
Automatic Investigation of Power 

Inefficiency 
 

Kuo-Kai Hsieh1, Wen Chen2, Monica Farkash2, Jayanta Bhadra2, Li-C. Wang1 
 

1University of California, Santa Barbara (kuokai@umail.ucsb.edu, licwang@ece.ucsb.edu) 
2NXP Semiconductors N.V. ({wen.chen, monica.farkash, jayanta.bhadra}@nxp.com) 

 

 
Abstract- This work presents an automatic method to identify and suggest to designers missed power 

optimization opportunities by finding useless activities in the design during simulation, where useless activities 

are defined as toggling events that do not contribute to a given task. The proposed method leverages functional 

regression test suites and coverage collection mechanisms, which are both common in modern verification 

methodologies hence the method can be seamlessly integrated into existing environments. We present the 

evaluation of this method on a commercial low-power SoC design with details on the achieved  results which 

include two power-inefficiency issues. 
 

I.   INTRODUCTION 

 

The power density of integrated circuits has been increased as the technology node scales down. 

Therefore, heat dissipation has become a problem, which has raised the requirements to reduce the power 

consumed by integrated circuits. With the emergence of Internet of Things, there have been increasing 

requirements on the extended battery life of devices such as sensors nodes in wireless networks, wearables 

and implants. Ultimately, these requirements are translated to stringent low power requirements for 

integrated circuits and power efficiency has been a main focus for today’s complex System-On-Chip (SoC) 

designers. 

 

Power consumption of integrated circuits consists of two main parts: dynamic power and static power. 

Dynamic power is the sum of two factors: switching power and short-circuit power. Switching power can 

be expressed by the following formula: 

 

     Pswitching = α·f·Ceff·Vdd
2    (1) 

 

where α is the switching activity, f is the clock frequency, Ceff is the effective capacitance of the circuit and 

Vdd is the supply voltage. Short-circuit power can be expressed by the following formula: 

 

     Pshort-circuit = Isc·Vdd ·f     (2) 

 

where Isc is the short-circuit current during switching, Vdd is the supply voltage, and f is the clock frequency. 

Static power, dubbed as leakage power, is a function of the supply voltage, the threshold voltage and the 

transistor size. 

 

Various techniques have been proposed to reduce power consumption of integrated circuits, ranging 

from architecture level to technology level, including power gating, clock gating, dynamic voltage 

frequency scaling (DVFS), logic restructuring and resizing, pin swapping, operand isolation, substrate 

biasing, and so on. 

 

Power gating and clock gating have been the most effective and widely used approaches for power 

reduction. Power gating relies on shutting off the blocks or transistors that are not used, which can reduce 

leakage power effectively by 10-50X. Clock gating shuts off blocks or registers that are not required to be 

active. It can reduce about 20% of dynamic power. Power gating and clock gating can both be performed at 

domain/block level, or at the leaf (transistor/register) level. Power gating, when performed at domain/block 

level, is supported by the design flow using power intent formats such as UPF and CPF. While it is an 

effective power reduction technique, power gating increases the design complexities since it requires 
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specific power down sequences, isolation cells, and state retention cells. On the other hand, clock gating 

has lower overhead. 

 

Both power gating and clock gating require the identification of situations where such optimizations are 

possible. Block level power gating and clock gating are usually driven by the power management software, 

which dictates when to shutoff the power or clock of certain block based on the application running on the 

chip. Logic/transistor/register level power or clock gating is usually achieved by instrumenting some logic 

in the design phase that shuts off certain logic blocks based on the condition of other logic blocks. Such 

power optimizations are generally based on manual analysis and are strongly dependent on the knowledge 

of the design at hand and the experience of each individual designer. There have been several research 

works to automate the identification of power optimization opportunities by structural/formal analysis [1] 

[2] [3]. However, these analyses are usually applied at a local scale and cannot find power opportunities 

that cross block boundaries. The identification of areas where power optimizations are possible at RTL 

level is a critical but a difficult and imprecise process.  

 

This work brings forward an automatic method to identify and suggest to designers missed power 

optimization opportunities during RTL simulation. The novel method leverages existing functional 

regression test suites and thus is easy to implement and can be integrated seamlessly into any design 

methodology. In addition, the diversity of tasks of functional regression test suites is a perfect fit to the 

proposed method. The method starts with the basic assumption that any activity detected during the 

simulation of the design should be an activity required for a task to complete correctly.  Reversing the 

above statement implies that any activity not required for a task must not be detected during its execution 

otherwise, it shows a missed power optimization opportunity. We will elaborate this idea in the next section 

and detail the proposed method and implementation in the following sections. Finally, we will present the 

experimental results from applying the method on the verification environment of a commercial design 

before we conclude the paper. 

 

 

II.   BASIC IDEA 

 

Let us assume that we have a perfectly power-efficient SoC design. In such a design, there would be no 

useless activity. Given a task to be fulfilled, a useless activity is considered an activity in the design that 

will not affect the correctness of the execution of the task. This means that, if we turn off the part of the 

design containing the useless activity, the execution of the task will not be affected. In practice, the design 

would not be perfectly optimized for power therefore there could be useless activity in the execution of 

certain tasks. Any activity that we can identify as useless could point to a potential power optimization 

opportunity. 

 

Fig. 1 illustrates the basic idea. Our process identifies the activity within the design during the 

simulation run of a task, and records it to use it in the future as a baseline. Subsequently we run the same 

task on the same design, each run with slightly different testbench instrumentation. The instrumentation 

changes the original baseline by excluding (by artificially disabling) a different subcomponent each run. If 

the disabled subcomponent would have contained useful activities, the execution of the task is expected to 

fail. However, if the simulation on the instrumented design does not report failure, it points to a potential 

problem. The problem could be missing checkers or incorrect checkers in the testbench, which allows a 

task to be considered as passed even though it failed, or it could show useless activity in the subcomponent 

that was turned off by our instrumentation. Both are critical in an HW development methodology. The first 

requires enhancement of the testbench because missing checkers can result in functional bugs going 

unidentified. The second identifies areas with potential power optimizations.  

 



 
Figure 1. Illustration of the basic idea 

 

The identified areas are opened as issues to designers, who then evaluate the merits of each case, and 

decide accordingly. Our approach is the only one automatically identifying the location in a design where a 

power optimization can be suggested, and on top it has the advantage that it provides the exact task, and 

conditions, for which that optimization could be done, to allow a quick assessment of the validity of the 

optimization and its overall power savings potential. If the optimization should be indeed implemented in 

the design is a decision left to designers.  

 

 

III.   METHODOLOGY 

 

Fig 2. illustrates the overall flow of our methodology. The flow is comprised of four major steps as detailed 

in the following four subsections.  

 

 
Figure 2. The overall flow of the proposed methodology 

 

A. Data Preparation 

 

There are two conditions that need to be fulfilled before we apply this solution: we need access to 

functional regression tests and we need to partition the design. While regression tests suites are already 

developed and readily available as essential components of the existing verification process, the 

partitioning of the design into smaller, well defined areas, is an effort required by this solution. 

 

The whole SoC design can be divided into different areas based on user’s choice. Usually, the 

partitioning is based on the design module hierarchy and functionality. Modules designed for the same 

functionality are usually grouped in an area. The user can specify the targeted design area where he/she 

wants to uncover the power inefficiencies. The targeted design area for investigation can be based on the 

designers’ experience or on hotspots identified from the heat map of the power dissipation of the chip. 

 

 Fig. 3. Shows how regression tests provide toggle coverage and partitioned areas provide important 

signals used later on in the solution.  

 

 
Figure 3. The required source and the result of data preparation. 

 

The first source of data is the coverage gathered from running the regression test suite. Collecting toggle 

coverage from functional regression tests is straightforward since coverage collection is supported by the 

majority of modern simulators. As will be discussed later, only the number of toggling for each output of 

each area is required. 



 

The second important information is represented by something we call important signals.  From each 

area defined during partitioning we extract important signals. The important signals of each area are the 

signals that enable activity analysis and the signals that enable area shutoff. As will be described later, the 

output signals of each area fulfill both requirements. In our implementation, we consider each instance of a 

module as a different partition. Given the hierarchical path of an instance of a module we can extract the 

important signals automatically via Cadence Simvision with the developed TCL script: 

 

 

# print the signals of a given instance to stdout 

proc retrieveSignals {path} { 

    dbfind set -scope $path 

    dbfind search 

    set signals [dbfind find -result %n] 

    puts $signals 

} 

 

# read database 

database open <Simvision_database_file> 

 

# set output signals only 

dbfind open -database <Simvision_database> -type signal \ 

    -searchinputs False -searchoutputs True -searchinouts False \ 

    -searchinternals False -searchfibers False -searcherrors False \ 

    -searchassertions False -signalformat path -scopeformat path 

 

retrieveSignals <instance_hierarchy_path> 

 

B. Design Activity Analysis 

 

The method requires running each test under different instrumentation, each such instrumentation 

resulting in the disabling of a different area. Theoretically we would need to run the cross product of all 

tests and all areas. Due to practical reasons we need to manage the amount of pair (test, area) we decide to 

run for our analysis.  

 

As illustrated in Fig. 4,   we first choose the areas we want to analyze by ranking them according to the 

amount of activity they exhibit, then, for each such area, we choose the tests to be used for that particular 

area, based on the coverage each test brings to that area.  

 

 
Figure 4. Illustration of activity analysis 

 

Deciding which metric to use to measure activity in a design area requires practical considerations. A 

simplistic metric based on watching the activity of all signals would not work since some signal toggling is 

inevitable regardless whether a design area is active or not. For example, a peripheral can be disabled but 

its bus input signals would still be toggling, which could be considered as activity of a design area under a 

simplistic metric although it should not. We studied which signals are good indicators of activity of a 

design area. The result of our research shows that flip-flops and primary outputs are acceptable indicators 



of activity of the areas. Users can also provide information regarding important signals in the design area 

and designate them as the indicators.  

 

A very important difference is made by the level of detail we use in our analysis. For example, we can 

consider the toggling of a signal as a boolean variable, i.e. whether the signal is toggled or not, or as an 

integer, i.e. how many times the signal switches while running the test. Our research shows that measuring 

the toggling in integer can better capture the activities in an area while running a test, which confirms our 

intuition. For example, suppose test A uses DMA to move 1-byte data and test B uses DMA to move 4k-

byte data. Their toggling of DMA signals in boolean may be the same but their toggling of DMA signals in 

integer differ greatly. As a result, the metric is defined as the sum of the toggling of the indicator signals in 

integer. 

 

The automatic analysis proposed by this article was performed area by area and is based on the 

assumption that among the regression tests there would be at least one that exercises each area. For each 

area, we compute the metric for each test based on the toggle coverage results. The computed value 

measures the activity resulted from each test on the targeted area. Let the highest activity be A. We define a 

threshold k so that only the tests with the metric value greater than k*A will be considered significant 

enough to be rerun under instrumentation. Thus, for each targeted design area, we can derive a list of tests 

that we can use for our method. We can continue to reduce the number of tests, depending on our resources.  

 

C. Rerun simulation with Active Area Shutoff 

 

The next step is to rerun the active tests with the targeted design area turned off. We achieve the effect of 

turning off a design area by freezing its output signals. Commercial RTL simulators support the features of 

signal freezing using force statements via the TCL interface. This approach avoids re-compiling the design 

and saves computation time and disk storage.  

 

Deciding when to turn off an area is another important issue. Identifying the exact time when the given 

area is active under a given test is not a trivial task. To obtain this information, dedicated monitors could be 

implemented to report the activity of each area. To skip this implementation, a simple approach is to turn 

off the area immediately after power-on reset, and then never turn it back on. Note that this simple 

approach may miss some power optimization opportunities because of its coarse control. Below is a sample 

TCL script for IUS to freeze output signals of a given area after power-on reset. 

 

proc freeze_sig {sig} { 

  force $sig #$sig 

} 

 

proc freeze_area { 

  freeze_sig <sig_1> 

  freeze_sig <sig_2> 

  ... 

  freeze_sig <sig_N> 

} 

 

run 100 ns 

# Set a break point for freezing the given area 

stop -name break_rst -delbreak 1 -condition {#<end_of_reset_indicator> == 1'b1} \ 

     -continue -execute {freeze_area} 

run 

 

Where sig_1, sig_2, …, sig_N are obtained from the data preparation step. 

 

If a design area plays a role in the execution of a task, turning it off would cause the task to fail. 

Presumably, the tests would fail with the design area disabled. For those simulation runs for which the test 

still passes in spite of the disabled area, further investigation is required.  



 

D. Suspect Behavior Investigation 

 

Fig. 5 shows the flow of the suspect behavior investigation. For those simulation runs that still pass, there 

would be two possible reasons: (1) the design area does not affect the execution of a task and therefore it 

can be turned off during the execution of that task. (2) There are some weaknesses in the testbench so that 

the failure of the task is not detected, resulting in a false simulation pass. The first case indicates that a 

power optimization opportunity is identified so that power/clock gating of certain logic can be applied. The 

latter case indicates that the testbench quality needs to be improved by adding the necessary checkers. 

 

 
Figure 5. Illustration of suspect investigation. 

 

 

IV.   EXPERIMENTAL EVALUATION 

 

A. Experiment Setting 

 

We implemented the described methodology and applied it on a latest dual-core commercial 

microcontroller SoC design targeting ultra-low-power applications. We used without additional changes the 

in-house verification environment, which was a C-test based environment. The C stimuli were compiled 

into machine code and then executed on cores in RTL simulation. The correctness was ensured both by 

self-checks in C stimuli and the checkers in the testbench. 

 

We leveraged the already existing functional regression test suite consisting of over 1400 tests. We 

divided the design into 100 different areas. Toggle coverage results were collected and analyzed, resulting 

in the active tests for each design area based on a threshold. Due to limited simulation budget, we only re-

simulated at most 200 high-coverage tests for each area. Note that after the data preparation step, the 

proposed method can run by its own and continues reporting the suspects of power inefficiency. Also, note 

that we applied this methodology near the end of the verification process of the SoC, where the design had 

been highly optimized and the testbench had been comprehensive. 

 

B. Experiment Results and Analysis 

 

We found out nine suspects of power inefficiency. By manually analyzing those suspects, we identified 

two definitely missed power optimization opportunities in the design and three testbench issues. Our 

analysis also found one possible missed power optimization opportunity that we decided would not bring 

real power savings. The other three were false positives. 

 



 
Figure 6. Illustration of design issue 1 

 

Fig. 6 shows one missed power optimization opportunity automatically identified by our method. Our 

solution revealed unnecessary signal switching at the primary outputs of an IP. As shown in Fig 5, 

module_en is a primary input of the IP block, which enables/disables the IP. xfr_err is a primary output of 

the IP. xfr_err fans out to some other blocks and affects the computation at other blocks. However, by 

examining the logic carefully, we discovered that xfr_err only affects the computation of the other blocks if 

module_en is asserted. In other words, xfr_err should be controlled by module_en so that it will not switch 

when the IP block is disabled. However, in the design, xfr_err was not controlled by module_en so it 

toggled frequently when it did not contribute to the computation.  xfr_err fans out to multiple places and 

thus the load capacitance could be large. Therefore, the unnecessary toggling of xfr_err is a waste of power. 

 

 
Figure 7. Illustration of design issue 2 

 

Fig. 7 shows another missed power optimization opportunity in the design this time in relation to 

redundant logic. Some tests passed while Module 1 is shut off. As shown in Fig. 7, the root cause is that 

signal A is ORed twice, i.e. Z = A | B | A. This was not identified by the IP designer because the logic 

involved spreads across multiple modules. The redundant logic leads to more power, area and worse timing.  

 

As mentioned before, there are situations when suspected behaviors are not real optimization 

opportunities. One such possible missed power optimization opportunity involves the logic used to send 

interrupt signals to both cores. In the test, only one core was configured to accept the interrupt while the 

other core would block the interrupt. Therefore, the activity of sending interrupt to the blocked core is 

deemed useless. However, it is not very easy to optimize this inefficiency since the blocking signal is deep 

inside the core and thus is possibly physically distant from the logic sending the interrupt. Pulling a long 

wire could also increase power. Therefore, it is better not to gate the logic sending the interrupt due to the 

design trade-off. 

 

The method pointed three times to situations in which the test should not have been declared passed. 

Three of the identified issues were related to missing checkers. One test verified some functionalities under 

stop mode, but it lacked checkers to verify whether stop mode is entered or not. Another test lacked 

checkers for AHB protect functionality. The other testbench issue was related to redundant configuration. 

In the test, a block was set to its default mode multiple times, though even those actions of setting the 

default mode failed, the block was still in default mode. There was no checking mechanism to check 

whether the action of setting the block to default mode actually succeeded or not. 



 

Of the three false positives, two were due to improper division of the area boundaries so that some 

signals were improperly counted as good indicator signals. The other one is a special case, where the output 

signals were clock signals. These clock signals were toggling before the normal test stopped the clock. 

Since it is a clock signal, the toggling in integer count is very high, but they should not be counted as real 

activity. The false positives were resulted from the imperfect design area division and activity metrics. 

 

 

V.   DISCUSSION AND CONCLUSION 

    

In this paper, we proposed a methodology that automatically uncovers missed power optimization 

opportunities in the design or possible testbench weakness. The proposed methodology has the following 

advantages: 

 

1. It leverages readily available functional regression test suites and analyzes the toggle coverage that 

is commonly collected in a practical verification flow. Thus, this solution can be seamlessly 

integrated into the design flow with little overhead. 

2. The existing static analysis methods usually worked at each module locally and could miss power 

optimization opportunities that spread across module boundaries. This methodology can identify 

such missed opportunities across multiple modules. The experiment results also show that it can 

discover the opportunities on highly optimized designs. 

3. Besides missed power optimization opportunities, the methodology can also be used to certify a 

testbench and point out the places where the testbench needs improvement. It is a testbench 

certification approach in the context of low-power verification. 

4. It is the only automatic method of this type, which can be used to point out to designers the areas 

where power optimizations might have been missed.  

 

Considering the very low price to add this solution versus the unique benefits it brings, it can be easily 

integrated into existing methodologies and used to help improve the quality of our designs.  
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