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Abstract—Developing semiconductor products targeted 
towards a functional safety application impose an additional 
set of challenges for the involved development teams. 
Requirements like "freedom of interference", redundant 
execution and cross-checking of functionality, as well as 
countermeasures for possible common cause failures need to 
be taken into account for every step of the design cycle. The 
implementation of corresponding features and the reuse of IP 
and subsystems/platforms involves often netlist modifications 
of non-trivial nature; i.e. new or modified hierarchy levels, 
additional device modes, and the insertion of additional logic 
or logic blocks. 

Functional safety standards, like the ISO26262 for the 
Automotive Industry, require a high degree of repeatability of 
the corresponding work. Here, the early adoption of the IP-
XACT standard for netlist assembly allowed us to exploit 
related benefits for several earlier products. The most recent 
family of safety devices developed by FreescaleTM for one 
automotive customer is extending on these capabilities. 
Automation of further netlist modifications is employed to 
implement many safety relevant features, like logic built-in-
self-test (LBIST), online memory built-in-self-test (MBIST), 
independent physical hierarchies and their separation by X-
bounding, as well as the required bypass and comparison 
logic. 

Vendor independence is another benefit of using an 
industry standard like IP-XACT. It enables easier extension of 
the required capabilities but also enabled a faster switching 
between tool vendors. 
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I. INTRODUCTION 
The IP-XACT standard, originally developed by The 

SPIRIT Consortium, Inc. (now merged into the Accellera 
Systems Initiative [1]), has meanwhile matured into an IEEE 
standard (IEEE Std 1685™-2009 [2]). The intention of this 
standard is to provide a well-defined and unified specification 
for the meta-data representing the components and designs 
within an electronic system. 

The flexibility of this standard makes it suitable for many 
areas of design work; the most common ones is by tools for 
netlist generation and for processing and maintaining register 

descriptions, e.g. for header file generation and memory map 
definition. With the ever-increasing complexity of state-of-
the-art systems and semiconductor devices, this standard 
enables to automate tasks that had to be done manually in 
earlier days. It further permits to reuse information that is 
common for multiple devices in various aspects, which 
enables the reuse of the related data, even across product 
families [3]. 

Systems that are targeted towards applications in the field 
of functional safety have always required a rigid, well 
organized and structured design style to ensure a repeatable 
and well documented development effort. Automating many 
steps of the related effort is a welcome way of doing things 
less manually which usually translates into less error prone. 
This, and the increased reuse capabilities that could be 
achieved when performing the corresponding activities in a 
tool supported environment, have led to an early adoption of 
the IP-XACT standard for several aspects of the development 
work within our organization. 

This paper describes the experiences when further 
extending an already automated development step, the netlist 
assembly, with additional capabilities that are required due the 
system targeting an application in the field of functional 
safety. 

II. FUNCTIONAL SAFETY 
Electrical and/or electronic (E/E) elements have been used 

for many years to perform safety functions. Computer-based 
systems – also referred to as Electrical, Electronic and 
Programmable Systems (E/E/PS) – are increasingly being used 
to perform safety functions.  

Functional safety is a concept applicable across all 
industry sectors that is fundamental to the enabling of complex 
technology used for safety-related systems [4][5]. It is the part 
of the overall safety of a system or piece of equipment that 
depends on the system or equipment operating correctly in 
response to its inputs, including the safe management of likely 
operator errors, hardware failures and environmental changes. 
Its objective is the freedom from unacceptable risk of physical 
injury or of damage to the health of people either directly or 
indirectly (through damage to property or to the environment). 
As such it is fundamental to the enabling of complex 
technology used for safety-related systems by providing the 
assurance that these systems will offer the necessary risk 
reduction required to achieve safety for the equipment. 
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Functional safety is intrinsically end-to-end in scope in 
that it has to treat the function of a component or subsystem as 
part of the function of the whole system. This means that 
whilst Functional Safety standards focus on the E/E/PS, the 
end-to-end scope means that in practice functional safety 
methods have to extend to the non-E/E/PS parts that those 
systems actuates, controls or monitors. Furthermore, safety 
standards are not only concerned with the parts of a system; 
they are also covering many aspects of the development of 
those parts. As such, functional safety features form an 
integral part of each development phase of a safety product, 
ranging from the specification, to design, implementation, 
integration, verification, validation, and production release. 

III. THE ISO26262 STANDARD 
The standard ISO 26262 (official title “Road Vehicles – 

Functional Safety”) [4] is an adaptation of the Functional 
Safety standard IEC 61508 [5] for Automotive 
Electric/Electronic Systems. It defines functional safety for 
automotive equipment applicable throughout the lifecycle of 
all automotive electronic and electrical safety-related systems. 

ISO 26262 is intended to be applied to safety-related 
systems that include one or more electrical and/or electronic 
systems and that are installed in “series production passenger 
cars with a maximum gross vehicle mass up to 3500 kg”. It 
addresses possible hazards caused by malfunctioning behavior 
of E/E safety-related systems, including interaction of these 
systems. It does not address the nominal performance of E/E 
systems. 

 
Figure 1: from the Title page of ISO26262 - Part 1 

The standard consists of 9 normative parts (first edition 
published on November 15th, 2011) and a guideline for the 
ISO 26262 as the 10th part (published July 25th, 2012) [6].   

The following table provides an overview of those parts: 

Part 1: Vocabulary 

Part 2: Management of functional safety 

Part 3: Concept phase 

Part 4: Product development at the system level 

Part 5: Product development at the hardware level 

Part 6: Product development at the software level 

Part 7: Production and operation 

Part 8: Supporting processes 

Part 9: Automotive Safety Integrity Level(ASIL)-oriented 
and safety-oriented analyses 

Part 10: Guideline on ISO 26262 

Like its parent standard (IEC 61508) [7], the ISO 26262 is 
a risk-based safety standard, where the risk of hazardous 
operational situations is qualitatively assessed and safety 
measures are defined to avoid or control systematic failures 
and to detect or control random hardware failures, or mitigate 
their effects. In particular, the ISO26262: 

• provides an automotive safety lifecycle and supports 
tailoring the necessary activities during its phases. 

• covers functional safety aspects of the entire 
development process. 

• provides an automotive-specific risk-based approach 
for determining risk classes (Automotive Safety 
Integrity Levels, ASILs). 

• uses ASILs for specifying the item's necessary safety 
requirements for achieving an acceptable residual risk. 

• provides requirements for validation and confirmation 
measures to ensure a sufficient and acceptable level of 
safety is being achieved. 

Since functional safety is an essential element for many 
systems targeting an application in the automotive world, the 
requirements defined by ISO26262 are becoming an essential 
need for many electrical and electronic elements being 
developed for this market segment.  

IV. SAFETY FUNCTIONALITY AND FEATURES 
Semiconductor devices that are targeting an application in 

the area of functional safety often provide or implement some 
specific features or functionality. The intention of those 
features is in many cases a better or easier detection of faults 
that might lead to a malfunction of the device. Other features 
might support fault avoidance or be beneficial to prevent 
failures that could not be detected or avoided otherwise. 

One common method in this area is redundancy; with its 
many nuances of implementation. Redundancy can have many 
forms; e.g. two identical parts or subsystems that are 
processing their inputs concurrently and check each other in 
every clock cycle (so named “lock-step architectures”), or one 
subsystem that is continuously checked by another subsystem 
having only reduced functionality. The following figure 
depicts the redundant portion of the block diagram of a lock-



 

 

step architecture, the SPC56EL60xx [8]. The majority of 
blocks colored in blue within this picture is implemented 
redundantly, while the yellow blocks (FlexRay, Flash 
memory, and SRAM) are only available once. All redundancy 
checker elements (RC) shown in red are itself replicated. 

 
Figure 2: Redundant portion of a lock-step architecture 

Most common implementations of such architectures are 
replicating one or more processor cores including the 
corresponding coprocessor elements, related caches, and 
associated control IP, like memory controllers, cross-bar 
switches, interrupt controllers and memory management and 
protection units. The redundant implementation of the most 
important processing elements permit a symmetric redundant 
processing as shown in Figure 3 [9]. In some cases, the 
sensors and actuators may be replicated as well, to provide a 
maximum of redundancy for the safety application. 

 
Figure 3: Symmetric redundant processes 
implemented by a lock-step architecture 

The benefit of these lock-step architectures is their fast 
reaction on potential failures (often dependent on the amount 
and type of signals being compared) and the relatively high 
capability to detect and identify failures that arise during the 
processing. 

Redundancy is a very important, but not the only 
architectural feature implemented in semiconductor devices 
targeting a functional safety application. When an architecture 
relies on redundant elements for detecting a certain class of 
failures, then there is always a need to detect, avoid or at least 
reduce the possibility of so named “common cause” faults. 

Functional safety refers to such faults in the context of 
redundancy, when it is possible that a single fault has an 
equivalent or not distinguishable impact on both redundant 
elements – and is as such preventing any chance to detect such 
incidents with only the redundant implementation of a part of 
the system. 

Another important topic for functional safety devices is the 
“freedom of interference” between parts, which is important to 
be maximized as much as possible. With this term functional 
safety experts refer to features, which ensure that an 
unintended behavior in one part of the system does not result 
in impacting another part of the system. In some cases features 
that avoid common cause faults can also be used for providing 
an increased freedom of interference.  

The rest of this section discusses three functional safety 
specific features that are central for the reported work.    

A. Lakes 
Lakes are design/physical hierarchies within a 

semiconductor device which contain specific sub blocks, as 
shown in Figure 4. The composition of a lake depends on the 
safety concept. Lakes can be used to separate safety-relevant 
blocks from other blocks that might itself be safety-relevant or 
non-safety-relevant; thus providing a certain amount of 
independence between those blocks. The usage of lakes 
enables the physical implementation to create separate 
placement areas, decouple common aspects like power supply, 
clock or reset control, and to implement routing rules intended 
to ensure the compliance with specific safety requirements. 
Common requirements imposed by safety features are the 
avoidance of signal crossings, a separate power supply, 
independent clock and reset control or other features with the 
intention to ensure the freedom of interference between logic 
that is separated by the lakes. It might also be used to control 
and meet diversity requirements for replicated blocks; e.g. 
when it is required to use different cell sets for replicated 
blocks. 

 
Figure 4: Lakes in a semiconductor device 



 

 

B. LBIST and x-bounding 
Logic Built-in Self-Test (Logic BIST or LBIST) is a 

technique based on pseudo random scan patterns generated at 
runtime by a LBIST controller; with the intention to identify 
incorrect behavior of the corresponding logic including 
combinatorial and sequential elements and thus providing a 
capability to find non-transient errors within this logic. For 
this purpose dedicated IP blocks are assigned to a LBIST 
partition, which might coincide with or being part of a lake. 
Such a partition can be a substructure of a lake, but never span 
multiple lakes. In principle, the set of LBIST partitions create 
a new hierarchy layer within a semiconductor device that can 
only be used in a specific “Logic BIST” mode. 

To ensure repeatability of the LBIST operation (“LBIST 
sequence”), the inputs to a LBIST partition have to be isolated 
to ensure that the LBIST functionality has full control over the 
logic to be tested. Furthermore, partition outputs shall not 
influence sensitive parts of the designs, to inhibit any negative 
impact of the operations being performed. The isolation of the 
inputs and outputs of a partition is managed by an approach 
called “x-bounding”. For this purpose, multiplexers with 
predefined or rule based feedback are assigned to the inputs 
and the outputs of a partition (refer also to Figure 5). The 
controlling rules can be based on structural information, clock 
domain specifics or other data of interest. These multiplexers 
are then used to ensure that the LBIST controller has full 
control over the logic within a partition, and that there is no 
impact on other parts of a system when a partition undergoes a 
LBIST sequence. 

C. Bypass logic 
The implementation of lakes requires further that some of 

the corresponding connectivity is receiving special treatment, 
in particular: 

• there are minimum distance rules, which are often 
related to the root cause of a potential incident (e.g. 
alpha particle). 

• inter-lake connections must be buffered to ensure that 
a failure condition in one lake cannot propagate 
backwards across lake boundaries. 

• crossing of inter-lake and potential common-cause 
signals must be prevented or avoided to ensure that a 
short or electrical overstress condition cannot result in 
a common cause failure. 

A special topic of interest is the connectivity required for 
providing data from singular elements that are eventually 
implemented in one of those lakes to the other redundant 
processing elements within the other lake. The so named 
“bypass logic” must implement the connection of the 
corresponding signals in a manner that minimizes the potential 
for common cause failures and also maximizes the freedom of 
interference. This can be best illustrated by a related safety 
requirement for this logic: 

Requirement <reqID>: The ports of all modules that 
accomplish the coupling of both lakes should be placed in that 
manner that the A-side signals and the B-side signals are not 
mixed and crossed. 

For this purpose, the bypass logic blocks are implemented 
providing a predefined number (e.g. 128) of bypass signals. 
These blocks have been hardened to support a backend flow 
that addresses the above (and some more) safety requirements.  

V. AUTOMATED NETLIST ASSEMBLY 
The netlist assembly flow being central for the reported 

work has been developed several years ago by a joint effort 
between FreescaleTM and ST MicroelectronicsTM. It is based 
on the IP-XACT standard to ensure the reusability of various 
design items and provide means to import information from 
other sources or export data for subsequent usage. Another 
intent for the development of this flow was the migration 
towards third party tools and industry standards, to eliminate 
existing dependencies on company proprietary tools and 
databases.  

The following Figure 6 “IP-XACT based Netlist Assembly 
Flow” provides an overview of this flow, including its most 
important data and processing steps. All IP blocks are 
“packaged” (Packaged IP); where “packaging” refers to 
adding/extracting IP-XACT information to the original IP 
database. This packaging step is a sub-flow, and is also using a 
common set of Protocol Definitions that describe common and 
reusable interfaces being used by the IP blocks.  

Figure 5: Logic BIST (LBIST) partitions and x-bounding 



 

 

The core of the assembly flow is the “Assembly” step that 
combines the packaged IP with connectivity and other 
parametric information according to provided connection 
rules. In addition to creating connections between design 
objects, further automation steps are defined. These include 
the generation of device specific system information like 
memory maps, interrupt assignments and DMA connectivity. 
Furthermore, IP Generators are capable to create specific IP 
blocks and generation rules provide iterators/macros to avoid 
repetitive specifications. After assembling the design and 
creating the desired hierarchies, the “Netlisting” step converts 
the created design into either HDL output and/or IP-XACT 
designs. An additional data extraction step permits to extract 
information that is intended to support the verification effort 
and improves the documentation. 

The described setup enables the usage of generic databases 
holding connectivity and parametric information instead of 
manually defining the design connectivity and its hierarchies 
using a specific hardware description language (HDL). 
Portions of a particular SoC are often of very generic and 
common nature, but many of their details are then specific for 
a SoC. This is in particular the case when the corresponding 
functionality is required but the implementation itself is 
dependent on topology, feature mix, interfaces, etc. Examples 
for the corresponding, IP is the processor platform, the 
clock/reset logic, the logic for configuring and multiplexing 
I/O signals, or common blocks implementing ATPG features.  

The resulting connectivity databases are highly 
configurable and easy to maintain due to their simple format 
(EXCEL based comma separated value [.csv] files) to permit 
their reuse within multiple members of a product family.  A 
major portion of all required parameters and connections of a 
semiconductor device can be provided as part of such a 
generic database. Using IP-XACT as backbone for the some 

of the associated development steps enabled the usage of 
existing 3rd party tools and standard definitions, instead of 
having to develop and design a proprietary description format 
for this purpose. 

The intention of this approach is to facilitate the (re-)use of 
IP blocks together with the corresponding connectivity, which 
is especially beneficial when these devices are part of a device 
family or are covering a similar application space. The 
capability to reuse not only the IP blocks, but also related 
connectivity data, permits to predefine or generate a 
significant amount of the corresponding connections. This 
concept enables product teams to concentrate their efforts on 
adding differentiating IP and generating the related 
connectivity. Reentering or modifying similar portions of a 
design by hand can be avoided. The described methodology 
not only supports the creation of complex systems, but also 
ensures a high quality by eliminating manual design effort and 
by re-using previously verified portions of a SoC. 

VI. AUTOMATED NETLIST MODIFICATIONS 
Automation of netlist generation and associated 

modifications was a necessary prerequisite to achieve high 
design efficiency, ultra-short response on change requests, as 
well as enhanced controllability, repeatability and reuse of 
design modifications and design data. Additionally, it was an 
enabler for further netlist changes that have been imposed by 
functional safety requirements; as these have been already 
described earlier. 

Having many aspects of the semiconductor device 
specified with abstractions, like the definition of memory map 
aspects, interrupt tables and DMA connectivity turned out to 
be very beneficial. Related design data is often already made 
available, a common method are tables that can be found in 

Figure 6: IP-XACT based Netlist Assembly Flow 



 

 

specifications or are intended to end up in user documentation. 
Extracting this information, and using generators to create the 
corresponding logic and connections enabled further 
automation and reduces the need for error prone manual edits. 
The resulting peripheral bridges, read/write multiplexers, 
protection wrappers, memory block interface logic, interrupt 
request lines, DMA request/acknowledge signals are generated 
by a repeatable process, that can be easily adjusted or 
extended to cover additional requirements. 

One first application is the creation or removal of 
hierarchy levels; e.g. for the definition of power of high-speed 
clock domains. Such hierarchies are also required for a 
hierarchical backend flow, which intends to reduce tool 
runtime by a separate physical implementation of certain 
portions of a semiconductor device. Similar hierarchies may 
also be generated in 3rd party subsystems, which are delivered 
in standardized formats, like structural RTL or as IP-XACT 
design. 

A. Safety lakes 
Safety lakes define boundaries for many aspects to be 

taken into account by tools used for the physical 
implementation work; e.g. for power domains, clock 
distribution, LBIST partitions, but also for placement and 
routing restrictions that have to be applied to a certain subset 
of a semiconductor device. They are essential elements to 
implement a lock-step architecture, ensure diversity or the 
freedom of interference of replicated blocks. Often, a safety 
lake is represented by an additional hierarchy that is specially 
treated by the physical implementation. However, several 
layers of hierarchy levels may be implemented; e.g. one or 
multiple LBIST partitions within a safety lake. 

Using the capabilities of an automated netlist assembly 
flow, creation of a safety lake became a significantly simpler 
and less tedious task. Modifications that are heavily impacting 
the interface and/or content of a hierarchy can be managed by 

changing a few lines in the input data or associated scripts. 
Creation of a correct netlist becomes a quick and repeatable 
step within the design flow. In comparison, the corresponding 
manual changes would be more error prone and take much 
longer (e.g. adding/removing a sub-block). Incremental 
changes of an interface could be addressed by simply re-
running the flow. As such the automated netlist assembly flow 
using IP-XACT for components and the SoC netlist enabled to 
quickly apply complex hierarchy manipulations involving 
many substantial changes; e.g. in the number of instances, the 
interface size or modifications of the interface itself. 

B. LBIST partitions and x-bounding 
LBIST partitions and x-bounding are both necessary 

elements to implement Logic BIST on the RTL level. A single 
SoC may have several LBIST partitions within different 
hierarchy levels. In many cases, the set of logic assigned to a 
LBIST partition may relate to different hierarchies or 
hierarchy levels; involving similar changes than the creation 
of safety lakes. 

Further requirements resulted from the need to apply x-
bounding to the boundaries of a LBIST partition. For this 
purpose a flow has been developed that is using structural 
information and clock domain crossing data derived from the 
SoC RTL code using standard static verification tools (e.g. 
LEC or Spyglass®) for evaluating related aspects of the 
netlist. The extracted data is maintained incrementally and 
used to drive the x-bounding modifications. Also in this case, 
the automated netlist creation process became an enabler for 
the implementation of the x-bounding step within the SoC 
assembly flow. Applying those modifications on RTL level 
using IP-XACT did avoid time consuming loops via the 
backend implementation flow and facilitated quick iterations. 

Basically, the x-bounding flow classifies the input and output 
paths of a LBIST partition according to the following 
attributes (as is shown in Figure 7): 

Figure 7: Possible path types and their association with an LBIST partition 



 

 

• Clock association (input-to-capture clock, launch 
clock-to-output) 

• Registered input/output path (direct path from input 
to FF, direct path from FF to output) 

• Combinational feed-through path 
• Mixture of registered input/output and combinational 

feed-through path. 
• Constant input (input always constant) 
• Constant output (output always constant) 
• Clock input (clock during LBIST) 
• Reset input 
• Mode inputs (constraint for LBIST modes) 
• No clock association 

 
Using the above classification, some rules can be defined 

for the implementation of the x-bounding feedback: 

Rule  

#1 Outputs are used as feedback source if the clock 
association is the same as for the input to be x-
bounded. 

Purpose: avoid critical timing paths or clock domain 
crossing problems. 

#2 Constant outputs are never used as feedback source. 

Purpose: avoid coverage issues as constant outputs 
cannot be controlled. 

#3 Rule #1 is applied to select a feedback source for 
constant inputs. 

Purpose: allow control of the related logic. 

#4 Outputs which are the end point of a combinatorial 
feedback path are never used as feedback source. 

Purpose: avoid combinational loops and critical 
timing paths. 

 

Applying these rules on tables that are defined and 
maintained by the automated netlist assembly flow was a 
simple extension of this flow that has been proven to be very 
beneficial for the implementation of the x-bounding step. 

C. Bypass flow 
A similar approach has been used for implementing the 

inter-lake connections; in particular the bypass logic described 
earlier. Those inter-lake interfaces can comprise hundreds of 
connections having different attributes (e.g. standard signal, 

clock, reset, special net, safety relevant, debug) which have to 
be considered. Also here, static verification tools (e.g. LEC or 
Spyglass®) have been used to extract all interconnections, the 
resulting connection data and rules are stored in tables that are 
incrementally maintained. The resulting connection database 
is then driving the automated implementation of the required 
bypass connections, thus providing a robust flow. The Figure 
8 depicts the structural and implementation of the bypass flow. 

VII. VENDOR INDEPENDENCE 
There is a wide variety of tools available which provide 

the functionality required to perform the steps of an automated 
netlist assembly flow; such as netlist modifications, inserting 
additional objects as well as hierarchical transformations like 
grouping and ungrouping of levels of instances. These tools 
often define very different tasks which are – even despite their 
common usage of IP-XACT – not always compatible with 
each other. Changing a tool or tool set for a subsequent project 
can then quickly become a problem; since this might involve a 
new set of scripts and supporting assembly inputs. Re-use of 
assembly data would then become very difficult to achieve, if 
possible at all. 

To secure the investment in building-up a machine-
readable connectivity database, and to provide some flexibility 
in choosing the corresponding tool set an abstraction layer has 
been defined for all essential and required netlist modification 
functions. This layer consists mostly of a set of structured and 
well-defined comma-separated-value (CSV) files that usually 
define tables. There are three classes of tables defined: 

1. object definition tables, 

2. parameter tables, and 

3. connectivity definition tables. 

 
During assembly, the objects referenced by the object 

definition tables (instance and hierarchy table) are combined 
with information from the associated parameter tables. These 
tables specify the version of a module to be integrated, the 
parameters for an instance and the hierarchy level(s) of every 
instance. Connectivity definition tables contain mostly the 
source and target of a particular connection. Connections can 
be made from pins or interface ports of real as well as virtual 
instances assuming a flat design without any hierarchies. 
Separating connectivity from hierarchy information provides 
many benefits, when it is required to quickly create or remove 
hierarchies. 

Figure 8: Bypass flow; structural and implementation view 



 

 

Before the assembly step, these abstract design definition 
tables are being processed and mapped to the command set of 
the assembly tool of choice. This pre-processing step requires 
little time but ensures some flexibility when it is desired to 
switch the tool set to be used. Furthermore, this method 
enables the usage of different assembly tools concurrently, 
thus providing the opportunity to cross-check the resulting 
design assemblies. 

The usage of simple CSV files and IP-XACT as 
interchange format in combination with this  abstraction layer 
has been proven as key to stay vendor independent. This 
became very valuable when the vendor of the initially selected 
assembly tool A decided to discontinue its support. Replacing 
this tool with another tool set was straight forward and could 
be completed within a few days. It was only required to re-
define the translation of the abstract definition tables to the 
assembly command set of the alternatively selected assembly 
tool B. Another benefit was the reduced training effort, since 
designers could continue without learning new formats and 
commands required/provided by the new assembly tool B. 

VIII. RESULTS 
The usage of the IP-XACT standard for the definition of IP 

views and interfaces helped to successfully establish a joint 
development flow for complex SoCs. IP-XACT interfaces 
allow a significant reduction of connectivity data by bundling 
several signals to a single interface connection. Connection 
rules included in interfaces can be checked automatically. 
Incorrect connections can be reported at implementation time 
which reduces the verification effort. 

In general the usage of IP-XACT for the netlist assembly 
automation helps to increase design efficiency; enables 
repeatable implementation and further automation and reduces 
the possibility of manual errors: 

• Complex netlist operations (e.g. hierarchy creation) 
can be performed quickly, repeatable and with high 
quality results. 

• Appropriate partitioning of the design data (e.g. IP 
integration, clock/reset, analog, DFT, safety, debug) 
enables a parallel development approach. Concurrent 
development is supported and allows quick progress 
in several areas (e.g. concurrent implementation of 
clock/reset logic, the DFT sub-system, and IP 
integration), resulting in reduced turnaround times. 

• Reuse of connectivity data and quick adaption of 
connection tables allows continuous improvement 
and fast generation of prototypes. 

Usage of IP-XACT for IP views and protocol definitions 
has been proven to be a big benefit to ensure independence 
from EDA tools and vendors. Most 3rd Party IP providers 
provide IP-XACT views as part of the delivery package. This 
enables quick and seamless integration of IP. 

Data extracted from other sources or by other tools and 
incrementally maintained in machine readable format (e.g. 
EXCEL tables) can be used to drive complex netlist 
manipulations. 

IX. SUMMARY AND OUTLOOK 
The implementation of safety requirements within a 

semiconductor device requires complex and massive 
manipulations of the RTL database. The expectation of 
functional safety standards on the development process is a 
repeatable and state-of-the-art implementation with high 
quality results. 

An automated netlist assembly flow based on IP-XACT 
has been proven to become an enable to perform many 
required processing steps in short time and good quality, by 
providing appropriate means for automation, configuration 
and reuse of the involved information. 

Based on these results, the usage of IP-XACT for netlist 
assembly is a success story, that will be continued and further 
extended to also support the reuse of verification and backend 
properties. 
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