

Automatic Netlist Modifications required by Functional Safety

Harald Lüpken, Dirk Hönicke, Michael Rohleder
AMCU/New Product Development Center Munich

Freescale Semiconductor
Munich, Germany

harald.luepken@freescale.com, dirk.hoenicke@freescale.com, michael.rohleder@freescale.com

Abstract—Developing semiconductor products targeted
towards a functional safety application impose an additional
set of challenges for the involved development teams.
Requirements like "freedom of interference", redundant
execution and cross-checking of functionality, as well as
countermeasures for possible common cause failures need to
be taken into account for every step of the design cycle. The
implementation of corresponding features and the reuse of IP
and subsystems/platforms involves often netlist modifications
of non-trivial nature; i.e. new or modified hierarchy levels,
additional device modes, and the insertion of additional logic
or logic blocks.

Functional safety standards, like the ISO26262 for the
Automotive Industry, require a high degree of repeatability of
the corresponding work. Here, the early adoption of the IP-
XACT standard for netlist assembly allowed us to exploit
related benefits for several earlier products. The most recent
family of safety devices developed by FreescaleTM for one
automotive customer is extending on these capabilities.
Automation of further netlist modifications is employed to
implement many safety relevant features, like logic built-in-
self-test (LBIST), online memory built-in-self-test (MBIST),
independent physical hierarchies and their separation by X-
bounding, as well as the required bypass and comparison
logic.

Vendor independence is another benefit of using an
industry standard like IP-XACT. It enables easier extension of
the required capabilities but also enabled a faster switching
between tool vendors.

Keywords—ISO26262; IP-XACT

I. INTRODUCTION
The IP-XACT standard, originally developed by The

SPIRIT Consortium, Inc. (now merged into the Accellera
Systems Initiative [1]), has meanwhile matured into an IEEE
standard (IEEE Std 1685™-2009 [2]). The intention of this
standard is to provide a well-defined and unified specification
for the meta-data representing the components and designs
within an electronic system.

The flexibility of this standard makes it suitable for many
areas of design work; the most common ones is by tools for
netlist generation and for processing and maintaining register

descriptions, e.g. for header file generation and memory map
definition. With the ever-increasing complexity of state-of-
the-art systems and semiconductor devices, this standard
enables to automate tasks that had to be done manually in
earlier days. It further permits to reuse information that is
common for multiple devices in various aspects, which
enables the reuse of the related data, even across product
families [3].

Systems that are targeted towards applications in the field
of functional safety have always required a rigid, well
organized and structured design style to ensure a repeatable
and well documented development effort. Automating many
steps of the related effort is a welcome way of doing things
less manually which usually translates into less error prone.
This, and the increased reuse capabilities that could be
achieved when performing the corresponding activities in a
tool supported environment, have led to an early adoption of
the IP-XACT standard for several aspects of the development
work within our organization.

This paper describes the experiences when further
extending an already automated development step, the netlist
assembly, with additional capabilities that are required due the
system targeting an application in the field of functional
safety.

II. FUNCTIONAL SAFETY
Electrical and/or electronic (E/E) elements have been used

for many years to perform safety functions. Computer-based
systems – also referred to as Electrical, Electronic and
Programmable Systems (E/E/PS) – are increasingly being used
to perform safety functions.

Functional safety is a concept applicable across all
industry sectors that is fundamental to the enabling of complex
technology used for safety-related systems [4][5]. It is the part
of the overall safety of a system or piece of equipment that
depends on the system or equipment operating correctly in
response to its inputs, including the safe management of likely
operator errors, hardware failures and environmental changes.
Its objective is the freedom from unacceptable risk of physical
injury or of damage to the health of people either directly or
indirectly (through damage to property or to the environment).
As such it is fundamental to the enabling of complex
technology used for safety-related systems by providing the
assurance that these systems will offer the necessary risk
reduction required to achieve safety for the equipment.

mailto:harald.luepken@freescale.com�
mailto:dirk.hoenicke@freescale.com�
mailto:michael.rohleder@freescale.com�

Functional safety is intrinsically end-to-end in scope in
that it has to treat the function of a component or subsystem as
part of the function of the whole system. This means that
whilst Functional Safety standards focus on the E/E/PS, the
end-to-end scope means that in practice functional safety
methods have to extend to the non-E/E/PS parts that those
systems actuates, controls or monitors. Furthermore, safety
standards are not only concerned with the parts of a system;
they are also covering many aspects of the development of
those parts. As such, functional safety features form an
integral part of each development phase of a safety product,
ranging from the specification, to design, implementation,
integration, verification, validation, and production release.

III. THE ISO26262 STANDARD
The standard ISO 26262 (official title “Road Vehicles –

Functional Safety”) [4] is an adaptation of the Functional
Safety standard IEC 61508 [5] for Automotive
Electric/Electronic Systems. It defines functional safety for
automotive equipment applicable throughout the lifecycle of
all automotive electronic and electrical safety-related systems.

ISO 26262 is intended to be applied to safety-related
systems that include one or more electrical and/or electronic
systems and that are installed in “series production passenger
cars with a maximum gross vehicle mass up to 3500 kg”. It
addresses possible hazards caused by malfunctioning behavior
of E/E safety-related systems, including interaction of these
systems. It does not address the nominal performance of E/E
systems.

Figure 1: from the Title page of ISO26262 - Part 1

The standard consists of 9 normative parts (first edition
published on November 15th, 2011) and a guideline for the
ISO 26262 as the 10th part (published July 25th, 2012) [6].

The following table provides an overview of those parts:

Part 1: Vocabulary

Part 2: Management of functional safety

Part 3: Concept phase

Part 4: Product development at the system level

Part 5: Product development at the hardware level

Part 6: Product development at the software level

Part 7: Production and operation

Part 8: Supporting processes

Part 9: Automotive Safety Integrity Level(ASIL)-oriented
and safety-oriented analyses

Part 10: Guideline on ISO 26262

Like its parent standard (IEC 61508) [7], the ISO 26262 is
a risk-based safety standard, where the risk of hazardous
operational situations is qualitatively assessed and safety
measures are defined to avoid or control systematic failures
and to detect or control random hardware failures, or mitigate
their effects. In particular, the ISO26262:

• provides an automotive safety lifecycle and supports
tailoring the necessary activities during its phases.

• covers functional safety aspects of the entire
development process.

• provides an automotive-specific risk-based approach
for determining risk classes (Automotive Safety
Integrity Levels, ASILs).

• uses ASILs for specifying the item's necessary safety
requirements for achieving an acceptable residual risk.

• provides requirements for validation and confirmation
measures to ensure a sufficient and acceptable level of
safety is being achieved.

Since functional safety is an essential element for many
systems targeting an application in the automotive world, the
requirements defined by ISO26262 are becoming an essential
need for many electrical and electronic elements being
developed for this market segment.

IV. SAFETY FUNCTIONALITY AND FEATURES
Semiconductor devices that are targeting an application in

the area of functional safety often provide or implement some
specific features or functionality. The intention of those
features is in many cases a better or easier detection of faults
that might lead to a malfunction of the device. Other features
might support fault avoidance or be beneficial to prevent
failures that could not be detected or avoided otherwise.

One common method in this area is redundancy; with its
many nuances of implementation. Redundancy can have many
forms; e.g. two identical parts or subsystems that are
processing their inputs concurrently and check each other in
every clock cycle (so named “lock-step architectures”), or one
subsystem that is continuously checked by another subsystem
having only reduced functionality. The following figure
depicts the redundant portion of the block diagram of a lock-

step architecture, the SPC56EL60xx [8]. The majority of
blocks colored in blue within this picture is implemented
redundantly, while the yellow blocks (FlexRay, Flash
memory, and SRAM) are only available once. All redundancy
checker elements (RC) shown in red are itself replicated.

Figure 2: Redundant portion of a lock-step architecture

Most common implementations of such architectures are
replicating one or more processor cores including the
corresponding coprocessor elements, related caches, and
associated control IP, like memory controllers, cross-bar
switches, interrupt controllers and memory management and
protection units. The redundant implementation of the most
important processing elements permit a symmetric redundant
processing as shown in Figure 3 [9]. In some cases, the
sensors and actuators may be replicated as well, to provide a
maximum of redundancy for the safety application.

Figure 3: Symmetric redundant processes
implemented by a lock-step architecture

The benefit of these lock-step architectures is their fast
reaction on potential failures (often dependent on the amount
and type of signals being compared) and the relatively high
capability to detect and identify failures that arise during the
processing.

Redundancy is a very important, but not the only
architectural feature implemented in semiconductor devices
targeting a functional safety application. When an architecture
relies on redundant elements for detecting a certain class of
failures, then there is always a need to detect, avoid or at least
reduce the possibility of so named “common cause” faults.

Functional safety refers to such faults in the context of
redundancy, when it is possible that a single fault has an
equivalent or not distinguishable impact on both redundant
elements – and is as such preventing any chance to detect such
incidents with only the redundant implementation of a part of
the system.

Another important topic for functional safety devices is the
“freedom of interference” between parts, which is important to
be maximized as much as possible. With this term functional
safety experts refer to features, which ensure that an
unintended behavior in one part of the system does not result
in impacting another part of the system. In some cases features
that avoid common cause faults can also be used for providing
an increased freedom of interference.

The rest of this section discusses three functional safety
specific features that are central for the reported work.

A. Lakes
Lakes are design/physical hierarchies within a

semiconductor device which contain specific sub blocks, as
shown in Figure 4. The composition of a lake depends on the
safety concept. Lakes can be used to separate safety-relevant
blocks from other blocks that might itself be safety-relevant or
non-safety-relevant; thus providing a certain amount of
independence between those blocks. The usage of lakes
enables the physical implementation to create separate
placement areas, decouple common aspects like power supply,
clock or reset control, and to implement routing rules intended
to ensure the compliance with specific safety requirements.
Common requirements imposed by safety features are the
avoidance of signal crossings, a separate power supply,
independent clock and reset control or other features with the
intention to ensure the freedom of interference between logic
that is separated by the lakes. It might also be used to control
and meet diversity requirements for replicated blocks; e.g.
when it is required to use different cell sets for replicated
blocks.

Figure 4: Lakes in a semiconductor device

B. LBIST and x-bounding
Logic Built-in Self-Test (Logic BIST or LBIST) is a

technique based on pseudo random scan patterns generated at
runtime by a LBIST controller; with the intention to identify
incorrect behavior of the corresponding logic including
combinatorial and sequential elements and thus providing a
capability to find non-transient errors within this logic. For
this purpose dedicated IP blocks are assigned to a LBIST
partition, which might coincide with or being part of a lake.
Such a partition can be a substructure of a lake, but never span
multiple lakes. In principle, the set of LBIST partitions create
a new hierarchy layer within a semiconductor device that can
only be used in a specific “Logic BIST” mode.

To ensure repeatability of the LBIST operation (“LBIST
sequence”), the inputs to a LBIST partition have to be isolated
to ensure that the LBIST functionality has full control over the
logic to be tested. Furthermore, partition outputs shall not
influence sensitive parts of the designs, to inhibit any negative
impact of the operations being performed. The isolation of the
inputs and outputs of a partition is managed by an approach
called “x-bounding”. For this purpose, multiplexers with
predefined or rule based feedback are assigned to the inputs
and the outputs of a partition (refer also to Figure 5). The
controlling rules can be based on structural information, clock
domain specifics or other data of interest. These multiplexers
are then used to ensure that the LBIST controller has full
control over the logic within a partition, and that there is no
impact on other parts of a system when a partition undergoes a
LBIST sequence.

C. Bypass logic
The implementation of lakes requires further that some of

the corresponding connectivity is receiving special treatment,
in particular:

• there are minimum distance rules, which are often
related to the root cause of a potential incident (e.g.
alpha particle).

• inter-lake connections must be buffered to ensure that
a failure condition in one lake cannot propagate
backwards across lake boundaries.

• crossing of inter-lake and potential common-cause
signals must be prevented or avoided to ensure that a
short or electrical overstress condition cannot result in
a common cause failure.

A special topic of interest is the connectivity required for
providing data from singular elements that are eventually
implemented in one of those lakes to the other redundant
processing elements within the other lake. The so named
“bypass logic” must implement the connection of the
corresponding signals in a manner that minimizes the potential
for common cause failures and also maximizes the freedom of
interference. This can be best illustrated by a related safety
requirement for this logic:

Requirement <reqID>: The ports of all modules that
accomplish the coupling of both lakes should be placed in that
manner that the A-side signals and the B-side signals are not
mixed and crossed.

For this purpose, the bypass logic blocks are implemented
providing a predefined number (e.g. 128) of bypass signals.
These blocks have been hardened to support a backend flow
that addresses the above (and some more) safety requirements.

V. AUTOMATED NETLIST ASSEMBLY
The netlist assembly flow being central for the reported

work has been developed several years ago by a joint effort
between FreescaleTM and ST MicroelectronicsTM. It is based
on the IP-XACT standard to ensure the reusability of various
design items and provide means to import information from
other sources or export data for subsequent usage. Another
intent for the development of this flow was the migration
towards third party tools and industry standards, to eliminate
existing dependencies on company proprietary tools and
databases.

The following Figure 6 “IP-XACT based Netlist Assembly
Flow” provides an overview of this flow, including its most
important data and processing steps. All IP blocks are
“packaged” (Packaged IP); where “packaging” refers to
adding/extracting IP-XACT information to the original IP
database. This packaging step is a sub-flow, and is also using a
common set of Protocol Definitions that describe common and
reusable interfaces being used by the IP blocks.

Figure 5: Logic BIST (LBIST) partitions and x-bounding

The core of the assembly flow is the “Assembly” step that
combines the packaged IP with connectivity and other
parametric information according to provided connection
rules. In addition to creating connections between design
objects, further automation steps are defined. These include
the generation of device specific system information like
memory maps, interrupt assignments and DMA connectivity.
Furthermore, IP Generators are capable to create specific IP
blocks and generation rules provide iterators/macros to avoid
repetitive specifications. After assembling the design and
creating the desired hierarchies, the “Netlisting” step converts
the created design into either HDL output and/or IP-XACT
designs. An additional data extraction step permits to extract
information that is intended to support the verification effort
and improves the documentation.

The described setup enables the usage of generic databases
holding connectivity and parametric information instead of
manually defining the design connectivity and its hierarchies
using a specific hardware description language (HDL).
Portions of a particular SoC are often of very generic and
common nature, but many of their details are then specific for
a SoC. This is in particular the case when the corresponding
functionality is required but the implementation itself is
dependent on topology, feature mix, interfaces, etc. Examples
for the corresponding, IP is the processor platform, the
clock/reset logic, the logic for configuring and multiplexing
I/O signals, or common blocks implementing ATPG features.

The resulting connectivity databases are highly
configurable and easy to maintain due to their simple format
(EXCEL based comma separated value [.csv] files) to permit
their reuse within multiple members of a product family. A
major portion of all required parameters and connections of a
semiconductor device can be provided as part of such a
generic database. Using IP-XACT as backbone for the some

of the associated development steps enabled the usage of
existing 3rd party tools and standard definitions, instead of
having to develop and design a proprietary description format
for this purpose.

The intention of this approach is to facilitate the (re-)use of
IP blocks together with the corresponding connectivity, which
is especially beneficial when these devices are part of a device
family or are covering a similar application space. The
capability to reuse not only the IP blocks, but also related
connectivity data, permits to predefine or generate a
significant amount of the corresponding connections. This
concept enables product teams to concentrate their efforts on
adding differentiating IP and generating the related
connectivity. Reentering or modifying similar portions of a
design by hand can be avoided. The described methodology
not only supports the creation of complex systems, but also
ensures a high quality by eliminating manual design effort and
by re-using previously verified portions of a SoC.

VI. AUTOMATED NETLIST MODIFICATIONS
Automation of netlist generation and associated

modifications was a necessary prerequisite to achieve high
design efficiency, ultra-short response on change requests, as
well as enhanced controllability, repeatability and reuse of
design modifications and design data. Additionally, it was an
enabler for further netlist changes that have been imposed by
functional safety requirements; as these have been already
described earlier.

Having many aspects of the semiconductor device
specified with abstractions, like the definition of memory map
aspects, interrupt tables and DMA connectivity turned out to
be very beneficial. Related design data is often already made
available, a common method are tables that can be found in

Figure 6: IP-XACT based Netlist Assembly Flow

specifications or are intended to end up in user documentation.
Extracting this information, and using generators to create the
corresponding logic and connections enabled further
automation and reduces the need for error prone manual edits.
The resulting peripheral bridges, read/write multiplexers,
protection wrappers, memory block interface logic, interrupt
request lines, DMA request/acknowledge signals are generated
by a repeatable process, that can be easily adjusted or
extended to cover additional requirements.

One first application is the creation or removal of
hierarchy levels; e.g. for the definition of power of high-speed
clock domains. Such hierarchies are also required for a
hierarchical backend flow, which intends to reduce tool
runtime by a separate physical implementation of certain
portions of a semiconductor device. Similar hierarchies may
also be generated in 3rd party subsystems, which are delivered
in standardized formats, like structural RTL or as IP-XACT
design.

A. Safety lakes
Safety lakes define boundaries for many aspects to be

taken into account by tools used for the physical
implementation work; e.g. for power domains, clock
distribution, LBIST partitions, but also for placement and
routing restrictions that have to be applied to a certain subset
of a semiconductor device. They are essential elements to
implement a lock-step architecture, ensure diversity or the
freedom of interference of replicated blocks. Often, a safety
lake is represented by an additional hierarchy that is specially
treated by the physical implementation. However, several
layers of hierarchy levels may be implemented; e.g. one or
multiple LBIST partitions within a safety lake.

Using the capabilities of an automated netlist assembly
flow, creation of a safety lake became a significantly simpler
and less tedious task. Modifications that are heavily impacting
the interface and/or content of a hierarchy can be managed by

changing a few lines in the input data or associated scripts.
Creation of a correct netlist becomes a quick and repeatable
step within the design flow. In comparison, the corresponding
manual changes would be more error prone and take much
longer (e.g. adding/removing a sub-block). Incremental
changes of an interface could be addressed by simply re-
running the flow. As such the automated netlist assembly flow
using IP-XACT for components and the SoC netlist enabled to
quickly apply complex hierarchy manipulations involving
many substantial changes; e.g. in the number of instances, the
interface size or modifications of the interface itself.

B. LBIST partitions and x-bounding
LBIST partitions and x-bounding are both necessary

elements to implement Logic BIST on the RTL level. A single
SoC may have several LBIST partitions within different
hierarchy levels. In many cases, the set of logic assigned to a
LBIST partition may relate to different hierarchies or
hierarchy levels; involving similar changes than the creation
of safety lakes.

Further requirements resulted from the need to apply x-
bounding to the boundaries of a LBIST partition. For this
purpose a flow has been developed that is using structural
information and clock domain crossing data derived from the
SoC RTL code using standard static verification tools (e.g.
LEC or Spyglass®) for evaluating related aspects of the
netlist. The extracted data is maintained incrementally and
used to drive the x-bounding modifications. Also in this case,
the automated netlist creation process became an enabler for
the implementation of the x-bounding step within the SoC
assembly flow. Applying those modifications on RTL level
using IP-XACT did avoid time consuming loops via the
backend implementation flow and facilitated quick iterations.

Basically, the x-bounding flow classifies the input and output
paths of a LBIST partition according to the following
attributes (as is shown in Figure 7):

Figure 7: Possible path types and their association with an LBIST partition

• Clock association (input-to-capture clock, launch
clock-to-output)

• Registered input/output path (direct path from input
to FF, direct path from FF to output)

• Combinational feed-through path
• Mixture of registered input/output and combinational

feed-through path.
• Constant input (input always constant)
• Constant output (output always constant)
• Clock input (clock during LBIST)
• Reset input
• Mode inputs (constraint for LBIST modes)
• No clock association

Using the above classification, some rules can be defined

for the implementation of the x-bounding feedback:

Rule

#1 Outputs are used as feedback source if the clock
association is the same as for the input to be x-
bounded.

Purpose: avoid critical timing paths or clock domain
crossing problems.

#2 Constant outputs are never used as feedback source.

Purpose: avoid coverage issues as constant outputs
cannot be controlled.

#3 Rule #1 is applied to select a feedback source for
constant inputs.

Purpose: allow control of the related logic.

#4 Outputs which are the end point of a combinatorial
feedback path are never used as feedback source.

Purpose: avoid combinational loops and critical
timing paths.

Applying these rules on tables that are defined and
maintained by the automated netlist assembly flow was a
simple extension of this flow that has been proven to be very
beneficial for the implementation of the x-bounding step.

C. Bypass flow
A similar approach has been used for implementing the

inter-lake connections; in particular the bypass logic described
earlier. Those inter-lake interfaces can comprise hundreds of
connections having different attributes (e.g. standard signal,

clock, reset, special net, safety relevant, debug) which have to
be considered. Also here, static verification tools (e.g. LEC or
Spyglass®) have been used to extract all interconnections, the
resulting connection data and rules are stored in tables that are
incrementally maintained. The resulting connection database
is then driving the automated implementation of the required
bypass connections, thus providing a robust flow. The Figure
8 depicts the structural and implementation of the bypass flow.

VII. VENDOR INDEPENDENCE
There is a wide variety of tools available which provide

the functionality required to perform the steps of an automated
netlist assembly flow; such as netlist modifications, inserting
additional objects as well as hierarchical transformations like
grouping and ungrouping of levels of instances. These tools
often define very different tasks which are – even despite their
common usage of IP-XACT – not always compatible with
each other. Changing a tool or tool set for a subsequent project
can then quickly become a problem; since this might involve a
new set of scripts and supporting assembly inputs. Re-use of
assembly data would then become very difficult to achieve, if
possible at all.

To secure the investment in building-up a machine-
readable connectivity database, and to provide some flexibility
in choosing the corresponding tool set an abstraction layer has
been defined for all essential and required netlist modification
functions. This layer consists mostly of a set of structured and
well-defined comma-separated-value (CSV) files that usually
define tables. There are three classes of tables defined:

1. object definition tables,

2. parameter tables, and

3. connectivity definition tables.

During assembly, the objects referenced by the object

definition tables (instance and hierarchy table) are combined
with information from the associated parameter tables. These
tables specify the version of a module to be integrated, the
parameters for an instance and the hierarchy level(s) of every
instance. Connectivity definition tables contain mostly the
source and target of a particular connection. Connections can
be made from pins or interface ports of real as well as virtual
instances assuming a flat design without any hierarchies.
Separating connectivity from hierarchy information provides
many benefits, when it is required to quickly create or remove
hierarchies.

Figure 8: Bypass flow; structural and implementation view

Before the assembly step, these abstract design definition
tables are being processed and mapped to the command set of
the assembly tool of choice. This pre-processing step requires
little time but ensures some flexibility when it is desired to
switch the tool set to be used. Furthermore, this method
enables the usage of different assembly tools concurrently,
thus providing the opportunity to cross-check the resulting
design assemblies.

The usage of simple CSV files and IP-XACT as
interchange format in combination with this abstraction layer
has been proven as key to stay vendor independent. This
became very valuable when the vendor of the initially selected
assembly tool A decided to discontinue its support. Replacing
this tool with another tool set was straight forward and could
be completed within a few days. It was only required to re-
define the translation of the abstract definition tables to the
assembly command set of the alternatively selected assembly
tool B. Another benefit was the reduced training effort, since
designers could continue without learning new formats and
commands required/provided by the new assembly tool B.

VIII. RESULTS
The usage of the IP-XACT standard for the definition of IP

views and interfaces helped to successfully establish a joint
development flow for complex SoCs. IP-XACT interfaces
allow a significant reduction of connectivity data by bundling
several signals to a single interface connection. Connection
rules included in interfaces can be checked automatically.
Incorrect connections can be reported at implementation time
which reduces the verification effort.

In general the usage of IP-XACT for the netlist assembly
automation helps to increase design efficiency; enables
repeatable implementation and further automation and reduces
the possibility of manual errors:

• Complex netlist operations (e.g. hierarchy creation)
can be performed quickly, repeatable and with high
quality results.

• Appropriate partitioning of the design data (e.g. IP
integration, clock/reset, analog, DFT, safety, debug)
enables a parallel development approach. Concurrent
development is supported and allows quick progress
in several areas (e.g. concurrent implementation of
clock/reset logic, the DFT sub-system, and IP
integration), resulting in reduced turnaround times.

• Reuse of connectivity data and quick adaption of
connection tables allows continuous improvement
and fast generation of prototypes.

Usage of IP-XACT for IP views and protocol definitions
has been proven to be a big benefit to ensure independence
from EDA tools and vendors. Most 3rd Party IP providers
provide IP-XACT views as part of the delivery package. This
enables quick and seamless integration of IP.

Data extracted from other sources or by other tools and
incrementally maintained in machine readable format (e.g.
EXCEL tables) can be used to drive complex netlist
manipulations.

IX. SUMMARY AND OUTLOOK
The implementation of safety requirements within a

semiconductor device requires complex and massive
manipulations of the RTL database. The expectation of
functional safety standards on the development process is a
repeatable and state-of-the-art implementation with high
quality results.

An automated netlist assembly flow based on IP-XACT
has been proven to become an enable to perform many
required processing steps in short time and good quality, by
providing appropriate means for automation, configuration
and reuse of the involved information.

Based on these results, the usage of IP-XACT for netlist
assembly is a success story, that will be continued and further
extended to also support the reuse of verification and backend
properties.

References
[1] www.accellera.org
[2] IEEE Std 1685™-2009, “IEEE Standard for IP-XACT, Standard

Structure for Packaging, Integrating, and Reusing IP within Tool
Flows”, Institute of Electrical and Electronics Engineers, Inc. Published
18 February 2010. ISBN 978-0-7381-6160-0

[3] Stefan Doll et al., “Skeleton, an approach to maximize reuse across
multiple product families”, DesignCon 2009

[4] http://www.iec.ch/functionalsafety
[5] Portions of the following text are citing statements taken from

http://en.wikipedia.org/wiki about: Functional_Safety, IEC_61508,
ISO_26262

[6] www.iso.org
[7] http://www.iec.ch/functionalsafety/standards
[8] SPC56EL60L3/L5, “32-bit Power™ Architecture microcontroller for

automotive SIL3/ASILD chassis and safety applications”. Data Brief.
Doc ID 15461 Rev 3, Feb. 2010, Freescale Semiconductor, Inc.

[9] Markus Baumeister, “Using Decoupled Parallel Mode for Safety
Applications”. White Paper 2009. MPC564XLWP, Freescale
Semiconductor, Inc.

http://www.iec.ch/functionalsafety�
http://en.wikipedia.org/wiki�
http://en.wikipedia.org/wiki/Functional_Safety�
http://en.wikipedia.org/wiki/IEC_61508�
http://en.wikipedia.org/wiki/ISO_26262�
http://www.iso.org/�
http://www.iec.ch/functionalsafety/standards�

