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Abstract – Specification changes and bugs discovered late in the project tend to cluster around the specific 

timing of important signals and require significant modifications of all underlying sequences, tests and 

testbench code. These disruptive, late-stage changes can add significant delays, especially when the signal 

relationships and timing are coded into an external vendor VIP. To address these issues, we consider some 

approaches and describe a UVM configuration database solution for architecting sequence class creation at 

the very inception of the VIP/project to enable coverage driven and test driven automated stimulus 

generation and coverage, eliminating manual and error-prone modifications to the underlying sequences 

during the course of the project. 

I. INTRODUCTION 

One of the most common challenges in verification both at the block level and full chip level is the 

creation of sequences that can drive the input signals to the DUT in accordance with the microarchitecture 

specification. This effort is made harder because of a few practical issues: 

1. The microarchitecture specification is often incomplete or incorrect with regards to specific signal 

behavior, especially at the beginning of the project when the testbench code is usually created. 

Architects and Designers usually do not describe the specific boundaries of signal timing as part of 

the architectural specification (as in the case of approximately timed or loosely timed models) in 

terms of minimum and maximum delays for various signal transitions 

2. The desired behavior/timing of generated signals often changes at later stages in the project because 

of the discovery of bugs found later in the project, especially with timing analysis of the chip 

3. The discovery of coverage holes during coverage analysis necessitates “tweaking” the sequences 

to hit corner cases manually, which is an error prone effort that can lead to further coverage holes 

because sequences are shared by multiple tests 

As a result, the sequences that generate input signals end up changing constantly throughout the course 

of the project. Worse, the modification of the sequences is an error prone, iterative process which often 

introduces other problems. Furthermore, everyone on the project uses their own coding guidelines and 

coding styles for generating stimulus in their sequences, which makes code difficult to share and maintain.   

How do we minimize sequence creation while enabling targeted random tests that improve coverage? 

How do we drive input signals in a way that allows for future changes without modifications to the 

underlying sequence code? How do we standardize the stimulus creation of critical signals to ensure that 

we can drive to full coverage closure in a quick manner?  

II. PREREQUISITES 

In order to get the most out of this paper, you should already be familiar with basic Object Oriented 

Programming (OOP) concepts and the UVM configuration database.  Using basic OOP concepts and the 
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configuration database, it is possible to define signal configuration classes that can be adaptively used by 

the test writer to control stimulus generation.  

III. THE INITIAL MICROARCHITECTURE SPECIFICATION 

Assume that we are interested in creating a sequence that generates a single read request, which requires 

the enable1, enable2, read_addr and read_req to be driven in that order to the DUT (Figure 1). In other 

words, the initial specification calls for enable1 to be high at or before enable2, enable2 to be high at or 

before read_addr and read_addr to be high at or before read_req.  

 

Figure 1 - Initial Microarchitecture Specification 

IV. SOLUTION 1 – HARDCODING DELAYS INTO THE SEQUENCES 

There are multiple possible approaches to driving the signals shown above. One approach is to send a 

single transaction from the sequence to the driver and have the driver manage the timing of all signal 

transitions for a read request. Another approach is to have the sequence do the heavy lifting by defining the 

timing and transition behavior of the signals in the sequence. We show the latter approach, but the solutions 

proposed in this paper are applicable regardless of the approach chosen.  

A first cut attempt at coding the read sequence might look like Figure 2.  

class read_seq extends uvm_sequence #(read_txfer); 

………………… 

virtual task body(): 

`uvm_do_with(req, {enable1 == 1'b1;}); 

`uvm_do_with(req, {enable1 == 1'b1; enable2 == 1'b1;}); 

repeat (2) `uvm_do_with(req, {enable1 == 1'b1; enable2 == 1'b1; read_addr == 'hF00DF00D;}); 

`uvm_do_with(req, {enable1 == 1'b1; enable2 == 1'b1; read_addr == 'hF00DF00D; read_req == 1'b1;}); 

endtask 

  

Figure 2 - Sequence with hardcoded delays 

The problem here is that the specific timing relationships between enable1, enable2, read_addr and 

read_req have been hard coded in the sequence. In the snippet above, enable1 is high for one cycle before 

enable2 and enable2 is high for one cycle before read_addr, which in turn is high for 2 cycles before 

read_req. There is no randomization for the delays between enable1, enable2, read_addr and read_req.  

clock

enable1 `

enable2 `

read_addr 'hF00DF00D

read_req
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If a bug were discovered that required enable1 and enable2 to be high in the same cycle, a new sequence 

(Figure 3) would have to be created to ensure enable1 and enable2 went high at the same time.  

  

class read2_seq extends uvm_sequence #(read_txfer); 

………………… 

virtual task body(): 

repeat (2) `uvm_do_with(req, {enable1 == 1'b1; enable2 == 1'b1;}); 

repeat (2) `uvm_do_with(req, {enable1 == 1'b1; enable2 == 1'b1; read_addr == 'hF00DF00D;}); 

`uvm_do_with(req, {enable1 == 1'b1; enable2 == 1'b1; read_addr == 'hF00DF00D; read_req == 1'b1;}); 

endtask 

………………… 

  

endclass 

  

Figure 3 - Second sequence with hardcoded delays 

But the problem with this sequence in turn is that it might not cover bugs in other critical scenarios, for 

example where enable1, enable2 and read_addr all simultaneously go high in the same cycle.  

V. SOLUTION 2 – IMPLEMENTING RANDOMIZATION IN THE SEQUENCE 

A better way would be to build randomization into the sequence where the delays between the various 

signals are randomized within minimum and maximum parameter bounds. This involves defining the cycle 

delay parameter bounds for the signal pairs within the sequence (e.g. minimum and maximum cycles delay 

between enable1, enable2) and creating a constrained random variable which is randomized within the 

parameter bounds. The sequence would then use the constrained random variable to determine how many 

cycles to wait after enable1 before driving enable2.  

Consider these parameter bounds overlaid on the microarchitecture spec in Figure 4 and the 

corresponding sequence in Figure 5.  

 

Figure 4 - Microarchitecture specification with delay parameters  
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class read_seq extends uvm_sequence #(read_txfer); 

………………… 

rand uint pEnable1Cycles;                                              // Specific number of cycles where only enable1 will be high  

uint pEnable1CyclesMin = 0, pEnable1CyclesMax = 13;     // Range of cycles where only enable1 can be high 

………………… 

constraint cEnable1Cycles { 

pEnable1Cycles >= pEnable1CyclesMin; 

pEnable1Cycles <= pEnable1CyclesMax; 

} 

// All other parameters like pEnable2Cycles, pReadAddrCycles etc will have similar definitions/constraints 

  

virtual task body(): 

repeat(pEnable1Cycles)     `uvm_do_with(req, {enable1 == 1'b1;}); 

repeat(pEnable2Cycles)     `uvm_do_with(req, {enable1 == 1'b1; enable2 == 1'b1;}); 

repeat(pReadAddrCycles) `uvm_do_with(req, {enable1 == 1'b1; enable2 == 1'b1; read_addr == 'hF00DF00D;}); 

`uvm_do_with(req, {enable1 == 1'b1; enable2 == 1'b1; read_addr == 'hF00DF00D; read_req == 1'b1;}); 

endtask 

………………… 

endclass 

  

Figure 5 - Sequence with built in random delays 

The delay parameters such as pEnable1CyclesMin and pEnable1CyclesMax are present within the 

sequence class itself and the sequence class uses these parameters to generate the specific delay values 

within the sequence. This can be shown pictorially as Figure 6. 

 

Figure 6 - Class diagrams for sequence with built in sequence configuration for random delays 

                             uvm_sequencer

uvm_agent

uvm_monitor

uvm_sequence +

Sequence configuration

uvm_driver
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With this approach, we have introduced randomization into the generation of delays between the various 

signals, significantly improving our coverage. Still, three problems remain.  

1. First, because the delays for the signals are coded into the sequence itself, creating targeted random 

test cases by limiting/constraining the delay parameter ranges requires the test writer to create new 

sequence classes, which is a heavy burden for changing just two parameters.  

2. Second, if the specification of the minimum and maximum changes, we have to edit all our 

sequences.  

3. Third, it would be ideal to provide the test writer with the ability to modify the sequence delay 

behavior at run time. That way the underlying sequence can remain stable, and the test writer can 

create targeted random test scenarios based on the specific coverage holes or bugs that are 

discovered during the course of the project. 

VI. SOLUTION 3 – STABLE AND FLEXIBLE SEQUENCE, RANDOMIZATION DRIVEN BY TEST 

We achieve the objective of a stable and flexible sequence in three steps. First, we move the 

configuration parameters out of the sequence into a central signal configuration class that can be shared by 

multiple sequences.  

Notice that the signal configuration class as shown in Figure 7 is built, it has a default minimum and 

maximum delay which can be overridden by the test writer at run time.  

  

class read_seq_cfg extends uvm_object; 

rand uint pEnable1Cycles;                                        // Specific number of cycles where only enable1 will be high 

uint pEnable1CyclesMin, pEnable1CyclesMax;     // Range of cycles where only enable1 will be high 

…… 

function new(string name="read_seq_cfg",  

int unsigned pEnable1CyclesMin = 0,                  // Set default minimum, override at run time if needed 

int unsigned pEnable1CyclesMax = 13,               // Set default maximum, override at run time if needed 

…. 

); 

this.pEnable1CyclesMin = pEnable1CyclesMin; 

this.pEnable1CyclesMax = pEnable1CyclesMax; 

endfunction 

  

constraint cEnable1Cycles { 

pEnable1Cycles >= pEnable1CyclesMin; 

pEnable1Cycles <= pEnable1CyclesMax; 

} 

endclass 

  

Figure 7 – Signal configuration class for sequence 
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Next, we have specific tests create an object of this signal configuration class and override any 

parameters of interest. Figure 8 below shows an example of a specific targeted test that is interested in 

achieving delays close to the maximum between enable1 and enable2. The test writer sets the delay 

parameter range to [12:13] cycles between (enable1, enable2) in this test.  

 

class read_long_enables_test extends uvm_test; 

…… 

rand read_seq_cfg m_read_seq_cfg; 

virtual function void build_phase(uvm_phase phase): 

….. 

m_read_seq_cfg = read_seq_cfg::type_id::create("read_seq_cfg"); 

if(!m_read_seq_cfg.randomize()) `uvm_error(get_type_name(), "Unable to randomize read_seq_cfg");  

read_seq_cfg.pEnable1CyclesMin = 12; 

read_seq_cfg.pEnable1CyclesMax = 13; 

uvm_config_object::set(this, "*", "read_seq_cfg", m_read_seq_cfg); 

  

endfunction 

endclass 

  

  

Figure 8 - Test that sets up sequence configuration 

Finally, we have the sequence shown below in Figure 9 use the configuration parameters provided by 

the test to determine the timing relationships between enable1 and enable2 in the sequence.  
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class read_seq extends uvm_sequence #(read_txfer); 

………………… 

virtual task body(): 

parent = get_sequencer();                             // Get the uvm_component to eventually get linked config object 

if (parent == null) `uvm_fatal("nullParent", …); 

if (m_read_seq_cfg == null) begin 

if (!uvm_config_db#(read_seq_cfg)::get(parent, "", "read_seq_cfg", 

                                                                   m_read_seq_cfg))   // Get the configuration for the sequence 

`uvm_fatal("nullReadReqSeqCfg", ….); 

end 

  

repeat(m_read_seq_cfg.pEnable1Cycles)     `uvm_do_with(req, {enable1 == 1'b1;}); 

repeat(m_read_seq_cfg.pEnable2Cycles)     `uvm_do_with(req, {enable1 == 1'b1; enable2 == 1'b1;}); 

repeat(m_read_seq_cfg.pReadAddrCycles) `uvm_do_with(req, {enable1 == 1'b1; enable2 == 1'b1;  

                                                                                                        read_addr == 'hF00DF00D;}); 

`uvm_do_with(req, {enable1 == 1'b1; enable2 == 1'b1; read_addr == 'hF00DF00D; read_req == 1'b1;}); 

endtask 

…… 

endclass 

  

Figure 9 - Sequence that uses the configuration object provided by the test for delay randomization 

With this approach, we have allowed a targeted test to be created by manipulating the sequence 

configuration object passed to the sequence at run time without requiring the test writer to define an 

additional sequence class at compile time that further constrains the delay parameter between (enable1, 

enable2). The adaptable sequence  as shown in Figure 9 gets the configuration object created by the test 

writer as shown in Figure 8 and drives the signal transitions for enable1 and enable2 by looking into the 

delay parameter values populated in the signal configuration object created by the test writer.  

An explanation may be in order for the need to get a pointer to the parent sequencer in Figure 9. Because 

the sequence is an uvm_object, it cannot use a pointer to itself as the first parameter in the 

uvm_config_db::get() call which it makes to get its configuration values. The first parameter to the 

uvm_config_db::get() call needs to be an uvm_component. As a result, the sequence first gets a pointer to 

its parent sequencer (which is derived from uvm_component) and then passes the parent sequencer pointer 

as the first parameter in the uvm_config_db::get() call to get its configuration object. 

Pictorially, this approach is shown in Figure 10. 
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Figure 10 - Class Diagrams for sequence that uses external configuration for delay randomization 

VII. SOLUTION 4 - PROVIDING THE ULTIMATE FLEXIBILITY TO THE TEST WRITER 

The previous approach coded the read sequence in a way that came close to guaranteeing that the 

underlying sequence would not have to be changed to create different tests. However, there still remains 

one situation where the underlying sequence would have to be changed. Assume that the microarchitecture 

specification changed - Now enable2 is allowed to be asserted before, on, or after enable1 (Recall that 

previously enable2 could only be asserted at or after enable1). The snippet of sequence code in Figure 9 

presumes that enable1 has to be asserted at or before enable2. Therefore, would have to modify the 

sequence as a result of the microarchitecture change, which is not ideal. Can we come up with a solution 

that provides ultimate flexibility to the test writer even in the face of microarchitecture specification 

changes? To do this, all we have to do is to define the signal configuration parameters for the sequence 

differently. Instead of defining the signal configuration parameters relative to the previous signal 

transition/edge, we define them relative to the start point of the sequence as shown in Figure 11.  

  

Figure 11 - Redefining delay parameter bounds for ultimate flexibility 
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Now if we wanted enable2 to be driven before enable1, the test writer would simply constrain 

pEnable2Start to be smaller than pEnable1Start when they create the configuration object. The sequence 

code is shown in Figure 12. In the interests of brevity, the modified test code (similar to Figure 8) and the 

modified configuration object (similar to Figure 7) are not reproduced here. To enable more code sharing, 

we could store the “properties”/”attributes” of each of the signals (values and delays) in a signal generator 

class (sig_gen – See Figure 13) and re-use the class to generate the values for the signals on a per cycle 

basis. When the signal generator object is created (build time) using the signal generator class, it is passed 

information on the initial value, the initial length, the final value and the final length. The signal generator 

object can then be queried to obtain the cycle-by-cycle values of the signals. 

  

class read_seq extends uvm_sequence #(read_txfer); 

………………… 

virtual task body(): 

parent = get_sequencer();                                 // Get the uvm_component to eventually get linked config object 

if (parent == null) `uvm_fatal("nullParent", …); 

if (m_read_seq_cfg == null) begin 

if (!uvm_config_db#(read_seq_cfg)::get(parent, "", "read_seq_cfg", 

                                                                                   m_read_seq_cfg))   // Get the configuration for the sequence 

`uvm_fatal("nullReadReqSeqCfg", ….); 

end 

  

// local variables (l_ variables) to compute the cycle-by-cycle values of the signals that we want to drive 

logic l_enable1, l_enable2, l_read_req;  

logic l_read_addr;  

  

for (int i = 0; i < m_read_seq_cfg.pReadSeqLength; i++) begin 

if (i == m_read_seq_cfg.pEnable1Start)     l_enable1 = 1'b1; 

if (i == m_read_seq_cfg.pEnable2Start)     l_enable2 = 1'b1; 

if (i == m_read_seq_cfg.pReadAddrStart) l_read_addr = 8'hf00df00d; 

if (i == m_read_seq_cfg.pReadReqStart)   l_read_req = 1'b1; 

  

 `uvm_do_with(req, {enable1 == l_enable1; enable2 == l_enable2; 

                                           read_addr == l_read_addr; read_req = l_read_req;}); 

end 

endtask 

…… 

endclass 

  

Figure 12 - Modified sequence with complete flexibility 
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class sig_gen #(type T=bit); 

   // Type of signal we are dealing with (for example single bit, multi-bit etc) 

   rand T sigVal; 

 

   // Cycle duration for the initial phase of the signal 

   rand int unsigned initialLength; 

   // Value to be returned in the initial phase of the signal 

   rand T            initialVal; 

  

   // Cycle duration for the final phase of the signal 

   rand int unsigned finalLength; 

   // Value to be returned in the final phase of the signal 

   rand T finalVal; 

      int count = 0; 

  ……. 

function new(string       name, 

                int unsigned initialLength, 

                T            initialVal = 'd0, 

                int unsigned finalLength, 

                T            finalVal  = ~initialVal); 

      this.name          = name; 

      this.initialLength = initialLength; 

      this.initialVal    = initialVal; 

      this.finalLength   = finalLength; 

      this.finalVal      = finalVal; 

endfunction // new 

  

function T getVal(); 

      T returnVal; 

if (count < initialLength) return initialVal; 

else if ((count >initialLength) && (count < finalLength)) return finalVal; 

else (… ERROR ….); 

count++; 

endfunction 

endclass 

Figure 13 – Signal generator class to store signal attributes and retrieve signal values 
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It should be noted that the parameter definitions as provided in Figure 11 can be translated into an 

executable microarchitecture specification as shown in Table 1. Furthermore, the executable 

microarchitecture specification bound values can be used to define the specific delay parameters in the 

signal configuration object which in turn will control the behavior of the signal generator object.   

To elaborate further, a change in the microarchitecture specification as represented in Table 1 would 

simply lead to different parameter bound values in the signal configuration object (similar to the one shown 

in Figure 7). The changes in the signal configuration object can either be done in the default parameter 

values of the new() (constructor) function of the signal configuration class or by changing all tests to 

override the default parameter behavior of the new() (constructor) function of the signal configuration class. 

The signal configuration object thus created would then define the bound values that would be passed into 

the signal generator objects new() (constructor) function shown in Table 1.Furthermore, the executable 

microarchitecture specification bound values can be used to define the specific delay parameters in the 

signal configuration object which in turn will control the behavior of the signal generator object.   

Table 1 - Executable Microarchitecture specification 

Signal parameter Minimum bound from start of 

sequence 

Maximum bound from start of 

sequence 

pEnable1Start 0 2 

pEnable2Start 0 3 

pReadAddrStart 0 4 

pReadReqStart 5 6 

pReadSeqLength 7 9 

Table 1 can be easily extended to cover cases where each signal undergoes more than one transition as 

part of the sequence. In this case, we would need one signal parameter per transition of the signal that 

indicates the distance from the start of the sequence until the specific signal transition.  

However, the problem becomes more interesting when the multiple transitions of one signal are 

somewhat correlated to the transitions of other signals. For example, consider the case when the protocol 

allows two read_req “burst” requests for a single assertion of read_addr. In this case, there are two choices 

in sequence coding/creation: 

1. We can specify each of the read_req burst transitions as a separate entry in Table 1. Thus the test 

writer can specify and control the timing of the burst transitions. The test writer has to take care to 

ensure that the read_req transitions are ordered correctly with respect to the read_addr transitions 

2. We can provide a sequence configuration class parameter to indicate the number of read_req burst 

transitions and provide delay parameters for the distance between burst 1 and burst 2. In this case, 

the sequence would hard code the relationship between read_req and read_addr and the test writer 

loses some control over the relative order of the burst signal transitions (read_req will always be 

preceded by read_addr). With this approach the test writer has to specify less parameters to achieve 

the intended effect. This option is easier for the test writer, but less resilient in the face of 

microarchitecture changes.  

The modified sequence code is shown in Figure 14. It uses the sig_gen class defined in Figure 13 to 

compute the values of the various signals on a cycle by cycle basis and populates the sequence object that 

is handed off to the driver.  
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Figure 14 - Sequence that uses the underlying signal class and external configuration parameters for maximum flexibility 

 

  

class read_seq extends uvm_sequence #(read_txfer); 

………………… 

virtual task body(): 

…….  

// local variables (l_ variables) to compute the cycle-by-cycle values of the signals that we want to drive 

sig_gen#(bit) l_enable1, l_enable2, l_read_req;  

sig_gen#(byte) l_read_addr;  

  

l_enable1 = new("l_enable1", .initialLength(m_read_seq_cfg.pEnable1Start),  

                                    .initialValue(1'b0), .finalValue(1'b1),  

                                    .finalLength(m_read_seq_cfg.pReadSeqLength - m_read_seq_cfg.pEnable1Start)); 

l_enable2 = new("l_enable2", .initialLength(m_read_seq_cfg.pEnable2Start),  

                                    .initialValue(1'b0), .finalValue(1'b1),  

                                    .finalLength(m_read_seq_cfg.pReadSeqLength - m_read_seq_cfg.pEnable2Start)); 

…. // similar definitions for l_read_req and l_read_addr 

  

for (int i = 0; i < m_read_seq_cfg.pReadSeqLength; i++) begin 

 `uvm_do_with(req, {enable1 == l_enable1.getVal(); enable2 == l_enable2.getVal(); 

                                           read_addr == l_read_addr.getVal(); read_req == l_read_req.getVal();}); 

end 

endtask 

…… 

endclass 
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VIII. IMPLEMENTATION NOTE 

The final approach has been used successfully and has formed the basis of a VIP that is shared by 

multiple verification environments. One of the successes of the implementation is that the VIP has been 

used to simulate many different signal behaviors and what-if scenarios on the testbench signals across 

multiple architectural generations without requiring any modification of the underlying sequences.  

IX. FUTURE WORK 

Using scripting languages and the underlying signal generator class, the executable microarchitecture 

specification can be used to automatically generate the sequences. The underlying signal generator class 

can be enhanced to provide different kinds of non-uniform randomization distributions like bathtub 

distributions across minimum and maximum parameter bounds, leading to better coverage. In order to do 

this effectively, the minimum and maximum delay parameter bounds would be passed into the sig_gen 

class along with the desired distributions of the derived delay values. The sig_gen class would then use the 

delay parameter bounds and the desired distribution as inputs to compute the specific delay values and use 

them to return the cycle by cycle values of each signal.   

X. SUMMARY 

We explored the problem of controlling stimulus generation with minimal additions/modifications to 

underlying testbench code. Using the UVM configuration database, by defining configuration objects that 

are used in the sequences, and performing test driven sequence generation, we show a few solutions to 

achieving this goal.  Using these approaches, randomized sequences can be automatically generated from 

the microarchitecture specification. Specification changes to signal timing can be seamlessly absorbed by 

the test writers without requiring modifications to the testbench. Multiple directed tests with different 

coverage intents can be created using the same underlying sequences.  

 

         

 


