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Abstract - Reuse is critical to significant productivity increases in test bench development and deployment.  Typically, 

discussions of reuse revolve around the reuse of Verification IP (VIP).  Reuse of test bench structure is also important.  In 

a platform environment where many designs are derived from a base platform, the structure of the test benches for these 

derived test benches will be very similar, if not identical.  The best way to ensure consistency of test bench structure 

across a family of related designs is to use a generator to generate the structural test bench code.  There is a symbiotic 

relationship between the overall test bench structure and the VIP employed in it.  The test bench relies on the VIP it 

contains and the VIP relies on the structure of the test bench.  This paper describes TBGen, a test bench generator, built 

and utilized at Cypress Semiconductor to efficiently produce test benches for its family of semiconductor products.  The 

paper discusses the essential architectural elements of TBGen and how the generator is used. 

 

I.   INTRODUCTION 

Building a test bench by hand is a time consuming and expensive process.  Furthermore, it is difficult to enforce 

consistency between hand-built test benches.  To mitigate these issues Cypress built a test bench generator called 

TBGen to automate the process of building test benches.  TBGen utilizes a library of VIP and structural knowledge 

of a family of designs the generated test benches are intended to verify.  Most of the VIP is built internally, though 

some is purchased on the commercial market. 

Designing the generator itself is a balance between generality and specific design knowledge.  The generator must 

be general enough to generate any test bench for designs in the family. Yet, it must understand enough about the 

structure of the design family so that it can generate test benches specifically for those designs.  One criteria of the 

architecture of TBGen is to make it operate as a data driven program to the extent possible.  This enables separation 

between the generator structure and the generated test benches.  Most of the specifics of any design are captured in 

various kinds of data that are input to the generator.  That way the generator itself does not have to have specific 

knowledge of any design. The generator itself is a highly reusable piece of code, able to generate test benches for 

any design or potential design within the design family. The kinds of data that are consumed by the generator 

include system parameters and bind templates.  System parameters are pieces of information that are used to drive 

the design itself.  These include things like bus sizes, number of instances of certain units, and so forth.  Typically 

these define structural aspects of the design.  Bind templates are little pieces of code that identify how to bind VIP to 

RTL code.  The generator ultimately resolves these to SystemVerilog bind statements.  Bind templates will be 

described in detail later on. 

 

III. DEFINITION OF TERMS 

SAS System Architecture Specification.  Spreadsheet document that details a product configuration, such as, 

collection of IPs, their connections, memory size, etc. 

TBGen Test Bench Generator.    

VIP Verification Intellectual Property.  The test bench for a given IP. 



VMS Verification Management System.  Cypress created tool that manages execution of verification tasks, such 

as, design and test bench compilation and simulation launch. 

 

  

IV. TBGEN 

 

 

 
Figure 1: Overview of TBGen Flow 

 

 

TBGen is a platform test bench generator script, meaning that it can generate any test bench for designs based on 

a hardware platform.  As shown in Figure 1, TBGen relies on two main inputs.  First, it utilizes a System 

Architecture Spec (SAS) database to obtain data about the platform design to be verified.  The SAS database 

contains design specific information such as which subsystems are used to create the platform, instance count of 

each subsystem, parameters passed to each subsystem instance for configuration of busses and instances, and the 

system register map.  Second, TBGen relies on predefined information within each VIP designed to verify each 

subsystem design selected.  Interface or connectivity information is passed through bind templates.  Bind templates 

contain interface specific information and a simple list of connections to be made.  Additionally, integration tests are 

provided to automatically check proper instantiation of targeted IP.  By building test structures recognized by the 

Verification Management System (VMS) developed at Cypress, test lists can be generated and launched 

automatically.  Finally, TBGen requires that each VIP be built in a uniform way.  If a VIP is not constructed based 

on TBGen guidelines then it is unusable.  Once guidelines are followed and all information is provided then 

platform level test benches can easily be created drastically reducing verification development time. 

 

 

  
Figure 2: Building Blocks for Test Bench Generation 

 

Figure 2 highlights the fundamental building blocks required in successfully building a platform.  At the 

foundation are uniform constructs that any VIP must conform to or provide.  These are necessary to communicate 

intent for interface binding, parameter handling, automatic test integration, and multiple instantiation.  Each of these 

topics is discussed in later sections.  Building on the foundation are guidelines to communicate these requirements to 

each verification engineer.  Once engineers follow these guidelines in creating subsystem test benches a collection 



of VIP for platform integration will be created.  TBGen will use this collection along with data extracted from the 

SAS database to build a platform level test bench by properly stitching together subsystem test benches.  

  

A. Design and Test Bench Parameter Classes 

Subsystem test benches can be executed either separately or as part of a platform level test bench.  They are 

configured for operation in a platform by design parameters extracted from the SAS.  When running as a standalone 

test bench, the top levels of the subsystem test bench supply the same set of design parameters as the platform test 

bench.  These design parameters are used in the subsystem test bench core to create a class containing test bench 

parameters.  The core test bench parameter class is used by the top levels of the test bench, either SOC or subsystem, 

to communicate with the subsystem test bench core. This also provides a means for inheriting test bench parameters 

and overriding them at the platform level as necessary.  Design parameters for each IP are located within a unique 

class named for the given IP.  Test bench parameters are placed within a unique class named after the IP but 

prefixed with “v”. 

To contain all parameter classes a package named sys is provided.  Both the platform test bench and VIP test 

bench contain this package.  Platform level tests will utilize package sys generated from SAS parameter information.   

VIP sys packages are used for subsystem level tests only and will be replaced by the platform sys package when the 

VIP is integrated.  Through this flow design parameters are generated for a platform and passed down to a VIP.     

Test bench parameters are also included within package sys.  However, their definition is provided from each test 

bench through a class named v<ip>_params were <ip> is the name of the IP in question.  At the platform level 

vsys.svh is generated to define classes for each VIP named after the IP but prefixed by “v”.  Each VIP class extends 

a corresponding v<ip>_params class.  The vsys.svh file is included within package sys, thereby, passing subsystem 

test bench parameters up to the platform.  In some cases test bench parameters are calculated based on design 

parameters.  In the method described here design parameters can be leveraged through IP parameter classes to 

augment test bench parameters as necessary. 

Parameters are accessed by importing “sys::*” into the namespace where access to design or test bench 

parameters is required.  Namespaces must be dereferenced to access each parameter.   

 

 

 
Figure 3: Design and Test Bench Parameter Passing 

 

 

Consider Figure 3, which depicts design parameters passing from the SOC to each subsystem VIP.  Also shown is 

subsystem parameter passing from each VIP to the platform test bench.  In this example, subsystem IP’s ip1, ip2 and 

ip3 are instantiated.  Therefore, in package sys there will be classes ip1, ip2 and ip3.  Included as well in package 

sys through vsys.svh are classes vip1, vip2 and vip3.  Below are code examples for VIP test bench parameter files 

and platform package sys. 

 

 



 
Figure 4: Example VIP Parameter Classes 

 

 

In Figure 4, three subsystem test bench parameter classes are defined containing parameters with values specific 

to the VIP. Class vip1_params declares TB_PARAM1 to be 100, class vip2_params declares TB_PARAM1 to be 

40 and TB_PARAM2 to be 10, and class vip3_params declares TB_PARAM1 to be 5.  In Figure 5, package sys is 

shown to include three IP parameter classes.  The three classes define PARAM1 and PARAM2 as shown.  

Additionally, package sys includes vsys.svh.  This file simply extends each subsystem test bench parameter class to 

inherit needed parameters accordingly.  A simple example of parameter usage through dereference is shown in 

sample.sv. 

 

 

 
Figure 5: Example sys.sv, vsys.svh and Parameter Usage 

 

 

B. Connections 

One of the primary functions of the generator is to forge connections between the test bench and the DUT.  While 

the set of DUTs that a generator has to deal with is constrained to a family, there can be many variations within that 

family.  The number of instances of interface units may vary, as well as, the exact wiring of any interface.  To 

understand how the generator deals with this we first look at a test bench/DUT connection model. 

Figure 6, Test bench/ DUT connection model, illustrates a tripartite connection model that includes protocol 

agents, SystemVerilog interfaces, and DUT interfaces. A DUT interface is a collection of signals that operate 

together to move data or control in or out of the device.  Each DUT interface is connected to a SystemVerilog 

interface.  A SystemVerilog interface is a construct similar to a module that provides a means for representing a set 

of wires as a single object.  Protocol agents in the test bench are connected to the SystemVerilog interfaces, which in 

turn are connected to the DUT interfaces. 
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Figure 6: Test bench/DUT connection model 

 

 

C. Bind Template 

A bind methodology has been defined to allow subsystem VIP a mechanism for building bind instantiations 

within a top-level test bench based on the SystemVerilog bind-statement.  In this methodology it is important for 

bind naming and instantiation to match between what the generator creates and what a subsystem VIP expects.  This 

is required because TBGen will build field names for each bind and place them in the configuration database using 

the static function set_value_in_global_config.  The set_value_in_global_config function essentially associates an 

object handle with a configuration name and places the handle in the configuration database.  A subsystem VIP will 

need a uniform naming approach to know what configuration name to retrieve from the configuration database 

through static function get_value_from_config when trying to access stored bind interfaces.   

To make bind instantiation simple at the platform level all bind interfaces and wrapper modules are bound in the 

subsystem level design scope.  Interfaces and wrapper modules are self-contained meaning that there are no external 

code requirements outside of a simple bind instance. 

Associated with each VIP is a set of bind templates which are used to convey bind information to TBGen.  The 

bind template structure is defined to give each VIP owner exactly what is needed for TBGen to bind a test bench to 

an RTL interface.  Bind templates will be used by TBGen to generate bind-statements for interfaces and/or modules 

at the platform level.  They are also used to store virtual interfaces or non-interface modules in configuration items 

at the top level.   

The bind template file name contains information about the interface to be instantiated.  The file name will 

contain the bind name, which represents the interface or wrapper module to be instantiated, and an instance label, 

which is used in naming the bind instance.  Each item is separated with a dash, “-”.  The bind instance will use the 

interface name as the module or interface to instantiate.  Additionally the IP name, interface or module name, and 

instance label will be used to create a unique instance name.  Therefore, the naming follows the convention where 

interface_name-template_label generates an instantiation of interface_name_template_label with the instance 

name ip_name_interface_name_template_label. 

Predetermined forms of information are stored in the bind template file.  This information is contained in a section 

of predefined parameters, used to further specify pertinent information about the bind interface, followed by a 

section of port to DUT module signal connections.  Table 1 shows the available bind template parameters.  Each of 

these will be discussed in detail below. 

 

 
Table 1: Bind Template Parameters 

Parameter Options Description 

bind_req Design parameter expression(s). Expression using design parameters for 

controlling instantiation. 

generate / 

not_generate 

Define label. Define label to be wrapped around a bind 
instance. 

interface No Bind wrapper module into design, but don’t 

store a virtual interface in the config database. 

if_name, if_inst_name Interface names and instances in wrapper 



modules 

if_name, if_inst_array_name, if_limit Interface arrays within wrapper modules. 

sas_param Design parameter. Design parameter to be passed during 

instantiation of bind. 

tb_param Test bench parameter. Test bench parameter to be passed during 

instantiation of bind. 

 

 

Each bind template parameter provides control over what will be created.  Parameter bind_iterate indicates if a 

bind should be repeated with a different instance name.  For instance, if bind_iterate is 2 then TBGen will 

instantiate two unique instances of the same interface by adding “_0” and “_1” to the instance name. 

Parameter bind_req is used to qualify a bind template based on design parameters or complex arithmetic or 

logical expressions involving design parameters and constants.  Complex expressions consist of positive integers 

and identifiers separated by the operator characters “?:<>=!-+*/|&” with optional whitespace.  Combinations of 

operator characters, such as “<=” and “&&” are allowed.  If the specified expression result is not true then the bind 

instantiation will be ignored.  Multiple bind_req lines can be given.  If so, then all bind_req lines must be met.  This 

is a logical AND of bind_req expressions.  Additionally, a bind_req line can have multiple comma separated 

expressions.  If any expression result is true within a bind_req line then the bind will be instantiated assuming other 

bind_req lines are satisfied as well.  This is a logical OR of bind_req expressions. 

Using parameters generate or not_generate allow for bind instances to be controlled through preprocessor 

directives.  The parameters will indicate `ifdef <Define label> and `ifndef <Define label> respectfully.  At 

simulation launch time +define+<Define label> can be given as needed. 

Parameter interface allows for control of several things.  First, in some cases a non-interface wrapper or module 

needs to be bound into another module but should not be placed in configuration items.  An example would be an 

assertion module.  This is controlled by setting interface = no.  Second, wrappers being bound will likely have 

interfaces within them that need to be accessed through the configuration.  In this case interface can be set with two 

comma separated strings where the first string is the interface name and the second is the expected interface instance 

within the wrapper.  Given interface = if_name, if_inst_name the configuration item name would be 

ip_name_interface_name_template_label_if_name_if_inst_name where the module instance it refers to would be 

ip_name.interface_name.template_label.if_name.if_inst_name.  Third, a wrapper may contain an array of 

interfaces.  If so, interface can be set with three comma separated strings.  The third string is the interface array 

limit.  Given interface = if_name, if_inst_name, if_limit the configuration item name would be 

ip_name_interface_name_template_label_if_name_if_inst_name[if_limit_index] where the corresponding module 

instance would be ip_name.interface_name.template_label.if_name.if_inst_name[if_limit_index]. 

   

 
Figure 7: Bind Template Example 

 

Figure 7 includes two simple bind template examples.  First, vip2 declares a bind template for an assertions 

module.  The module is to be bound into ip2 but is not an interface and should not have a configuration handle and 



name defined.  This is indicated with interface = no.  There are three signal connections provided.  The assertion 

module signals sig1, sig2, and sig3 are to be connected to input1, input2, and input3 respectfully.  Second, vip3 

declares a bind template for an interface named sample_if.  This interface is to be bound into ip3 if ip3 class 

parameter PARAM2 is greater than zero.  This is required based on bind_req = PARAM2 > 0.  Referencing Figure 

5, PARAM2 is 1 for ip3.  Interface sample_if should be wrapped with an `ifdef statement using IF_ON as indicated 

with generate = IF_ON.  Furthermore, ip3 design parameter PARAM1 is to be passed to the interface during 

instantiation based on sas_parmater = PARAM1.  There are two connections provided.  The interface signals 

if_sig1 and if_sig2 should be connected to input1 and input2 respectfully.   

At the platform level TBGen will take these bind templates and create the correct bind instances.  This can be 

shown in dut_wrapper.sv where assetions_0 is bound into module if2 instance u_ip2_top and sample_if_0 is bound 

into ip3 instance u_ip3_top.  TBGen will also create a set_value_in_global_config function call for sample_if_0 but 

not assertions_0.   

   

D. Design Multi-Instance Support 

Some subsystems may have multiple instances in an SOC, and each subsystem instance may instantiate a different 

module hierarchy.  For example, one instance of a communications subsystem might support I2C while a second 

instance might not.  The subsystem testbenches for these two communications subsystem instances would need to 

build and connect themselves differently.  The first testbench would need objects and interfaces to monitor I2C 

traffic, while the second would not. 

Cypress uses design parameters to control the differences in the internal structure of multi-instance subsystems 

and multi-instance subsystem testbenches.  Design parameters are passed to the subsystem module during 

instantiation, thereby, configuring the sub-module hierarchy.  In the subsystem testbench, design and testbench 

parameter classes are used to control instantiation of interfaces and the build and connect phases. 

Single instance subsystems can do this with hard-coded references to design and testbench parameters in the sys 

package, but multiple instance subsystems cannot because each instance has its own parameters.  Instead, multiple 

instance subsystems have unique design parameter classes that are instance specific.  These design parameter classes 

are used to parameterize the v<ip>_params class from which the testbench parameter class is derived.  Each 

multiple instance subsystem testbench environment class instance is then parameterized with its own design and 

testbench parameter class.  Once the subsystem environment class has access to its own design and testbench 

parameter classes, it can use those parameters to control its own build and connect phases and also parameterize any 

of its children than need access to design or test bench parameters.   

 

 
Figure 8: Multi-Instance Example 

 

Figure 8 presents a simple example where the top-level environment, env.svh, is shown for both the SOC and 

subsystem test bench.  The subsystem environment vip1_env is instantiated twice in the SOC environment.  The first 

instantiation passes in design and test bench parameters as sys::ip1_0 and sys::vip1_0 for instance 0.  The second 

instantiation passes parameters in as sys::ip1_1 and sys::vip1_0 for instance 1.  With this methodology class ip1_env 

receives the proper classes and can be configured properly for each instantiation. 

 

E. Subsystem Level Integration Tests 

To enable full automation, TBGen must go beyond creating a working platform level test bench.  It must also 

create or enable automatic regression generation.  This is accomplished by dividing responsibilities between TBGen 

and another Cypress developed tool named VMS (Verification Management System).  There are two main 



responsibilities.  First, TBGen looks for integration sequences and tests within a subsystem test bench to copy over 

into the platform test bench.  Second, VMS must automatically build a regression list and launch tests accordingly.    

Subsystem VIP developers can create folders named integration_tests and integration_seqs in predefined 

locations within a VIP’s directory structure.  TBGen will locate these folders and automatically copy them into the 

platform test bench directory structure.  All sequences and tests are placed under a unique directory for each type 

(seqs or tests).  Integration sequence or test folders from a subsystem VIP will be placed in a folder named after the 

VIP.  For instance, if integration_seqs is found in vip1 then seqs/vip1/integration_seqs will be created within the 

platform test bench.  In the same way, if integration_tests is found in vip1 then tests/vip1/integration_tests will be 

created.  Once all integration sequences and tests have been copied over, TBGen will build package seqs and 

package tests.  These packages will include all .svh files found in each case.  Figure 9 presents an overview of this 

process. 

 

 

 
Figure 9: Integration Sequences and Tests in Platform Test Bench 

 

 

Cypress’ VMS tool is leveraged to automatically create a regression list.  VMS was developed to handle file 

compilation, test list creation, and test launch.  Details on how this is done are outside the scope of this discussion.  

For test list creation, the basic concept is that VMS can traverse a tests folder, referred to as a test tree, and identify 

test names based on configuration information and folder structure.  The test names and configuration information 

are combined to build a test list with appropriate arguments.  Once created VMS will use the test list to launch each 

found test.     

 

F. Built-in Register Package Generation 

Cypress’ test benches use a centralized register package methodology based on Mentor Graphics’ Register 

Assistant tool.  This tool generates register packages based on flat files.  The SAS is used to create register 

descriptions through flat files that can be feed into Register Assistant.  At the subsystem level, register package 

generation is driven by the SAS register descriptions for the subsystem.  At the SOC level, register package 

generation is driven by the SAS register descriptions for the subsystems contained in the SOC.  Since the same 

descriptions are used to generate a subsystem’s register block at both the subsystem and SOC levels, register 

accesses can be modeled consistently at both levels. 

Different design parameters can cause variations between a subsystem’s register block at the subsystem level and 

in that of different SOCs.  The register generation scripts handle this by operating in two phases.  The first phase 

reads the SAS register descriptions and the design parameters for a given subsystem.  The design parameters control 

which modules are instantiated within the subsystem and also which sections of subsystem registers are written to 

intermediate register flat files.  Once the specific flat files have been created for the design at either the subsystem or 

SOC level, the second phase converts the information in the flat files into the actual field, register, register block, 



and memory map classes in the register package using Mentor Graphic’s Register Assistant.  Figure10 provides a 

high-level flow of register package generation. 

 

 
Figure 10:  Register Package Generation Flow 

 

 

VI.   CONCLUSION 

 

TBGen provides an automated environment to build an SOC level test bench using a library of prerequisite 

verification IP.  It does this by handling subsystem test bench instantiation and configuration in a uniform way.  

Using this tool at Cypress has reduced the time to create new SOC level test benches, whether they are derivatives or 

not, from weeks to minutes.  Additionally, with automatic test integration and VMS, SOC level test bench creation 

and regression launch can be accomplished in two simple steps, launch TBGen and launch VMS.  While extra effort 

is needed to prepare verification IP for TBGen uniformity the benefits are substantial.      


