

Automatically synthesizing higher level of protocol abstraction

for faster debug and deeper insight into modern digital designs

Alasdair Ferro, Amar Patel, Chris Jones, Yogesh Badaya

{alasdair_ferro, amar_patel, chris_jones, yogesh_badaya}@mentor.com

Mentor Graphics, a Siemens Business

Abstract- The design and verification complexity has led to the evolution of various languages and

methodologies, such as SV and UVM. This evolution happened primarily because of the raised level of

abstraction at which design and verification engineers have to think and capture the intent. Such abstraction

simplifies the comprehension and debug activities of the system. Still, as designs go through the flow, they are

transformed into lower level of abstraction (logic synthesis and instrumentation), that could be based on

context in which this data is captured, such as third-party sources, or hardware accelerator-based data

capture. The analysis and debug complexity again goes up due to unavailability of higher level of data

abstraction.

In this paper, we propose to synthesize the higher level of abstraction from the lower level of design data

and making design data available for the debug and analysis. In our experiment, we captured AXI signal-

level activity from emulation system and synthesized higher level of transactions. With this view, users can

debug and analyze AXI data with the packetized transactions instead of signal-level waveforms. Though the

methodology is demonstrated on AXI but is applicable to all the industry standard protocols. We have also

demonstrated that this higher level of data can be easily analyzed for other insights into the subsystem like

instructions coverage, address ranges, and performance analysis.

Keywords—protocol, IP, VIP, AXI, NASTI, RISC-V, SoC, SIP, emulation, prototype, signal activity, bus,

transactions, processor performance evaluation

I. Introduction

There are various situations where design data is available only at lower level of abstraction. For example when

waveforms are captured from emulation or FPGA Prototype or any other hardware accelerator during design

verification, data is available as signal-level activity. Having only lower level of abstraction makes it difficult to

understand the design behavior to debug a failure, capture coverage, and map to test plan, amongst other verification

tasks.

Typically, the only option available to engineers is look at the signal-level waveforms and make progress. This

requires protocol expertise to be effective, and increases the time it takes to close the task at hand.

In some other cases, engineers can use tools that have been matured to give better representation of the

information, mapped to original higher level of abstraction. However, such tools typically work only in few cases

and that too when the implementation of that tool started with higher level of abstraction, and has all the relevant

information. For example, if the tool itself is driving UVM sequences into the emulation box, it already knows the

details that can map the activity back. Still, such tools offer limited features and work for only some specific cases.

The problem keeps growing as higher number of standard IPs become part of the sub system. We have identified the

following key issues with the existing flow:

1. Need of protocol expertise to work at signal level of protocols with the increase in number of protocols and

the complexity of the protocols.

2. Extra effort is needed to make sense of the data. This increases the debug complexity and time to functional

correctness.

3. Data analysis at various levels is a critical part of the verification closure. This includes test plan coverage,

code coverage and other protocol specific analysis. Signal-level data makes it complex to work on these

parameters effectively.

II. Proposed Solution

We propose methodology to synthesize higher level of protocol abstraction automatically from the signal level

data and protocol configuration captured at run time. With this approach, we take care of the productivity issues

with verification as described earlier.

We provide a flow as illustrated in Figure-1. Our solution reads signal-level activity and protocol configuration-

specific information. Our tool can transform this information into higher level of abstraction.

This synthesis technology makes verification faster by providing the following features to users:

- Graphical visualization to comprehend and debug the data at the transaction level.

o Transaction Viewer

o Protocol Specific Debugger

- Additional utilities to assist with data analysis based on protocol. They help in protocol-specific checks,

and scenario coverage.

- Features that make it easy to visualize design activities at the higher level of abstraction so that verification

engineers do not need to have deep knowledge of all the protocols.

III. Experiment and Results

The experiment was done on a RISC-V processor based sub system, Figure-2 describes the block diagram of the

sub system. The design is synthesizable and can be executed on hardware based verification technologies like

emulation or FPGA prototype. Waveforms can be captured for any bus or a list of signals in the design.

We captured the signal-level activity at the bus as marked in Figure-2 with a star in red box. The RISC-V

design and verification flow was instrumented to capture data in our propriety waveform format (qwave.db). The

chosen buses are UART and AXI-based communication channel between processor (Rocket Tile) and the memory

devices. The software program loaded in the RAM and the boot program are executed on the processor and data is

transferred using the chosen bus.

Protocol Synthesis
(Recreate Transaction Packetized Data)

IP Config
#Protocol Configuration
#Signal Mapping

SignalActivity.db(qwave.db)

Transaction
Debugger

Protocol
Checker

Protocol
Analysis

Figure 1 Protocol Synthesis

Figure 3 and Figure 4 display signal-level activity and corresponding synthesized transactions for AXI Write and

AXI Read, respectively. The synthesized transactions contain packet-level information and is helpful in debugging

and searching a specific transaction activity. During simulation, a transaction log is also generated in text version of

the synthesis report.

Figure 2 RISC-V based sub system

Figure 4 AXI Read Transaction Figure 3 AXI Write Transaction

The communication bus is between the processor (Rocket Tile) and the RAM, so the transaction data contains

information about the nature of instructions executed on RISC-V processor. This enables a wide range of checks and

analysis, which can be done on RISC-V-based designs. For our experiment, the data was analyzed to extract

instruction coverage (shown in Figure 5) and address distribution (shown in Figure 6).

IV. Conclusion

Synthesis of transactions from signal-level activity provides a platform to perform design checks and

design data analysis. The data collection is done during design run and synthesis is done as post process. The

feature is useful for simulation, emulation and FPGA based-verification and validation tools. RISC-V, as an

open ISA, is used to provide standard and independent processors. This capability can further be used for cache

coherency, security, processor performance analysis and compliance checking in RISC-V based subsystems.

Though we have demonstrated our application on AXI and UART protocol, the methodology scales to all

the industry standard protocols. This reduces effort and time to debug and achieve verification targets, hence

verification closure of the designs.

V. References

[1] RISC-V. https://riscv.org.

[2] LowRISC https://www.lowrisc.org.

[3] ARM AMBA AXI Protocol Specifications.

Figure 5 RISC-V Instructions Coverage

Figure 6 RISC-V Instruction addresses distribution

