagation 96 bits mask (only the lower Number of Events bits are 

valid) 

tz_cfg Mask bit vector for events which implement AHB5 

TrustZone security protection 

96 bits mask (only the lower Number of Events bits are 

valid) 

 

The total configuration space overcomes billions of configurations; therefore, a proper selection of meaningful set 

is mandatory. 

 

B. Formal Testbench 

The formal testbench makes use of the same parameters to control the properties instantiation and execution and it 

is able to verify any given configuration value. An example of property code is shown in the Figure 8 below.  



 

 
Figure 8.Code snippet of configurable properties 

 

Each property is generated as many times as needed according to the parameter settings. The functionality addressed 

by each property is also controlled by the selected configuration.  

 

C. Configuration Generation 

Since the various configurations are randomly generated, their generation has been done through Specman, 

exploiting its capability of constrained random generation. Parameters can have some constraints and it is easy to code 

them using a verification language like ‘e’. A snippet of the actual code used for the configuration generation can be 

found in the Appendix (Figure 12).  

In case of the full metrics driven flow a Specman ‘e’ file is loaded and a large set of configurations are generated 

by a top visf file under vManager. 

Since a unique test generating several configurations cannot be ranked, in the configuration metric driven flow each 

configuration comes from a separate “test” command under Specview: each one will have its own coverage collection 

to feed to a ranking algorithm (Cadence IMC). A bash script is used to manage this step of the flow, as shown in the 

Appendix (Figure 13). 

The ‘e’ file generates all the configuration files Conf_<ID>.yml containing the parameters values that will be used 

in the formal runs. An example of such “.yml” file is shown in Figure 9 . 

 

 

 
generate  

   begin: event_index_and_cpu_index 

      /////////////////// 

      // FOR EACH EVENT 

      /////////////////// 

      for (evt_idx=0; evt_idx<=nb_of_events;evt_idx=evt_idx+1) begin : gen_event_idx 

         //////////////// 

         // FOR EACH CPU 

         //////////////// 

         for (cpu_idx=0; cpu_idx<=nb_of_cpu;cpu_idx=cpu_idx+1) begin : gen_cpu_conf_idx 

            /////////////////////////////////////// 

            //CONFIGURABLE EVENT at index evt_idx 

            /////////////////////////////////////// 

            if (trig_cfg[evt_idx] == 1) begin: gen_configurable 

 

               //////////////////////////////////////////////// 

               //CONFIGURABLE EVENT with event logic DISABLED 

               //////////////////////////////////////////////// 

               if (rxev_cfg[evt_idx] == 0 || cpu_rxev_en[cpu_idx] == 0) begin: gen_evt_dis 

                  gen_sys_wakeup_idx_wkup_cfg_rxev_dis_chk: assert property (…); 

               end 

               //////////////////////////////////////////////// 

               //CONFIGURABLE EVENT with event logic ENABLED 

               //////////////////////////////////////////////// 

               if (rxev_cfg[evt_idx] == 1 && cpu_rxev_en[cpu_idx] == 1) begin: gen_evt_enb 

                  gen_sys_wakeup_idx_wkup_cfg_rxev_enb_chk: assert property (…); 

               end 

               … 

            end 

         end 

      end 

   end 

endgenerate 



 

 
Figure 9. Example of a generate yml file for one configuration 

 

D. Configuration Coverage Collection 

Coverage metrics are also be implemented in the Specman ‘e’ file. Simple cover items collecting parameters values 

can be implemented as well as very complex parameters cross-coverage dependences. A collection event is emitted 

after the generation phase to track the achieved coverage of each configuration parameters set. A code snippet for the 

‘e’ file implementation can be found in Appendix (Figure 14). 

 

E. Configuration vsif generation 

In order to execute the formal verification of all the selected configurations, the most convenient way is to create a 

unique vmanager session where all the configurations vsif (verification session input file) are imported. The various 

vsif files are also generated by the ‘e’ code during the post_generate() execution, just after the generation of the yml 

files. Example of the generated vsif code can be found in Appendix (Figure 15). 

 

F. Formal verification execution 

The execution step is common to both flows. It is run under the vManager platform executing the JasperGold proof 

runs stated int the top vsif file generated by previous steps. 

The full metric driven flow has been exercised with 30 random configurations and it satisfies the target of 95% for 

configuration coverage and 100% for functional metrics. The actual configuration coverage metrics reached was 

98.36% with the cumulative runtime being around 180 hours (an average of 6 hours for each run). 

Detailed combined coverage results are loaded and visible in the vmanager GUI, and the analysis of coverage 

annotated to the vPlan metrics are displayed in Figure 10. 

 

 
Figure 10. Full metric driven flow vPlan coverage results 

#------------------------------------------------------# 

#    Configuration : rnd_cfg_0  

#------------------------------------------------------# 

 

nb_of_events : 16 

nb_of_cpu    : 3 

cpu_rxev_en  : 4'h7 

trig_cfg     : 96'h013a4 

rxev_cfg     : 96'h11b9a 

tz_cfg       : 96'h1fbf3 

priv_cfg     : 96'h118c5 



 
The coverage metric driven flow has first identified a subset of 22 ranked configurations sufficient to overcome the 

95% coverage threshold, in about 30 sec. The actual configuration coverage metrics reached was 99.36% with the 

cumulative runtime being around 125 hours. 

Detailed combined coverage results are loaded and visible in the vmanager GUI, and the analysis of coverage 

annotated to the vPlan metrics are displayed in Figure 11. 

 

 
Figure 11. Configuration metrics driven flow vPlan coverage results 

 

We observe no functional coverage degradation and better configuration metrics with an overall saved run time of 

30.5%. 

 

  



 
VII.   CONCLUSION 

The main difficulty in the formal verification of highly configurable designs is the management of the configuration 

space. Exhaustive verification is in most cases impossible and a selection of configurations to be verified is needed. 

By using correct functional coverage criteria to the parameter space, it is possible to find a good subset of 

configurations, which will achieve the verification target reducing the total number of formal runs. 

This paper describes a simple random generation to generate the parameter values to be collected and eventually 

exercised. More advanced techniques to optimize configurations selection can be applied in order to further optimize 

execution runtime.  

We have demonstrated a possible implementation of the two proposed flow.  

We have observed that sufficient coverage target metrics can be achieved with less execution time effort by using 

the configuration metric driven approach. A good coverage metric specification is fundamental to achieve a low 

divergence in functional metric target while reducing the number of runs. 

Both flows allow to reach the signoff target of a highly configurable digital IP in a sustainable runtime. 

  

  



 
APPENDIX 

 

 
Figure 12.’e’ code snippet for the full metric driven configurations generation 

 

 

 

struct config_s { 

  nb_of_events : uint(bits: 7); 

    keep nb_of_events in [16..95]; 

 

  nb_of_cpu    : uint(bits: 2); 

    keep nb_of_events in [0..3]; 

 

  cpu_rxev_en  : uint(bits: 4); 

    keep read_only(nb_of_cpu) < 3 => soft cpu_rxev_en[3:nb_of_cpu] == 0; 

 

  trig_cfg     : uint(bits:96); 

    keep nb_of_events < 95 => soft trig_cfg[95:nb_of_events+1] == 0; 

     

  rxev_cfg     : uint(bits:96); 

    keep nb_of_events < 95 => soft rxev_cfg[95:nb_of_events+1] == 0; 

 

  tz_cfg       : uint(bits:96); 

    keep read_only(nb_of_events) < 95 => soft tz_cfg[95:nb_of_events+1] == 0; 

 

  event config_cover_e; 

}; 

 

extend sys { 

 

  number_of_configs : uint; 

    keep number_of_configs == (get_symbol("RND_CFG_NUMBER")).as_a(uint); 

 

  rnd_configs : list of config_s;  

    keep rnd_configs.size() == number_of_configs; 

 

  post_generate() is also { 

    for each (config) in rnd_configs { 

       var yml_filename : string = append(path,"/configs/yml/",config.hw_cfg,".yml"); 

       config_f = files.open(yml_filename, "w",  "Text file"); 

       writef(config_f, "nb_of_events : %d\n", config.nb_of_events); 

       writef(config_f, "nb_of_cpu    : %d\n", config.nb_of_cpu   ); 

       writef(config_f, "cpu_rxev_en  : 4'h%x\n", config.cpu_rxev_en ); 

       writef(config_f, "trig_cfg     : 96'h%x\n", config.trig_cfg    ); 

       writef(config_f, "rxev_cfg     : 96'h%x\n", config.rxev_cfg    ); 

       writef(config_f, "tz_cfg       : 96'h%x\n", config.tz_cfg      ); 

    }; 

    emit config_cover_e; 

  }; 

}; 



 

 
Figure 13.’bash’ code snippet for the configuration metric driven configurations generation 

 

 

for gen in `seq 1 $maxGenNb`; do 

  ### generate Specman command line 

  specmanCmd="load $specmanScript;" 

  for cfg in `seq 1 $expGen`; do 

    specmanCmd="${specmanCmd} test -seed = random;" 

  done 

  ### call Specman to generate the configurations 

  $bsubCmd specman -c "$specmanCmd" 

  cfgNb=`ls -d ${covwork}/scope/gen_cfg* | wc -l` 

  ### call IMC to merge the coverage 

  $bsubCmd imc -execcmd "merge ${covwork}/scope/gen* \ 

                               -out ${covwork}/scope/merged_cfgs \ 

                               -message 0 -overwrite; \ 

                         load merged_cfgs; \ 

                         report_metrics -out metric -overwrite" 

  ### evaluate the metric 

  metric=`python3 -c "import json; \ 

                      f = open(\"$jsonData\"); \ 

                      data = json.load(f); \ 

                      val = (data[0]['All Cov']); \ 

                      (dummy, val) = val.split('('); \ 

                      (val, dummy) = val.split('%'); \ 

                      print(val)"` 

  ### stop if the metric was reached 

  targetReached=`echo $metric'>='$targetMetric | bc -l` 

  if [ "$targetReached" -eq 1 ]; then 

    echo "*** Metric Target $targetMetric Reached ***" 

    break 

  fi 

done 

 

$bsubCmd imc -execcmd "rank gen* -out ${rankResults}" 

### extracting ranked configurations 

cfgs=($(grep cov_work/scope/gen ${rankResults} | \ 

        grep -v ".ucm" | \ 

        awk '$2 != "0.00%"' | \ 

        awk -F/ '{print $NF}' | \ 

        perl -pe "s/gen_cfg_sn/rnd_cfg_/g")) 

### crete top vsif file importing only ranked configurations vsif files 

perl -pe "s/all_cfg/ranked_cfg/g" ${top_tmpl} > ${top_vsif_incr} 

for cfg_name in "${cfgs[@]}"; do 

  vsif_file=${vsif_dir}/${cfg_name}.vsif 

  perl -pe "s/^(\s*)<include_cfg>/\$1\#include \"${vsif_file//\//\\/}\"\n\$1<include_cfg>/" 

${top_vsif_incr} > ${top_vsif_tmp} 

  mv ${top_vsif_tmp} ${top_vsif_incr} 

done 

 

perl -pe "s/^\s*<include_cfg>\s*$//" ${top_vsif_incr} > $out_top_vsif 

rm -f ${top_vsif_incr} 



 

 
Figure 14. Configuration coverage implementation example 

 

struct event_config_s { 

  rtl_version     : rtl_version_t;         

  event_index     : uint(bits:7); 

  trig_cfg        : bit; 

  trig_is_port    : bool; 

    keep trig_is_port == (read_only(event_index) < 16); 

  rxev_cfg        : bit; 

  next_trig_cfg   : bit; 

    keep soft next_trig_cfg == 0; 

  next_rxev_cfg   : bit; 

    keep soft next_rxev_cfg == 0; 

  tz_cfg          : bit; 

   

   

  event cover_event_config_e; 

}; 

 

  cover cover_event__config_e is { 

    item event_index using per_instance, ignore=(event_index>95); 

    item trig_cfg; 

    item rxev_cfg;      

    item next_trig_cfg using no_collect; 

    item next_rxev_cfg using no_collect; 

    item tz_cfg; 

     

    cross trig_cfg, rxev_cfg ; 

    cross trig_cfg, next_trig_cfg; 

    cross rxev_cfg, next_rxev_cfg; 

  }; 

  cover config_cover_e is { 

    item nb_of_events using  

      ignore = (nb_of_events>95 or nb_of_events<16),  

      illegal = (nb_of_events<16), 

      ranges = { 

        range([16]    , "Minimum number of events", UNDEF, 1); 

        range([17..31], "Low number of events", UNDEF, 2); 

        range([32..57], "Medium number of events", UNDEF, 2); 

        range([58..94], "High number of events", UNDEF, 2); 

        range([95]    , "Maximum number of events", UNDEF, 1); 

      }; 

    item nb_of_cpu    ; 

    item cpu_rxev_en  using  

      ranges = { 

        range([0]    , "ALL OFF", UNDEF, 1); 

        range([1]    , "ONLY CPU0 ON", UNDEF, 1); 

        range([2]    , "ONLY CPU1 ON", UNDEF, 1); 

        range([4]    , "ONLY CPU2 ON", UNDEF, 1); 

        range([8]    , "ONLY CPU3 ON", UNDEF, 1); 

        range([3]    , "ONLY CPU0 CPU1 ON", UNDEF, 1); 

        range([6]    , "ONLY CPU1 CPU2 ON", UNDEF, 1); 

        range([0xC]  , "ONLY CPU2 CPU3 ON", UNDEF, 1); 

        range([0xF]  , "ALL ON", UNDEF, 1); 

        range([5,7,9,0xA,0xB,0xD,0xE]  , "SOME ON", UNDEF, 1); 

      }; 

    item nb_ioports   using  

      ranges = { 

        range([0]       , "Minimum number of ports", UNDEF, 1); 

        range([1..15]   , "Low number of ports", UNDEF, 4); 

        range([16..127] , "Medium number of ports", UNDEF, 2); 

        range([128..254], "High number of ports", UNDEF, 1); 

        range([255]     , "Maximum number of ports", UNDEF, 1); 

      };   

  }; 



 

 
Figure 15. Generated vsif for single configuration execution example 
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#ifndef SESSION; 
#define SESSION; 
session gen_rnd_cfgs { 
  #include "vm_session.vsif" 
}; 
#endif 
  
group rnd_cfg_100133959 { 
  #include "vm_group.vsif" 
  timeout : "120000"; 
  hw_cfg  : rnd_cfg_100133959; 
  ipver   : v2_2; 
  run_script: "jg_vm_single_run.py"; 
  run_mode    : batch_debug; 
  scan_script: "vm_scan.pl -maxpat 2000  $ENV(LDVHOME)/tools/bin/jg.flt"; 
  
  test all_props_rnd_cfg_100133959 { 
    jg_app       : "fpv csr cov"; 
    jg_tcl_files : "$ENV(VERIF_BASE)/kit/run.tcl"; 
    jg_tasks     : "<embedded>:CSR"; 
  }; 
}; 

https://www.design-reuse.com/articles/17065/formal-verification-ips.html
https://www.design-reuse.com/articles/17065/formal-verification-ips.html
https://www.eetimes.com/document.asp?doc_id=1276118
https://www.design-reuse.com/articles/18495/ip-design-verification.html
https://www.design-reuse.com/articles/18495/ip-design-verification.html

	Automating the formal verification sign-off flow of configurable digital IP’s
	I.   INTRODUCTION
	II.   CONFIGURATION SPACE
	III.   CONFIGURABILITY IN FORMAL VERIFICATION
	IV. AUTOMATED FLOW
	V. PLANNING
	VI. REAL CASE STUDY
	VII.   CONCLUSION
	APPENDIX
	REFERENCES


