

Automatic verification for Assertion Based Verification:
How can a SPIRIT IP-XACT extension help?

Sofiene Mejri
STMicroelectronics

Tunis, Tunisia
Telephone +216 7010 5295

Sofiene.Mejri@st.com

Mirella Negro Marcigaglia
STMicroelectronics

Catania, Italy
Telephone +39 095 740 4461

Mirella.negro@st.com

ABSTRACT
In this paper, we describe the application of a new automatic
verification flow for Assertion Based Verification. A prototype
of this approach is described, starting from a standard
specification format, which is adopted by all our Digital IPs,
through the generation of a SPIRIT IP-XACT standard with
added verification extension, ending with the automatic
generation of the set of checkers and coverage items that are
finally used for formal or dynamic verification of the RTL
implementation. In this way, we implement a “correct by
specification” verification environment versus one in which we
verify the RTL functional behavior. Our goal is to reduce the
time required to generate the verification environment and to
make sure to generate the complete set of basic checkers and
coverage items required to verify the Digital IP design.

1 INTRODUCTION

1.1 General Concepts
The business requirements of continuously reducing project
time while always delivering successful first time silicon
products make it more and more attractive to look at promising
automatic verification flows, which should give the advantage
of reducing scheduling time and guarantee more rigorous and
complete verification. However, the major challenge is to
develop a flexible and powerful flow that can be used with
complex digital IPs, be reusable, and start from an existing
textual standard specification format, in order to avoid investing
further effort in the specification phase (i.e. to write a SPIRIT
IP-XACT view). Formal verification has become increasingly
important in the verification flow for Digital IP,, and in some
cases it is enough to verify all of the IP’s functionality without
the addition of any simulation techniques. There are some
functionalities that are easier than others to be verified using a
formal flow, and it is exactly on such functionalities that we
started to work for automatic checkers generation. The
generated checkers can be as well used in dynamic verification.
A digital IP is generally a component of the SoC, which can be
programmed by software by writing a set of internal registers.
Via software programming, it is also possible to monitor the
IP’s status either by polling the status of its internal registers, or
by activating an IR (Interrupt Routine) when an interrupt signal
is raised by the digital IP. Every digital IP has a common set of
configuration and status registers, and the IP functionality
depends on the value of its registers. Each register can be reset
or accessed in read and/or write mode, and its fields can be set
or reset by hardware or by software.

The solution presented in this paper exploits the SPIRIT
standard XML format for the definition of the IP’s registers, IP-
XACT, and provides a new methodology by adding an
extension, which contains further information, required for the
generation of checkers and coverage items to be applied in both
formal and dynamic verification. We start by describing the
state-of-the-art of automatic functional verification solutions
and summarizing their strengths and weaknesses. We then
proceed to detail the implementation of a prototype that has
been developed for an automatic verification flow, starting from
the required specification format, to the new extension of the
SPIRIT IP-XACT Standard and the different generated output.
We will also highlight the flow requirements in terms of
extensibility and flexibility. Then, we will describe its different
use models and its impact on other design phases. A functional
verification use case will be described to illustrate this
prototype with a simple 8-bit bus interface digital IP. The test
case is verified in formal, and we will compare the results and
evaluate the added value and impact of this automatic
verification approach within the functional verification activity
as well as the global design flow. Finally, we’ll describe
possible future enhancements of this approach and its current
limitations.

1.2 Specification Languages
In a typical design environment, a Digital IP behavior is
described in a functional specification text document created by
the hardware designer. This document contains information
about the IP behavior, the registers set, and its managing policy.
We will refer in our paper to this document as the Functional
Specification Document. There are other important details, like
the external interface list of signals, the micro architecture
design, timing information, for examples, that, depending on
the IP implementation, are normally provided in another IP
document that is used to perform functional verification and
SoC integration, but is not required for the end user application
and customer. We will refer in our paper to this document as the
Design Specification Document. Both documents rarely follow
semantic rules that could allow automatic processing to extract
the contained information. The designers, as well as the
verifiers, use the Digital IP specification documents to create
their own Digital IP environments in different languages:
VHDL, Verilog for the RTL design, e language, System
Verilog, PSL assertions, and so on, for the verification
environment.

2 STATE OF THE ART

2.1 Specification Language
Some attempts have been made to implement a formal
specification language, suitable for automatic processing, in
order to automatically generate both implementation and
verification environments. However, most of the defined
specification languages are referred to software applications and
programming, like TUG [7] which is oriented to C code
generation, and [16], and not to digital verification.

2.2 SPIRIT Standards
The SPIRIT Consortium [29] defines a set of standards to
exchange design information among different users, in order to
facilitate automatic processing in the different design phases.
The standards defined by the SPIRIT Consortium are IP-XACT,
which is an XML schema for the description of design
components, and SystemRDL [29], a language for describing
registers inside the components. A part of the SPIRIT IP-XACT
standard related to registers and interfaces are described in the
table below.

Table 1: Subset of SPIRIT IP-XACT Standard

2.3 Automatic Generation

In the context of hardware design verification, at least two kinds
of automatic generation exist. The first one is based on
specification; the second is based on design implementation.

The former techniques, the most common in the EDA industry,
automatically perform the functional verification of a design
implementation either to implement verification algorithms [10]
or to start from an existing implementation of the design itself
[12].

For example, SystemRDL, the SPIRIT standard developed by
Denali Software [28], and used by them to implement a
SystemRDL compiler, Blueprint[5], can automatically generate
and synchronize register views for specification,
implementation, verification, and documentation, starting from
a SystemRDL specification view. However, the SystemRDL
approach implies that the hardware designer or the system
architect writes the IP specification directly in SystemRDL
language and not take the design specification as input format.

In the context of formal verification, some verification tools
also provide built-in checkers that may include dead code,
FSM transaction/ reachablility / deadlock, for example, but not
inputs or outputs toggling (IFV, Cadence), which in the context
of formal verification has an added value to spot problems
(outputs toggling) and to assure that the verification
environment is not over-constrained (inputs/output toggling).

Some other automation tools like Enterprise Planner (Cadence),
provide traceability from functional and design specs to the
verification plan and maintain consistency between specs and
the verification plan. However, these kinds of tools do not allow
the automatic generation based on the given specification.

In addition to that, even if the available observed solutions may
offer general facilities like test bench generation, RTL registers
and field definition, alias definition for each register address,
for example, they do not offer specific facilities for the ABV,
like the generation of configuration constraints ((IP enabled =>
all configuration register must be stable), and ((IP enabled =>
reg1.filed1 =x”F”).
 Based on this, a new generation solution must be made, and we
choose to generate a SPIRIT IP-XACT view from the
specification documents as a first step to do it.

2.4 Specification Design Document
The inputs for our flow are the specification documents, which
are written in a text format. We compared some word-
processing software programs and formats. The Word Binary
File Format (.doc) is the native Microsoft Office Word format,
and its content can be read and edited by some free software
programs like OpenOffice WriterOpenOffice Writer and
AbiWord [30]. The Rich Text Format (RTF) is used as a
standard for data transfer between word processing software,
and it allows document formatting, migration forward and
backward in versions, and is widely supported by most word
processing editors [25]. The Adobe Framemaker format (.fm)
can handle complex documents and format XML very easily
[1]. The Maker Interchange Format (MIF) allows information
exchange by creating a text file that is easy to parse and
preserves text, graphics, and formatting information, through
the usage of filters [2]. The Adobe Portable Document Format
(.pdf) enables users to exchange and view electronic documents
independently from the source editor used [3]. Finally, the
HTML format allows wide publication capability, supporting
hypertext links and embedded applications [18]
The following table illustrates some differences between these
different text formats.
• Tagging: whether the parts of the document could be

distinctly tagged.

Name Description
Name The register’s name.

Display name The register’s display name.

Description The register’s description.

Adress offset The register’s address offset.

Size The register’s size.

Access The register’s access mode.

Volatile
Indicates wheather the register’s value is
volatile or not.

Reset The registre’s hardware reset value.

Value The registre’s hardware reset value.

Mask The mask of registre’s hardware reset
value.

Name The field’s name.

Display name The field’s display name.

Description The field’s description.

Bit offset The field’s bit offset.

Bit width The field’s bit width.

Volatile Indicates wheather the field’s value is
volatile or not.

Access The field’s access mode.

• Readable content: whether the content of the file could be
read and edited with basic text editors other than the
default editor.

• Suitable for exchange: whether the format allows file
exchange without the need for licenses for the application
to be able to read the document.

• Free editors: whether there are free editors that allow
creating, reading, and editing the document.

• Styles: whether the format supports styles for formatting
the text.

Table 2: Different text format comparison

 Readable
content

Suitable for
exchange

Free
editors

Tagging Styles

DOC Yes Yes Yes No Yes
RTF Yes Yes Yes No Yes
FM No No No Yes Yes
MIF Yes No No Yes Yes
PDF No Yes No No Yes
HTML Yes Yes Yes No Yes

The criteria of choice of inputs are availability of specification
format, extraction and processing capability, and facility of use.
For extraction capability, at least two alternatives are available:
based on styles, by associating a particular font style to a group
of data, then using this embedded information to extract the
required data. This approach is used in some commercial tools
for verification plan item recognition, when the verifier has to
use a particular templates with well-defined styles and fill in
each verification plan item accordingly. Then the tool will
recognize all sections and items based on that.
The extraction based on tags is done by associating to the
needed document item an appropriate kind, also called tag,
which will be hidden and embedded in the specification
document source and never appear in the visible part of the
document.
Even if the two approaches allow data extraction, styles present
some weakness compared to tagging, such as the need to
change the original document styles or impose these styles to
the designers. Styles are also not suitable for all types of data
presentation. For verification plan extraction, which is not our
scope, the style-based approach works well, but for table
specification extraction, where all table columns’ titles must
follow the same style, tagging provides the ability to associate a
particular, different tag to each column title, and as a
consequence, allows the extraction based on a particular
column.
For other criteria of choice, the different specification format
has a similar level of facility of use. In our case, we adopted
Adobe Framemaker format (FM, MIF) since it is the designer-
adopted format. This meets our expectations such as
availability, extraction capability, ease of use, and finally, even
if the delivered format .fm is not directly suitable for
processing; a conversion to .mif format, suitable for processing
is immediately available by using ‘save as mif.’ The former file
will be the start point for the automation flow.

2.5 Data Storage
We analyzed our requirements to store data within our flow: we
needed a simple but efficient data storage solution, and
therefore we compared FMS (File Management System) with
DBMS (Data Base Management System) [9, 6]. The result is
summarized in the following table.

Table 3: Data storage comparison

 Advantages Disadvantages
FMS Simpler to use.

 Less expensive.
 Fits the needs of
small businesses

 Popular FMS’s are
packaged along with
the operating
systems of personal
computers.

 Does not support
multi-user access.

 Limited to smaller
databases.

 Limited
functionalities.

 Redundancy and
Integrity issues.

DBMS Greater flexibility.
 Greater processing
power.

 Better data integrity.
 Supports
simultaneous
access.

 Provides backups
and recovery
controls.

 Advanced security.

 More difficult to
learn.

 In general more
expensive.

 In general packaged
separately from the
OS.

 Slower processing
speeds.

 Require skilled
administrators.

For the complexity of our flow we decided that an FMS was the
best solution, being simpler yet covering our requirements.

3 USUAL FLOW

3.1 Description
The common verification flow both for formal and dynamic
verification starts with the specification documents (functional
behavior, IP micro-architecture, list of input/output signals) and
consists of development of a set of checkers that verify the
correctness of IP behavior during the formal proof or the
simulation process. The checkers are hand written, in a
verification language that depends on the adopted verification
flow (PSL or SV assertions, e or SV checkers, for examples). In
coverage driven verification, coverage is used to measure the
quality and completeness of such an approach.

3.2 Limitations
This typical approach requires a long development time; the
checkers development and debugging could take an average of
four to 16 man/weeks, for a full verification of medium
complexity Digital IP, and two man/weeks for the basic checks
only. In addition, there is no guarantee of completeness with
respect to the specification.

4 AUTOMATION FLOW

4.1 Principle
The automation flow is based on the automatic extraction of the
design description starting from a given specification document.
This automation flow, is composed by three separate steps: the
preparation, in which the design specification is prepared for
the automation flow, followed by the generation step, in which
all output and data are generated, and finally by the use model
and application step in which the generated items are used in a
functional verification context. Pre-processing checks and post-
processing checks are made to insure the correctness of each of
the steps.

Figure 1: Verification Directive

In each step of the automation flow, we considered key aspects
such as the extensibility, maintainability, and flexibility.

4.2 First Step: Preparation
The proposed flow is able to extract only the information that is
available in a table format, using tagging techniques. A unique
category name will be dedicated to each type of table, and when
using the flow, each table in the specification document will be
associated to one of these categories. This operation is called
tagging.

Dealing with standard specification conforms to supported
templates. When the given specification document is
compatible with one of the supported templates by the
automation tool, only table tagging will be required. For
example, the table below describes the list of tags used for one
supported template.

Table 4: List of Tags

Tag name To use with
t1_f2sRegMapTable Registers’ map table

t1_f2sFieldsMapTable_RegisterName Fields’ map table

t1_f2sFieldsDescTable_RegisterName Fields’ description
table

Each table inside the specification must be tagged using one of
the previously described tags to allow the automatic extraction
of the data.

4.2.1 Dealing with a new template document
 To allow maximum flexibility, the automation flow supports
two kinds of use model in terms of input. The first one is used
when the specification document is following a particular
template. The specification template is defined by the IP/SoC
design team, and all IP specification will use the same template.
This template will also be used as a reference during the
implementation of the automation flow, and any further
modification of this template will require a modification of
some module of the automation tool.

Figure 2: Multiple specification support

It is always possible to extend the flow; according to the impact
of the changes made in the default template. In case of a minor
change like adding a new table for input/output description or
defining a new register size (i.e.: 16 bits, those supported by
default are 32 and 8 bits), we need only to update the XSLT file
to match the new template. We could also have major changes
in the specification template - for example, a table that contains
complex and composed data in the same table field (i.e.: in the
same table field ,the name[size] and the hardware reset value
co-exist). In such a case, in addition to the required change in
the XSLT file, additional processing must be done before the
generation of the SPIRIT Std and SPIRIT IP-XACT extension
view.
 Very often, design description can be provided by a different
organization that did not follow the required format for the
automation tool; the second part of this section (Dealing with
non-conforming specification) provides the solution for this
situation.

4.2.2 Dealing with non-conforming specification
A non-conforming specification is a specification document that
is not following any template supported by the automation tool.
The non-conformity could be of two types:
• The required information exists, but it is not in the

expected format.

• The required information is missed and may exist in
another document.

To insure the flexibility of the automation flow, another use
model is supported, to be used when the given IP specification
did not follow any template. The verifier can use an
intermediate document called VerifSpec, delivered with the
automation tool, in which the verifier himself will fill, in the
different ready to use tables, all the required information by
hand. This document will be the starting point for the
automation process instead of the original specification
document.

4.3 Pre-processing Checks
To add more robustness in the automation flow, in addition to
the recommended visual pre-processing checks that insure the
compliancy of the given specification document to the golden
specification template, another automatic check is done after the
table tagging.

Figure 3: Pre-processing checks

The automatic pre-preprocessing focuses on the table tags as
well as the table content. The checks related to the table tags
are the following:

• Search for Register Map Table: this step will just

look for a table tagged "RegMapTable." If not
found, the validation process will be stopped
because it's mandatory to have this table - otherwise
neither the validation nor the generation process can
take place.

• Checking the Register Map Table: once we verified
the existence of the table in the document, we
perform some checks on the content of this table.
We begin by checking that the address offset of each
register is specified and given in hexadecimal
format. Then we move to the registers’ name
column, where we should find the names and the
expression “Reset value.” Finally, we check the rest
of the columns of the table that contain the fields’
names of each register and the corresponding reset
value.

• Registers counting: this step will use a temporary
generated MIX file to determine the number of
registers used in the design and described in the
specification.

• Fields Map Tables counting: the aim of this check is
to be sure that each register has its associated table
describing its fields.

• Fields Description Tables counting: the aim of this
check is to be sure that each register has its own
table containing the description of its fields.

• Retrieve Registers names: this step will output a list
of the all the registers’ names, which will be parsed
to make sure that they don't contain any unsupported
notation; the list will also be re-used for the next
validation steps.

• Look for the fields map and description tables of
each register: to make sure that all the tables are
described in the specification and are correctly
tagged.

• Generate the validation report: in this step, we are
going to collect information from the previous
checks to generate the final report on the
specification document and to report whether the
analyzed input format could be used to automatically
generate the desired XML SPIRIT file.

 The content validation focuses on the table content as
explained below:
• Check the fields’ names conformity between the

Register Map Table and the corresponding Fields
map Table. It's mandatory to have the same field
names in the two tables.

• Check the completeness of the mandatory
information for the SPIRIT IP-XACT.

4.3.1 When the IP-XACT view is provided
When the IPs’ SPIRIT view is already available and provided,
the standard SPIRIT view will be used as input for the tool. In
the functional specification document, only the tables
describing the DUV general information, history etc…. will be
tagged. Implementation details and additional required
information like RTL signals path are retrieved in the design
specification document as well as in verification directive.

Figure 4: Standard IP-XACT support

The verification tool requires additional information that might
not be present in the design specification document, such as the
main clock/reset signal, test/scan mode signal, or bus interface
type (AHB, APB, ST7...). These verification directives and all
the missing ones maybe provided via command line or GUI.
At this point, we collected all the required information for the
generation phase.
 The collected data will be stored in two particular XML
formats: the SPIRIT IP-XACT (detailed in section 2.2) and the
SPIRIT IP-XACT extension (detailed in section 4.4.1), which
embeds the verification directive and DUV reference as well.
Starting from this point, any data generation will be based only
on the mentioned SPIRIT IP-XACT extension view, expected
to cover all needed data and directive in the functional
verification process.

4.4 Second Step: Generation

4.4.1 SPIRIT IP-XACT extension generation
What we define as the SPIRIT IP-XACT extension is a simple
extension of the SPIRIT Standard, which includes the additional
requirements for functional verification. For example, during
the verification process, when we use a gray box approach, the
SPIRIT IP-XACT does not provide the information about the
RTL path for a given register, nor about the software reset value
of it. So, in this paper, we propose an extension of the SPIRIT
IP-XACT view to complete all the verification process
requirements. A part of the required extension is described in
the table below:

Table 5: Subset of SPIRIT IP-XACT Extension

By adding generics value in the new SPIRIT IP-EXACT
extension, we allow the automation tool to generate generics
dependent VE,checkers and coverage according to the
"GenericsImpact" of the "GenericsValue." For example, if the
access mode of a particular register field is generics dependent,
the generated checkers/coverage will take this in to account
based on the SPIRIT IP-XACT item "GenericsImpact."

The SPIRIT IP-XACT standard, defines five access types:

• read-write
• read-only
• write-only
• read-once
• write-once

These five access modes describe the frequently used mode, but
not all possible accesses. For example, based on this access
type, we are not able to describe a register field with write
protection enabled only when a certain condition like flag
setting or input toggling. This kind limitation is a killer for an
automation process and prevents us from covering complex
behavior.

As a consequence, we started to define an exhaustive set of
access types. To assure the completeness of the access modes in
SPIRIT IP-XACT extension, we adopted the following
approach. We first defined the six basic access modes,
described in the following table.

Table 6: Basic register access mode

Then we cross these basic modes: in each loop, we must select
one write access type from the three write access modes, and
select one read access type from the three read access modes.
The mathematical interpretation of this cross helps to accurately
identify the number of possible access modes for register
access, which is: 91

3

1

3 =×CC access modes. The SPIRIT IP-

XACT supports only three of them as described in the table
below.

Table 7: IP-XACT vs IP-XACT Extension

Finally, SPIRIT IP-XACT defines two access modes, read-once
and write-once, with no direct equivalent in the extension, since
they are a subset of the more general definition in the IP-XACT
extension. For example, write-one access mode in IP-XACT is
included in Read/Write-protected access mode in the IP-XACT
extension.

4.4.2 Functional checkers generation
We classify functional checkers in two categories: basic and
specific checks. Basic checks will be verified using the
automation flow and will cover the following:

Hardware reset checks: generated based on registers
or on register filed, according to the granularity
required by the verifier. The same kind of checks are
done for output signals.
Software reset checks: generated for all registers,
fields, and outputs impacted by the software reset of
the design.
Read/Write access: generated in black box and gray
box approach, based on registers and register field
granularity.
Interrupt generation: generated in double directions
to check the interrupt setting when the flag is set and
enabled, and to check that the interrupt enable
condition exists when interrupt arises.

Name Description
RTLDesingName Vhdl:Entity(architecture)

Verilog: Component name

GenericsName Vhdl: The generics name
Verilog:The parameter name

GenericsDefaut The generic signal’s verification value

GenericsValue The generic signal’s default value

GenericsImpact The affected field, register or signal by the
generics (i.e. filed x reserved)

GenericsDescription The description of the generic

RegRTLType
The register’sRTLtype
(i.e. std_logic_vector)

RegRTLPath The register’s RTL location

RegSwReset The register’s software reset value

FldAccessMode The field’s access category

FldRTLPath The field’s RTL location

FldRTLType The field’s RTLtype (i.e. std_logic_vector)

OutHwReset The output’s hardware reset value

OutSwReset The output ’s software reset value

Timing The output ’s synchronisation

EdgeActiveLevel The output ’s active level.

Type The output ’s type (i.e. std_logic_vector)

Basic access Access mode description

WNA Write Not Allowed.
Any write access is ignored

WANP Write Allowed and Not Protected.
All write access must succeed.

WAP
Write Allowed but Protected
Write when protection enabled are ignored.
Write when protection disabled must succeed.

RNA Similar to WNA , but for read access

RANP Similar to WNA , but for read access

RAP Similar to WNA , but for read access

Basic access Correspondence
with IP-XACT extension

Correspondence
with IP-XACT Read Write

RNA WNA Reserved Not supported
RNA WANP Write only Write-only
RNA WAP Write only protected Not supported

RANP WNA Read only Read-only
RANP WANP Read Write Read-Write
RANP WAP Read / Write protected Not supported
RAP WNA Read only protected Not supported
RAP WANP Read protected / Write Not supported

RAP WAP Read protected /
 Write protected Not supported

DMA request: generated in double directions to
check the DMA request setting when the flag is set
and enabled, and to check that the DMA enable
condition exists when DMA request arises.

Specific checks will cover all complex features of the Design
Under Verification (DUV) and will be defined and embedded in
the verification environment directly by the verifier himself.
All checkers are generated for both gray box and black box
approach. Black box checkers are the recommended ones, being
implementation independent, but since they are more
complicated, sometimes having the possibility to debug using
the gray box checkers is a valuable aid. The white box approach
will be used by the verifier only when required, and it will not
be considered during the automatic generation process.

Figure 5: Different approaches used

Checks related to Hardware/Software reset or read/write access
are also duplicated for better flexibility. Parts of them are
generated based on a field’s granularity: each field has a
dedicated checker. Duplication is also used at register level:
ideally a dedicated checker will be assigned to each register.
The register fields can be accessed in different modes, such as
read/write, read only or write only, reserved, and so forth, as
specified in the SPIRIT IP-XACT standard. In our SPIRIT
extension, new access modes have been added, such as for write
protection. This additional information will allow us to generate
2 to 4 checkers more for each field. During the debug phase, the
granularity of checkers based on fields is more precise since it
highlights problems related to the single field, but when the VE
and DUV are quite stable, and for performance reasons, it’s
recommended to run only the checkers on registers.

4.4.3 Basic Functional Coverage
The basic functional coverage is implemented for input, output
signals, and registers. For each of them, four dedicated
coverage items are generated to check coverage of rising edge,
falling edge, low and high values.
In a formal verification context, input, output and register basic
coverage prevents an over-constrained or dirty verification
environment, as well as eventually spotting functional bugs. For
example, a potential functional bug may be discovered when all
issues related to the VE are addressed (i.e. clean and not over-
constrained), but the formal proof for a cover item related to an
output interrupt rising edge signal never occurs, causing that
item to fail.

In a dynamic verification context, basic functional cover items
will provide an additional coverage metric to measure simple
signal toggling or register fields’ values coverage.
From the basic coverage items generation, the verifier is able to
build complex functional coverage items, combining sequences
of events.

4.4.4 Functional Constraints Generation
In the context of ABV, an assertion-based approach is used to
force the design into a particular configuration. This is done
based on constraints on registers and fields. Four types of
functional constraints are generated:

Stability constraints type1: when the IP is enabled,
the configuration register config_reg_i must be
stable.
Stability constraints type2: when the IP is enabled,
the configuration field config_reg_i_field_j must be
stable
Configuration constraints type1: when the IP is
enabled, the configuration register config_reg_i
equals a particular value.
Configuration constraints type2: when the IP is
enabled, the configuration field config_reg_i_field_j
is equal to a particular value. For example, if a
register field has two bits length, four constraints will
be generated to cover the different possible values.

The abovementioned constraints will be used during the
assertion-based verification process to quickly configure the
design just by enabling or disabling the given constraints, which
dramatically reduces the verification time.

4.4.5 Test Bench Generation
The test bench generation is based on three components. The
first one is the RTL top level file in which the DUV and VIPs
are instantiated. The second one is the definition file in which
all registers and fields are declared. The third one is the
mapping file, in which all registers and fields are mapped to the
corresponding signals in RTL.

In addition to that, some templates are generated, making the
manual checker’s implementation easier, facilitating
verification re-use, clear coding style and quality of the
verification environment. For example, in the context of formal
verification, one proposed approach is to dedicate four kinds of
checks for each output and register field; these four checks will
guarantee complete coverage of the signal behavior.

Check1: when the output setting condition occurs, is
the output set? It’s a direction-1 test. To distinguish
this kind of test, the naming convention adopted is
“SCSET” which means: Sufficient Condition to SET.
Check2: when this output is set, is the output setting
condition was happen? It’s a direction-2 test. To
distinguish this kind of test, the naming convention
adopted is “NCSET” who means: Necessary
Condition to SET.
Check 3 and 4 are similar to the 1 and 2 and dedicated
for the resetting condition:
Check3: when the output resetting condition occurs,
is the output reset?
Check4: when this output is resetting, is the output
resetting condition was happen?

A template file will be dedicated for output and another one for
registers. For example, a PSL VHDL flavor template, dedicated
for registers, will follow the structure below:

-- reg_x

 -- reg_x_field_y
 --SCSET
 property ..._SCSET_regx_fieldy is always();
 assert ..._SCSET_regx_fieldy;

 --NCSET
 property ..._NCSET_regx_fieldy is always();
 assert ..._NCSET_regx_fieldy;

 --SCRESET
 property ..._SCRESET_regx_fieldy is always();
 assert ..._SCRESET_regx_fieldy;

 --NCRESET
 property ..._NCRESET_regx_fieldy is always();
 assert ..._NCRESET_regx_fieldy;

 -- regx_field_z
 ……

-- reg_y

…..

In this way, in addition to the basic checks fully generated, the
automation flow will provide not only an advanced starting
point for the verifier, but also better reuse and quality by
adopting a unique coding style.
Header files are also supported and dynamically generated from
the SPIRIT IP-XACT extension, and contain the design
reference, the verifier reference, and date of generation. All this
information is already stored in the SPIRIT IP-XACT
extension.

4.5 Multiple Verification Language
Support

To be able to easily support multiple verification language, we
generate the checker and coverage in an intermediate format,
and then a specific language-dependent checker/coverage item
will be generated, as explained in the figure below

Figure 6: Pre-processing checks

All generated files and items will follow a common and
rigorous coding style and naming conventions with headers
structure, facilitating readability and re-use of the VE.

4.6 Post-processing Checks
Once the generation process is completed, some post-
processing checks are done to make sure that the generation
process was successful. The first part of these checks secure the
correctness of the generated SPIRIT IP-XACT and SPIRIT IP-
XACT extension views by verifying that all the mandatory
SPIRIT IP-XACT information is present (i.e.: registers, input,
output). In addition to that, the SPIRIT IP-XACT extension
checks cover the existence of the mandatory information for the
verification flow like master reset signal, main clock signal, and
bus system,
The second kind of post-processing checks focuses on the
generated checkers and coverage items. We verify the number
of generated checkers/coverage items for each kind of test.
Each checker/coverage item expression is analyzed to ensure
the existence of the required mandatory information (i.e.: abort
condition, main clock.). Each generated file is then analyzed to
guarantee the correctness of headers, verification language
general requirements and syntax (i.e.: entity, architecture,
component existence).

4.7 Third Step: Use Model and Application
For this new flow, we propose two main use models: IP
verification use mode and general use model.

4.7.1 Description of verification use model
In the IP verification use model, by using all generated data for
verification purposes, we insure the completeness of the
checkers and coverage items with respect to the information
provided in the specification documents, and we provide an
easy and fast flow to reiterate specification and consequently
verification changes that might occur in the project cycle, for
example ,due to bug fixes.
In addition to this, having a standard generated coding style will
help verification reuse and the application of common
verification strategy within the verification team.

4.7.2 Description of the general use model
The SPIRIT IP-XACT view, and the new SPIRIT IP-XACT
extension one, contain valuable data for further automation
processes. In some cases, like automatic generation of C
libraries for application validation, the SPIRIT IP-XACT view
is enough. In other cases, like FPGA prototyping, SoC
integration, and SoC verification, the new SPIRIT IP-XACT
extension view is required. So the new proposal for SPIRIT
verification extension increases the return of investment (ROI)
on Digital IP projects, because the generated SPIRIT View,
standard and verification one, can be reused in different phases
of the product development flow.

5 APPLICATIONS

5.1 Design Under Verification and Context
The first block to be considered is a simple control block, used
in a System-on-Chip (SoC) Touch Sense Control application.
The design hierarchy summary is described in the table below.

Table 8: Design Summary

R
egisters

Fields

Inputs

O
utputs

A
ddress

D
ata bus

21 145 23 36 8 8

The goal is the full verification of this DUV, the basic checks
will be generated by the proposed automation flow, and the
specific checks will be hand written by the verifier.

5.1.1 Original document description:
The original document contains 30 pages and 6 kinds of tables.
The automation tool focuses only on information presented in
these tables, and from them it extracts all the needed data. The
first table contains general information like the design name,
the revision number, and the author, for example.

Table 9: General Description

Filenam
e

D
esign nam

e

D
esign rev

C
hrono.

A
uthor

D
ivision

R
elease / D

ate

Prev. release

W
here-used

… … … … … … … … …

The history table describes all the specification document
revision/comments.

Table 10: History

Date Revision Main changes
…. … …

Each one of the 21 registers of the design is represented by two
kinds of tables. The first table describes the field mapping of
the register and the access mode of each one. The second one
contains the detailed description of these fields.

Table 11: Register Description

Table 12: Field Description

Field Description

Bits 7:2 …
Bit 1 …
Bit0 …

Other valuable information is present in the register map table,
which contains the address offset and the reset values of
registers.

Table 13: Register Mapping

Finally the specification document contains the interface table
described below.

Table 14: Design Interface

5.2 Preparation Step
The first step consists of tagging the tables, the register map
table and all the fields map and fields description, which must
be tagged as follows:

Register map table: This table must have the tag
“t1_f2sRegMapTable”.
Fields map table: these tables describe a map of the
fields of each register and the access mode. These
tables must have the tag “t1_f2sFieldsMapTable_
REGSITER_NAME”; the tag must contain the name
of the corresponding register.
Field description table: These tables describe each
field of the registers and made of two columns: the
range and the corresponding description. These tables
must have the tag “t1_f2sFieldsDescTable_
REGISTER_NAME”; as for the fields map tables, the
tag must contain the name of the corresponding
register.
Interface table: Contains input and output signals,
this table must be tagged with “t1_f2sInterfaceTable”.

This step has taken about 15 minutes to be achieved.

5.3 Pre-processing Step
The automatic pre-processing checks took around five minutes.
The following results were obtained:

Register Map Table content: Some reserved fields
are missing their corresponding reset values.
Table format: The first fields map table is not
conforming to the mapping of the register map table
(the SWIx fields have been assembled in one group).
Tags: the fields map tables and the fields description
tables of each register are not tagged.

After addressing the previous issues, the second pre-processing
check returns a positive result. Finally, this step has taken about
15 minutes to be achieved.

5.4 Generation Step
5.4.1 Checkers and coverage

Checkers are generated in both black box and gray box
approach as well as based on register and field description. The
list is described in following table.

7 6 5 4 3 2 1 0
Fld7 Fld6 Fld5 Fld4 Fld3 Fld2 Fld1 Fld0
rw ronly res. rw rw read/

wprot
ronly rw

 Name 7 6 5 4 3 2 1 0
Address
Offset

Reg. name
reset value

Fldx
0h

Reserved
0h

fld
x

..

04h Reg_name rw res. rw rw rw r r

..

Signal

Type

D
irective

Source /
destination

edge active level

Tim
ing

H
W

 /SW
 reset

D
escription

… … … … … … …

Table 15: Generated Assertions and Coverage

 Files Number of properties
GB/BB

HW
reset

hwrst_output.psl 255/NA

hwrst_reg_wb.psl 63/21

hwrst_field_wb.psl 435/145

SW
reset

swrst_output.psl NA /NA

swrst_reg_wb.psl NA /NA

swrst_field_wb.psl NA /NA
Read/
Write

write_read_reg.psl NA/36
write_read_field.psl NA/145

Read read_reg_wb.psl 36/NA
read_field_wb.psl 145/NA

Write write_reg_wb.psl 36/NA

write_field_wb.psl 145/NA
Cover cover_inputs.psl 1080/NA

cover_outputs.psl 916/NA
cover_registers.psl 672/NA
cover_fields.psl 672/NA

Total number of properties 4802

The automation tool generates different kinds of assertions and
cover properties. When it is possible, two kinds of assertions
are generated: the first one uses only interface signals
(input/output), we referenced it with BB in the previous table,
and the second one is based on both interface signals and the
registers value that we referenced with WB in the previous
table. We use both kinds, but during the debugging phase,
especially for read and write access, we start to secure the
correctness of the read and the write access separately first, and
then we run the combined assertions using only the interface
signals by checking the sequence read -> write -> read .

5.4.2 Example of generated assertions
The automation tool generates the assertions/checkers and
coverage items in different languages; in our verification
environment example we generated PSL assertions in Verilog
flavor.
The first example is a PSL cover used in formal verification to
check the capability of the interrupt line INT to rise, as well as
to confirm that the verification environment is not over-
constrained.

..._cover_output_INT_rise : cover {rose(INT) };

Another example is an assertion to check that the field SWI5 of
the register SWIR took the correct hardware reset value.

.._nareset_rise_field_TS_SWIR_SWI5_eq_0: assert always
({[*1];rose(nareset)}|->{TS_SWIR_SWI5==1'b0});

The last assertion example checks that the field EN of the
register CR took the right value after a write access. In bold font
we clarify the manual update that must be done for a subset of
registers requiring an additional delay.

.._write_field_TS_CE_EN_eq_DBI2: assert always ({ nsel ==
1'b0 && TS_SWIR_ADD == 1'b1 && rw == 1'b0 } |=>
{[*1]; prev (dbi[2],2) == TS_CR_EN})
abort (nareset == 1'b0)@(posedge clk);

5.4.3 Post-processing step and application
Automatic post-processing checks took around five minutes,
and no issue is reported. Then we started the functional
verification of the DUV using the CADENCE IFV formal
verification tool. We started to evaluate the correctness of the
verification environment structure and constraints by looking at
cover items results. All fails were expected and due to targeted
configuration or disabled features.
Hardware reset assertions showed an issue related to the
hardware reset value of one register; the reset of this register
was made in two steps, but the specification was only
describing the stable one, so a modification in the specification
was done to highlight this point.
 For read and write access, an important subset of the PSL
assertions was initially failing, and after some debugging, we
discovered that for some registers, a one cycle delay was
required to get them updated after a write access. So after
updating their corresponding set of assertions by adding a one
cycle delay in each assertion expression, all write accesses were
successfully passing except one of them that failed even with
the added cycle of delay. The investigation showed that after a
write access, the update of this register value is variable and
dependent on additional conditions that were not documented.
Read access was successful.
This quick generation of ready-to-use assertions reduced the
time to build the verification environment and to write the set of
basic checks and coverage from about two weeks (traditional
flow) to around two hours (this new flow), and the verifier
could quickly debug the spotted issues and reiterate the
generation and verification.

6 CONCLUSIONS
This work has shown the added value in the Digital IP design
phase, both in terms of reducing project time quality
improvement. Future development will focus on the generation
of other flows, starting with the SPIRIT extension view, such as
C code generation for application validation and customer
documentation. In addition to this, we will also embed the
capability to automatically generate the SystemRDL description
in our flow from the specification documents.
The results presented in this paper are opening challenging
investigations to a wide deployment of the automatic
verification impacting different design life cycle. This
approach, based on SPIRIT, also increases the synergy between
the different teams involved in an SoC development process,
leading to improved productivity and reduced design project
time, while improving quality and reuse of the design
verification environment.

7 ACKNOWLEDGMENTS
Special thanks to all people that contributed to the
implementation of this work, especially Oussama Chelbi, Baha
Bennour, Mohammed Beji, Amira Hasnaoui, and Farid
Timoumi.

8 REFERENCES

[1] Abode FrameMaker7.1. Database Publishing
[2] Adobe FrameMaker7.0. MIF Reference Online Manual
[3] Adobe Portable Document Format Version 1.7
[4] Benefits of Rich Test Format (RTF). Desktop Publishing.

Presentations & Word Processing

[5] Blueprint Compiler:
https://www.denali.com/en/products/blueprint.jsp

[6] Callari, F. File Management Systems
[7] Chiang, C.C.. 2006. TUG: An Executable Specification Language,

Proceedings of the 5th IEEE/ACIS International Conference on
Computer and Information Science 2006

[8] Common Format and MIME Type for Comma-Separated Values
(CSV) Files RFC 4180.

[9] Corey, D.E. DBMS vs. File Management System
[10] Curzon, P., Tahar, S.. 2001. Automating the Verification of

Parameterized Hardware using a Hybrid Tool, 13th International
Conference on Microelectronics.

[11] Dahan, A., Geist, D., Gluhovsky, L., Pidan, D., Shapir, G.,
Wolfstahl, Y., Benalycherif, L., Kamdem, R., Lahib Y.. 2005.
Combining System Level Modeling with Assertion Based
Verification. Proceedings of the 6th International Symposium on
Quality of Electronic Design (ISQED 2005), pages 310-315.

[12] De Loore, B.J.S. and Kostelijk, A.P. . Automatic Verification of
Library-based IC Designs

[13] Ecker, W., Esen, V., Steininger, T., Velten, M., Hull, M.. 2006.
Specification Language for Transaction Level Assertion. In
Proceedings of the 2006 IEEE International High Level Design
Validation and Test Workshop (HLDVT'06), pages 77-84.

[14] Eisner, C., Fisman, D.. 2006. A pratical Introduction to PSL.
SPringer, New York.

[15] Extensible Markup Language (XML) 1.1 (Second Edition) W3C
Recommendation 16 August 2006.

[16] Fertalj, K., Kalpić, Vedran Mornar, D.. 2002. Source Code
Generator Based on a Proprietary Specification Language,
Proceedings of the 35th Hawaii International Conference on
System Sciences.

[17] Hsiung, P.A. and Cheng, S.Y.. 2003. Automating Formal
Modular Verification of Asynchronous Real-Time Embedded
Systems, Proceedings of the 16th International Conference on
VLSI Design (VLSI’03).

[18] HTML 4.01 Specification W3C Recommendation 24 December
1999

[19] IP-XACT 1.5 specification, see
http://www.SPIRITconsortium.org/

[20] Jacobi, C., Weber, K., Paruthi, V., and Baumgartner, J. 2005
Automatic Formal Verification of Fused-Multiply-Add FPUs.
DATE 2005.

[21] Karayiannis, T. , Mades, J ., Schneider, T. , Windisch, A. , Ecker,
W.. Using XML for Representation and Visualization of
Elaborated VHDL-AMS Models

[22] Knäblein J., Sahm, H. Automated formal method verifies highly-
configurable HW/SW interface.
http://www.scdsource.com/article.php?id=332

[23] Nan, T. Fundamentals of Information Systems
[24] Oliveira, M., Hu, A.. 2002. High-Level Specification and

Automatic Generation of IP Interface Monitors. In Proceedings of
the 39th Design Automation Conference (39th DAC), pages 129-
134.

[25] Rich Text Format (RTF) Specification, version 1.9.1,
http://www.microsoft.com

[26] Rogin, F., Klotz, T., Fey, G., Drechsler, R. and Rülke, S.. 2009.
Advanced verification by automatic property generation,IET
Comput. Digit. Tech. -- July 2009 -- Volume 3, Issue 4, p.338–
353

[27] SystemRDL 1.0 specification, see
http://www.SPIRITconsortium.org/

[28] SystemRDL 1.0:
https://www.denali.com/en/products/systemrdl_about.jsp

[29] The SPIRIT Consortium official website
http://www.SPIRITconsortium.org/home

[30] Word Binary File Format (.doc) Structure Specification,
http://www.microsoft.com

	Automatic verification for Assertion Based Verification:How can a SPIRIT IP-XACT extension help?
	ABSTRACT
	1 INTRODUCTION
	1.1 General Concepts
	1.2 Specification Languages

	2 STATE OF THE ART
	2.1 Specification Language
	2.2 SPIRIT Standards
	2.3 Automatic Generation
	2.4 Specification Design Document
	2.5 Data Storage

	3 USUAL FLOW
	3.1 Description
	3.2 Limitations

	4 AUTOMATION FLOW
	4.1 Principle
	4.2 First Step: Preparation
	4.2.1 Dealing with a new template document
	4.2.2 Dealing with non-conforming specification

	4.3 Pre-processing Checks
	4.3.1 When the IP-XACT view is provided

	4.4 Second Step: Generation
	4.4.1 SPIRIT IP-XACT extension generation
	4.4.2 Functional checkers generation
	4.4.3 Basic Functional Coverage
	4.4.4 Functional Constraints Generation
	4.4.5 Test Bench Generation

	4.5 Multiple Verification LanguageSupport
	4.6 Post-processing Checks
	4.7 Third Step: Use Model and Application
	4.7.1 Description of verification use model
	4.7.2 Description of the general use model

	5 APPLICATIONS
	5.1 Design Under Verification and Context
	5.1.1 Original document description:

	5.2 Preparation Step
	5.3 Pre-processing Step
	5.4 Generation Step
	5.4.1 Checkers and coverage
	5.4.2 Example of generated assertions
	5.4.3 Post-processing step and application

	6 CONCLUSIONS
	7 ACKNOWLEDGMENTS
	8 REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

