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Abstract- Recent advances in processor and memory architectures have attracted many 
software applications towards parallelization using multi-threaded implementations. Multi-
core HDL simulation is one such application which combines parallelism inherent in an 
HDL specification and multi-core CPU architecture to achieve parallelization. The main 
requirement of deploying a multi-core HDL simulation is to partition the design to be 
simulated into segments which can be executed in parallel. This is a manual process. There 
is no known algorithm to determine a design’s partition which would lead to maximum 
performance gain using multi-core HDL simulation. An ideal partitioning algorithm would 
require analysis of dynamic behavior of the design’s simulation. Dynamic analysis is 
applicable to that specific run and would require one or more simulation runs which is 
expensive and would consume compute resources. This paper presents a method and 
algorithm to partition a design using static parameters. This algorithm does not require any 
simulation runs. The static partitioning method presented in this paper provides a useful 
starting point for deployment of multi-core HDL simulation. Further tuning of the 
partitions can be performed using dynamic analysis of multi-core HDL simulation 
performed using the initial partition generated using static partitioning algorithm. 
The partitioning performed using algorithm presented in this paper has provided good 
performance gains when used with multi-core HDL simulation. 

 
I. INTRODUCTION 

Front-end RTL verification and post-synthesis gate level verification (with and without timing) 
are important phases of integrated circuit design flows. Many integrated circuit design houses 
mention that time consumed for RTL and gate-level verification is of the order of 70% to 80% of 
total design cycle [1]. HDL logic simulation is one of the most popular methods of performing 
RTL and gate-level verification. With increasing size of the designs, the total time consumed by 
verification is growing rapidly. In order to meet time to market requirements, advanced need to 
be made in HDL logic simulation so that it can simulate same number of design cycles in less 
time. Many advancements in HDL logic simulation tools and associated methodologies have been 
made in recent years to improve the performance of verification. Hardware accelerators and in-
circuit emulators are being used to speed up the verification process, but suffer from the 
requirement of high up-front expenditure required to use them. 

Parallel or multi-core HDL simulation is emerging as a promising technology to address the 
performance requirements for verification. Multi-core HDL simulation belongs to the broader 
topic of parallel discrete event simulation [2]. Survey reports [3, 4, 5] discuss many aspects and 
techniques for multi-core HDL simulation. A specific parallel simulation algorithm is illustrated 
in [6]. 

All these multi-core HDL simulation techniques rely on achieving a partitioning of the work to 
be done in such a manner that the work-load in all the partitions is as balanced as possible. The 
work-load of a partition refers to CPU consumption to execute the simulation activities for that 
particular partition. A partition would typically be executed on one thread; multiple partitions 
being executed on multiple thread in multi-core HDL simulation. 

The partitioning can broadly be performed in two classes; application level partitioning (ALP) 
or design level partitioning (DLP). ALP refers to partitioning based on well-defined independent 
tasks to be performed as part of HDL simulation. The independent tasks can be run in parallel. 
For example, in an ALP partition, core simulation and waveform dumping can be run in parallel 



with core simulation partition passing relevant information to waveform dumping partition for it 
to do the task of writing the waveform database. Another example of ALP partition is to partition 
core simulation and functional coverage tasks. Core simulation partition passes relevant 
information to functional coverage partition for it to do the task of processing and dumping 
functional coverage. DLP, on the other hand refers to partitioning the design for core HDL 
simulation itself. In DLP, the design is partitioned in such a manner that core simulation tasks of 
various partitions can be performed in parallel. The HDL processes, assignments and primitives 
are divided into partitions to be executed in parallel. DLP requires various partitions to be 
synchronized regularly to ensure that HDL semantics are correctly followed during simulation. 

In this paper we focus our attention on partitioning problem with reference to DLP based multi-
core HDL simulation. 

A number of partitioning techniques have been presented over the past few years [7, 8]. Many 
of them flatten the design hierarchy and then do the partitioning. Some of them perform dynamic 
partitioning analyzing data at run-time. 

In this paper, we present an automatic partitioning technique which does not lose the instance 
boundaries contained in the design to be simulated. This partitioning technique takes into 
consideration various parameters of the design and performs a partition which is likely to provide 
balanced load during simulation. Various design parameters and design style are considered to 
perform the partitioning. A dynamic bin-packing algorithm is at the center of our partitioning 
technique. 

This paper is organized as follows. Section II describes the need of good partitioning in a DLP 
based multi-core HDL simulation. Section III describes the partitioning algorithm in detail. 
Section IV presents experimental data of application of the partitioning algorithm. Section V 
concludes this paper. 

 
II. PARTITIONING IN DLP BASED MULTI-CORE HDL SIMULATION 

 
In DLP, the design is partitioned in a fine-grained manner such that HDL processes, 

assignments and primitives are divided across partitions. These partitions simulate their content in 
parallel. The partitions must be synchronized to ensure that the simulation follows the HDL 
semantics and produces correct simulation results by way of correct ordering of events. Fig. 1 
provides a high-level picture of a DLP based multi-core HDL simulation. 

 



 
 
Fig. 1 depicts a design divided into three partitions based on DLP. Each partition performs 

tasks related to HDL simulation for HDL content belonging to that respective partition before 
arriving at a synchronization point. The colored boxes indicate the useful work done by a 
particular partition and grey boxes indicate the time that a partition has no work to do before 
hitting a synchronization point. The grey boxes indicate the imbalance inherent in the 
partitioning. Usually, the grey boxes indicate wastage of CPU for that partition. A multi-core 
HDL simulation achieves best performance gains when the grey boxes are gotten rid of or 
minimized as much as possible. 

A partitioning algorithm, in order to be effective, partitions the design in such a manner that the 
grey boxes are minimized during simulation, thereby achieving maximum performance gains 
from multi-core HDL simulation. 

The next section provides details of our partitioning algorithm which performs partitioning at 
instance boundaries and attempts to distribute workload equally across partitions. 

 
III.   PARTITIONING ALGORITHM 

 
In this section we discuss our partitioning algorithm in detail. 
 
HDL designs specified at RTL abstraction or post-synthesis gate level designs have inherently 

parallel specifications in terms of processes, assignments, sequential elements and primitive 
gates. The partitioning algorithm equally distributes load across partitions based on these design 
parameters. Even though these design aspects can be equally distributed across partitions, the run-
time characteristics may not lead to evenly balanced run-time of partitions. In order to take the 
run-time characteristics into consideration, the partitioning algorithm also considers use case in 
which the design is likely to be used. The knowledge of use case helps the partitioning algorithm 
in increasing the accuracy of estimating the load balancing at run-time. 

The partitioning algorithm begins with annotating each node in the instance hierarchy with a 
weighted value obtained using a number of static parameters. The static parameters used are - 
number of processes, number of signal assignments, number of sequential elements and number 
of primitive gates. Without considering the use-case information, the weighted value at each node 

Fig. 1 : DLP based multi-core HDL simulation 

P1 P2 P3 

Synchronization point 

Synchronization point 



would be just the sum of all these numbers. Consideration of the use-case information causes 
more weighting to be given to a specific parameter to arrive at the weighted value of the node. 

Let us first describe the use-cases and their impact on calculation of the weighted value 
associated with a node in the instance hierarchy. The following use-cases are considered in our 
partitioning algorithm. 

RTL Design: For RTL designs, the weighted value of a node in the instance hierarchy tree is 
calculated by giving larger weighting to the parallel processes, for example initial/always blocks 
in Verilog or process statements in VHDL. This is due to the fact that these constructs are likely 
to consume more CPU resources during simulation and hence must be distributed equally across 
partitions for multi-core HDL simulation. 

Gate level Design: For gate level designs, the weighted value of a node in the instance 
hierarchy tree is calculated by giving larger weighting to language primitives and user-defined 
primitives. This is so because for a gate level design, the simulation of primitive gate constructs is 
likely to consume more CPU resources. 

ATPG Design: ATPG design refers to simulation of ATPG vectors after test pattern 
generation. This step verifies that the response to the ATPG test vectors is as expected. ATPG 
tools generate test patterns after inserting scan-chains in the design. Insertion of scan-chains 
causes sequential elements in the design to be replaced by equivalent scan elements and 
connecting the scan elements in the form of a chain. This allows specific test patterns to be 
scanned into the scan chains for detection of manufacturing faults. An ATPG tool generates 
patterns in such a manner that a large number of manufacturing faults are detected using each 
pattern. During simulation of ATPG designs, large amount of circuit activity is generated around 
the sequential elements. Hence, for partitioning, the weighted value of a node in the instance 
hierarchy is calculated by giving larger weighting to sequential elements. 

The weightings assigned to various static parameters is a relative weighting. If there are n static 
parameters s1 to sn, with weightings of w1 to wn, respectively, the weighted value of a node is 
obtained as 

wnode = (count of s1 + … + count of sn) / (w1 + … + wn) 
 
The first step in the partitioning algorithm is to annotate each node in the instance hierarchy 

with a weighted value. Each node has two weighted values, self-weighted value and cumulative 
weighted value. The self-weighted value is the weighted value of parameters belonging to that 
node. The cumulative weighted value of a node is the sum of the cumulative weighted value of all 
child nodes of that node and its own self weighted value. 

Annotation is performed in a bottom up fashion on the instance hierarchy tree. Initially, all the 
leaf level instances are assigned a weighted value. As explained above, the weighted value is 
calculated using the number of static parameters and the knowledge of the use-case. The non-leaf 
instance nodes of the hierarchy tree are then assigned a weighted value. The cumulative weighted 
value of a non-leaf instance node is determined as, 

w = sum of weights of all child instances + self-weight of the instance 
 
An example annotated instance hierarchy is shown in Fig. 2. 
 



 
After the annotation step is complete, the cumulative weighted value of the root or top node of 

the instance hierarchy tree indicates the total weighted value that must be equally distributed 
among partitions. This value is divided by N, where N is the number of partitions to be obtained, 
to get a goal weight G. 
   Next step of the partitioning algorithm is to perform bin-packing of the instance hierarchy into 
N bins of capacity G. We have developed a dynamic bin-packing algorithm, which is a variation 
of the standard bin-packing algorithm. In standard bin-packing algorithm, the items to be packed 
are of fixed size. In the static partitioning problem, the size of an item keeps varying as the 
packing progresses. For any node of the instance hierarchy to be packed in to a bin, if the node 
itself cannot be fit into any of the bins, its child nodes are attempted to be fit. If a child node is fit 
into a bin, the weight of the parent node is decreased and an attempt is made to fit the parent node 
again. 
 
   A brief explanation of the algorithm is as follows. Starting with the top node in the hierarchy, 
the algorithm does a breadth first traversal. At any stage if the node can be fit into a bin, the entire 
hierarchy below that node is considered to have been fit into the bin. The weight of the parent is 
reduced and the algorithm proceeds with the parent node. At any point if a node neither has any 
child node which can be fit, nor can itself be fit into a bin, it is forced fit into a bin even if there is 
overflow in that bin. This is done since there is no other way to fit that particular node into a bin. 
This algorithm is called dynamic bin-packing algorithm since the size of the bins to be fit keeps 
varying. 
 

The algorithm takes as its inputs the instance hierarchy, the number of partitions to be 
generated and the use case to be considered. It generates a mapping of nodes in the instance 
hierarchy to N partitions. This partition mapping in turn is used for multi-core HDL simulation. 

 
IV.   EXPERIMENTAL RESULTS 

 
The partitioning algorithm was applied to a number of HDL designs and the generated partition 

was used with an HDL simulator which operates on instance level partitions and performs multi-

Fig. 2 : An example annotated instance hierarchy 



core HDL simulation using it. The results are presented in Table 1. All the tests are real design 
blocks ranging from 5 million gates to 100 million gates. 

 

 
The column “Performance ratio using multi-core simulation” is arrived at time taken by single 

core simulation by the time taken by multi-core simulation. It indicates the order by which multi-
core simulation provided performance gains. 

The experimental results in Table 1 indicate that the partitioning algorithm could achieve a 
good balanced partition for most tests, there by leading to performance gain when the generated 
partition is used of multi-core HDL simulation. However, there are a few tests for which the 
generated partition could not achieve performance gain, and in fact caused loss of performance 
with multi-core HDL simulation. This is due to the fact that the partitioning algorithm considers 
design parameters and use-case information to perform the partitioning. The activity distribution 
at run-time could cause the partition to be ineffective. The partitioning algorithm in any case 
provides a starting point for deployment of multi-core HDL simulation. 

 
V.   CONCLUSIONS 

In this paper, we have presented a partitioning algorithm for instance level partitioning to be used with 
multi-core HDL simulation. The algorithm uses design parameters and knowledge of use-case to equally 
distribute work load such that maximum performance gains can be achieved using multi-core HDL 
simulation. The algorithm has shown good results on a number of designs. There are a few designs on 
which the generated partition caused performance degradation with multi-core HDL simulation. This 
indicates that more design parameters need to be used and the weightings used for use-cases might have to 
be tuned. In any case, the presented algorithm provides an initial partition that will allow easy deployment 
of a multi-core HDL simulation solution. 
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