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Abstract-Today’s complex applications require an efficient hardware/software co-design. Exploring possible 
hardware/software partitioning scenarios is a time consuming and challenging job. In this work, we present a flexible and 
automated workflow “SW2TLM” for generating system level hardware accelerators from software applications and their 
integration to virtual platform framework. SW2TLM enables efficient exploration of different partitioning scenarios with 
minimal effort, all complexity of the hardware architecture and software integration is hidden from the user. The analysis 
results captured by the virtual platform will support the decision making towards a final hardware/software partitioning 
and thereby improve and accelerate the subsequent development process. 

 
I.   INTRODUCTION 

Current trends in processing architecture transitions from general purpose to more specialized approaches to 
achieve higher performance at lower power consumption. Modern System-on-Chips are comprised of several co-
processors or accelerators to offload compute intensive tasks from the central processing cores. This trend comes 
with serious engineering challenges for hardware, software as well as system engineers alike. Applying an 
established design flow with static hardware/software partitioning from early design stages on is becoming 
increasingly difficult. Performing the partitioning without evaluating the achievable performance gains can result in 
poor resource utilization, subpar performance or costly retargeting of the architecture in later design stages. 

To address these challenges, virtual platforms and rapid prototyping frameworks using SystemC/TLM2.0 are 
growing in popularity. These platforms are providing the designers with an executable prototype of the hardware 
well before any actual hardware becomes available. However, exploring different hardware/software partitioning 
using these virtual platform frameworks or hardware emulators remains a mostly manual and labour intensive task. 
Developing hardware representations using transaction level modelling (TLM) techniques for a corresponding 
section of software can be challenging for developers without a background in computer engineering. 

Herein lies the contribution of this work. We present a workflow with a high degree of automation to explore 
different hardware/software partitions using a SystemC/TLM2.0 virtual platform. Based on sparse configuration 
input, the presented tool can generate a TLM hardware accelerator based on a specific software functions. 
Subsequently, it is annotated with timing and power consumption parameters derived from a high-level synthesis 
based tool-flow and integrated into the target hardware and software environment. From the designers’ perspective, 
only the piece of software needs to be characterized to explore the achievable speedup and energy savings when 
offloading it to a specific accelerator. 

This approach is demonstrated based on the SoCRocket [1] virtual platform and its powerful scripting interface 
[2] to automate the collection and pre-processing of the captured performance and power data.  

The remainder of the paper is structured as follows: The next section reviews the related work in the domain of 
automatic generation of abstract hardware models. Section III gives additional motivation, why proper 
hardware/software partitioning is important as well as how performance and power are recorded on the system level. 
Section IV illustrates the SW2TLM design flow and tool-chain. Section V evaluates the automated framework 
against three applications from the image processing domain. Section VI concludes and highlights the direction of 
future work. 

 
II.   RELATED WORK 

The tool-supported translation of software sections to TLM models is investigated in academia as well with 
commercial tools. Especially computationally demanding fields steer towards higher specialization of hardware and 
software architecture. Computer vision is a typical domain in need for acceleration to analyse significant amounts 
data at a high rate. Mefenza et al. [3] presented a rapid prototyping framework to evaluate different partitioning and 
mapping strategies based on an OpenCV computer vision library. The framework spans different levels of 
abstraction, performing high-level analysis using SystemC/TLM hardware models as well as validation of actual 
RTL models on a FPGA target platform. 



Other high-level exploration approaches target specific design goals instead of concentrating on functional 
verification. Zuo et al. [4] present a framework generating SystemC models for exploration purposes towards low-
power architectures. Based on a subset of C/C++ (specifically affine program regions) the framework computes 
power and performance characteristics to subsequently generate realistic SystemC models of a corresponding 
accelerator component. The generic nature of the generated architecture deliberately targets early design stages. 

Mück et al. [5] presents an approach to integrate hardware and software components into a virtual platform based 
co-simulation environment. It is demonstrated how to utilize metaprogramming techniques common to OOP to 
facilitate transparent communication between partitions of functionality implemented in hardware or software. In 
addition, a NoC interconnect is provided to facilitate a higher number of actively communicating hardware 
accelerators. 

In Grüttner et al. [6] a rapid prototyping framework for heterogeneous SoC is presented. It leverages high 
simulation performance by executing target software natively on the host system. Comparable to the simulation of 
hardware modules, the software is annotated with power and timing information to achieve realistic exploration 
results. Here the designer must evaluate the trade-off between performance and accuracy. 

Typically, these DSE frameworks aim to identify the most suitable architecture without exposing the complexity 
and effort of actual hardware development to the user. This became possible by the growing number of high-level 
synthesis tools, generating RTL hardware models based on available (high-level) software code. 

A recent survey of different commercial and academic high-level synthesis tools can be found in Nane et al. [7] 
These tools can be specifically targeted to a domain as well as general purpose solutions. Addressing the advantages 
and disadvantages of different approaches of HLS is beyond the purpose of this work and following only a few tools 
are exemplary presented. 

One example is CatapultC [8] (product of Calypso Design Systems; used in Mück et. al.), it generates 
synthesizable cycle accurate code based on C/C++ code or already available SystemC models. 

Other solutions also provide functionality beyond synthesis; Legup [9] demonstrates how profiling information 
can be directly utilized to decide on a hardware/software partitioning (i.e. offloading compute intensive software 
sections to a FPGA fabric). By skipping the DSE step on a higher abstraction level this either requires time-
consuming simulation runs on RTL or the availability of the target hardware. 

To address high-level DSE, the generated RTL designs themselves are typically not directly utilized as their 
simulation performance is not sufficient. However, they are a good source of information regarding the expected 
performance and power consumption of the actual hardware accelerator. Relaying those parameters back into the 
high-level models allows the simulation environment to deliver accurate estimations used in the DSE. 

To the best of our knowledge, the solution presented in this work is unique as it integrates seamlessly into a state 
of the art SystemC/TLM2.0 virtual platform without exposing all its complexity to the designer exploring different 
hardware/software partitioning choices. 

 
 

III. HIGH-LEVEL EXPLORATION OF HW-SW PARTITIONING SCENARIOS 
Diminishing improvements in power consumption and computational performance through technology scaling 

forces system engineers to deviate from homogenous architectures of the past. More and more we transition into a 
heterogeneous age of computing [10]. Gains in performance and reduction in power consumption now typically 
stem from specialized hardware accelerators tailored for specific workloads. Thereby tightening the interdependence 
between hardware and software, breaking with the traditionally sequential development of each. For the system 
designers' point of view, this dramatically increases the responsibility to choose the right partitioning between the 
two domains. Where in the past the designers experience was sufficient, today's increased design space requires new 
methodologies to reliably select the most suitable architecture. 

One established trend to tackle the continuously growing design space is composed of two components: fast 
hardware/software co-simulation (on a high abstraction level) and intelligent strategies to parse the design space to 
reduce the number of necessary simulation runs. This work aims to improve the first component; specifically, in 
supporting the designer to evaluate different hardware/software partitioning in a quick and easy fashion. Works to 
reduce the number of necessary simulation runs to properly evaluate a designs space towards an application can be 
found in [11-16]. 

When analysing different hardware/software partitioning scenarios, it is appealing to directly compare the raw 
computation performance of the general-purpose processor with the specialized accelerator. However, this is a very 
skewed view on the world of co-design and its pitfalls. To accurately estimate the achievable performance, one must 
observe the complete interaction between accelerator, memory and software system in its entirety [17]. This holds 
true for the analysis of both the performance and power/energy consumption.  



New and upcoming architectures embrace the use of specialized accelerators or co-processors, by providing cache 
coherent access to the main-memory from different heterogeneous compute resources. One example for this is the 
Coherent Accelerator Processor Interface (CAPI) developed by IBM [18] or the Heterogeneous System Architecture 
(HSA) [19]. While available, it is not commonly used especially in the low power domain, as achieving cache 
coherency for multiple heterogeneous actors is costly in chip area and power consumption. These coherent 
architectures are not within the scope of this work. We investigated the classic approach, where accelerators have 
their own fast memory without direct access to the main-memory. The required data movement causes runtime 
overhead, reducing the achievable performance and increasing the power consumption. Eq. (1) illustrates the 
individual components of the timing overhead incurred by the interaction between the accelerator, memory and 
software system. Here 𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒 and 𝑡𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 account for the time needed to move data to and from the accelerator. 
Additional time is needed to decode and encode the serialized data stream to be used by the computation and 
preparation for the data to be moved back to the main-memory (𝑡!"#$!" and 𝑡!"#$%!). The actual computation time 
required by the accelerator is represented by 𝑡!"#$%&'&(").  

 
𝑡𝑎𝑐𝑐_𝑡𝑜𝑡𝑎𝑙 =  𝑡𝑟𝑒𝑐𝑒𝑖𝑣𝑒 +  𝑡𝑑𝑒𝑐𝑜𝑑𝑒 +  𝑡𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 +  𝑡𝑒𝑛𝑐𝑜𝑑𝑒 + 𝑡𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 

 
Data handling can be achieved through different means; in the remainder of the paper we will look at a software 

and a DMA controller based method and their impact to the overall computation time. 
While the achievable performance is the central optimization goal, it cannot be viewed in isolation. A system’s 

power and the resulting energy consumption are becoming increasingly important. This work includes early power 
estimation models based on concepts proposed in [20]. Power consumption is composed of two main components: 
static and dynamic. Static power is based on the cell leakage current and is directly proportion to silicon area. 
Dynamic power is the sum of internal and switching power and is linearly dependent on the clock frequency. These 
parameters are annotated to the accelerator hardware model and contribute to the overall power consumption 
estimated by the virtual platform used in SW2TLM. 
 

IV. DESIGN FLOW 
This section will illustrate the design space used for the architectural exploration, the individual tools comprising 

the automated framework and concluding with a look at the user interaction and usability of the framework. 
 

A. System and Accelerator Architecture 
 

The baseline architecture used for the design space exploration is shown in Figure 1. It contains all necessary 
components to accurately reproduce the behaviour of a complete SoC. Software is executed by a LEON3 instruction 
set simulator (Generated using TRAP[21]) that is embedded into an accurate MMU/cache architecture. 
Communication is handled via two busses (high-performance and peripheral) connecting the remaining components. 
The investigated accelerators are shown top right, they can be instantiated as AHB-Masters as well as slaves 
depending on the data transportation method. 
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Figure 1. Baseline SoC architecture based on SoCRocket IPs 

As described before, the explored architectures are based on fast local memories included in the accelerators 
itself. Consequentially input and output data must be moved to and from the accelerator. Here we differentiate two 

(1) 



options: first data is handled directly from the software and second data is handled by a DMA controller within the 
accelerator to move the data independently. The structure of the accelerator and the control flow is illustrated in Fig 
2. When data handling is implemented directly in software, the accelerator is used as an AHB-Slave with a simple 
blocking function call to perform the calculations. Using this technique, there is no need for additional 
synchronization between ISS and accelerator as the execution is blocked until the output data becomes ready. While 
the TLM implementation is straight forward, handling large data sets in software causes significant overhead 
compared to moving the data directly from the memory to the accelerator. This is implemented in the second option. 
For this the accelerator is extended to include DMA functionality, independently reading and writing data to and 
from the memory. This reduces the CPU load and can leverage efficient bus bursts. To perform memory accesses on 
its own, the accelerator now is integrated as a AHB-Master and Slave. Here the software is only required to provide 
the addresses and length of the data to be computed. On the other hand, synchronization now must be implemented 
explicitly. As the architecture includes an interrupt controller (IRQMP) it can be used to signal the end of 
computation and data movement. The difference in communication overhead and impact on the overall performance 
is shown and discussed in section V. 
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Figure. 2 Accelerator architecture and data flow (SW left, DMA right) 

 
B. Tool Flow 
 

Hiding complexity of the hardware/software co-design process from the user is a central goal of the proposed 
SW2TLM automation framework. Its structure and contact points with the user are shown in Figure 3. Based on the 
general architecture defined above, the user only needs to supply a characterization of the software section to be 
accelerated. Using this input, the framework isolates the specified software functionality and encapsulates into a 
TLM wrapper. This wrapper provides the functionality needed to communicate with the accelerator over the bus and 
as well as signal the processor when the computation is completed.  

For the software functionality to be useful as part of a suitable hardware model, it needs to be annotated with a 
realistic (or at least pessimistic estimations of) computational delay and power consumption figures of 
corresponding hardware implementation. These parameters are generated using a state of the art HLS and RTL 
synthesis tools (like Vivado HLS and Synopsys design compiler). Instead of directly interfacing the generated RTL 
hardware model into the virtual platform, only the required information is extracted from the corresponding 
synthesis reports. Using the RTL model directly in the virtual platform would severely degrade the simulation 
performance and require a complex transactor implementation to bridge clocked (RTL) and un-clocked (TLM) 
sections of the investigated architecture. 

In the next stage, the framework integrated the accelerator into the existing software control flow. To this end, a 
software wrapper is constructed to facilitate the communication and synchronization with the accelerator hardware. 
For the computation, it is necessary to serialize the possibly complex data structures that need to be written into the 
input buffer of the accelerator (see Figure 3). The same applies for the results of the computation stored in the output 
buffer of the accelerator. 

Subsequently the virtual platform is configured to instantiate the generated accelerator transaction level (TL) 
model and load the modified software. The resulting executable simulation model is then used to capture the 
previously described performance and power parameters. After the simulation, these are summarized in a compact 
and humanly readable report file.  
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Figure 3. SW2TLM automated tool chain and user interaction 

C. Usability 
 

To further illustrate the high usability of the framework, Fig. 4 shows an exemplary software characterization to 
be provided by the user. The content of the JSON file (content of the three lower boxes) indicates the location of the 
source file storing the software function to be accelerated as well as a list of inputs definitions and the means of 
synchronization. For example, the field “irq_en” indicates that the processor is notified via interrupt after the 
accelerator has finished the computation. With the Field “dma_en”, the user can select the memory management 
applied for the accelerator. Enabling the DMA will include a dedicated controller in the accelerator, to read and 
write from the main-memory independently. If disabled, the software wrapper is extended with additional code to 
transport input and output data to and from the accelerator (see Fig. 2). The differentiation of variables into inputs 
and outputs and the annotation of type and length are used to generate decode and encode functions needed to 
serialize and de-serialize the data.  
 

	"conf":	{
			"file_name":	"dct.c",
			"function_name":	"dct",
			"defines":header.h,
			"irq_en":true,
			"dma_en“:false},

void	dct(signed	char	pixels[8][8],	int	color,	signed	short	dctresult[8][8]	)

	"input":	{
				"pram1":{
						"vname":"pixels",
						"typ":"signed	char",
						"len":"8*8”	},
				"pram2":{
						"vname":"color",
						"typ":"int",
						"len":"1”!}},

"output":	{
					"pram1":{
							"vname":"dctresult",
							"typ":"signed	short",
							"len":"8x8”	!}}

 

Figure 4. JSON based characterization of a software function  

V. EVALUATION 
Image processing applications are often complex and require high performance, which make them suitable 

candidates for hardware/software co-design. The extensive computation of an application such as feature extraction 
achieves higher performance and efficiency in hardware while the highly complex tasks like parameter classification 
are implemented in software. In our experiments, we selected three applications: JPEG Codec, image filtering and 
image integration to evaluate the SW2TLM framework.  

 



JPEG Codec: is widely used lossy image compression format. The main parts of JPEG encoder are: Color Space 
Conversion, Chromatic Sub-Sampling, Block Splitting, Discrete Cosine Transformation (DCT), Quantization and 
Entropy encoding. We choose the DCT functionality for our hardware/software exploration and automatically 
generated a corresponding hardware accelerator while the remaining functionality stays in software. Image 
Filtering: is a sample application that implements a moving average filter which is a low pass FIR filter commonly 
used for reducing the noise in an image. The filter kernel is modelled as a hardware accelerator (IF).  Image 
integration: is used in computer vision algorithms e.g. speed up robust features (SURF) and scale invariant feature 
transform (SIFT) form image pyramid implementation. Here, the image integration algorithm is ported into a 
hardware accelerator (II). 

 
A. Performance and Power Parameters 
 

Table 1 summarizes the timing parameters used for the performance evaluation. Most of the parameters were 
already defined in Section III. Further parameters are: Total communication overhead introduced by the accelerator 
(𝑡!"#!!"#$!!"#), execution time of the characterized software section running on the ISS (𝑡!") and the absolute 
application runtime independent of the chosen implementation (𝑡!""). 
 

Table 1 Timing parameters evaluated in the performance analysis 

Parameter Name Description 
𝒕𝒓𝒆𝒄𝒆𝒊𝒗𝒆 Writing data to HW ACC directly or via DMA 
𝒕𝒕𝒓𝒂𝒏𝒔𝒎𝒊𝒕 Reading data from HW ACC directly or via DMA 
𝒕𝒅𝒆𝒄𝒐𝒅𝒆 Decoded data in ACC 
𝒕𝒆𝒏𝒄𝒐𝒅𝒆 Encode data in ACC 
𝒕𝒄𝒐𝒎𝒑𝒖𝒕𝒂𝒕𝒊𝒐𝒏 HW ACC computation time 
𝒕𝒄𝒐𝒎!𝒐𝒗𝒆𝒓𝒉𝒆𝒂𝒅 Communication overhead 
𝒕𝒂𝒄𝒄_𝒕𝒐𝒕𝒂𝒍 Total HW ACC execution time 
𝒕𝒔𝒘 Execution time in of selected software section 
𝒕𝒂𝒑𝒑 Absolute application execution time 

 
The investigated Parameters regarding the power consumption are listed in Table 2. Static (𝑝!"#$#%") plus 

dynamic (𝑝!"#$%"&' +  𝑝!"#$%!!"#) is used to calculate the total power consumption (𝑝!"!#$ Eq. (2)) of a specific 
hardware component as well as the complete platform. These parameters are represented as the average power draw, 
in addition the consumed energy until task completion is calculated (𝒆𝒕𝒐𝒕𝒂𝒍 Eq. (3)). 

 
 

𝑃!"!#$ = 𝑃!"#$#%" + 𝑃!"#$%"&' + 𝑃!"#$%!!"# 
 

𝑒!"!#$ = 𝑃!"!#$ ∗ 𝑡!"" 
 

Table 2 List of investigated power and energy consumption parameters 

Parameter Name Description 
𝒑𝒍𝒆𝒂𝒌𝒂𝒈𝒆 Static power consumption 
𝒑𝒊𝒏𝒕𝒆𝒓𝒏𝒂𝒍 Internal part of dynamic power consumption 
𝒑𝒔𝒘𝒊𝒕𝒄𝒉𝒊𝒏𝒈 Switching part of dynamic power consumption 
𝒑𝒕𝒐𝒕𝒂𝒍 Total power consumption 
𝒆𝒕𝒐𝒕𝒂𝒍 Total energy consumption 
  

B. Performance Analysis 
 

To demonstrate the functionality of the SW2TLM automation framework, it is applied to three different 
applications identified in the beginning of this section. For each we compare the performance of the accelerator with 
and without DMA against the performance of the pure software solution. To illustrate the difference in ratio of 

(2) 

(3) 



communication (see Fig. 5) overhead vs. actual computational delay, the total computation time is broken down into 
the individual components shown in Table 1. In summary, the main findings are: 

• Decode/Encode: It is directly visible, that 𝑡!"#$!" and 𝑡!"#$!" contribute an insignificant delay to the 
overall accelerator delay. This effect will be more prominent for the complex data types; the structure of 
the tested image formats is mostly sequential in nature and requires very little encoding and decoding 
effort. Of the tested algorithms, the only visible encoding effort is observed for the DCT, here data type 
conversion is necessary to account for the difference in endianness between hardware accelerator and the 
emulated LEON3 core. 

• Execution time (accelerated section only): our tests show the image integration got less speedup (5.46x 
with accelerator and 8.08x including the DMA), this is mainly due to the simplicity of the algorithm’s 
operations (only pixel summation). The DCT and image filtering contain complex operations, which are 
better candidates for hardware acceleration, DCT is 20.8x and image filtering is 28x faster using the 
accelerator (with DMA controller 32.3x and 35.9x) than the software implementation. 

 

 
 
 

 
• Absolute execution time: Fig. 6 shows the speedup factors achieved over the complete application 

execution time in software. The highest speedup is achieved for the image filtering (up to 6.5x). The 
difference between software and DMA data handling accounts for up to 0.3x absolute speedup.  
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Figure 5. Combined accelerator delays; DCT left, Image Filter middle, Image Integration right  

Figure 6. Absolut application speed up; DCT left, Image Filter middle, Image Integration right 
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• Communication overhead: calculated as shown in Eq. (4):  
 

𝐶𝑜! =  
𝑡!"#"$%" + 𝑡!"#$!" + 𝑡!"#$%! + 𝑡!"#$%&'!

𝑡!""_!"!#$
 

 
Fig. 7 shows the communication overhead ratio recorded in the simulation. As expected, the highest 
communication overhead was measured for the software based data handling (ranging from 47% up to 
70%). When data is moved using the DMA controller a reduction of at least 14% was observed. 
 
 

 
 
 
 
 

• Power and Energy: The power model applied to the ISS does not incorporate typical power saving 
techniques when idle. Modelling these techniques on the system-level is still a topic of research. 
Therefore, the average power draw increases (see Fig. 8) when the accelerator hardware is added to the 
system. This increase ranges from 0.2 % up to 19%. The high values of the image filtering are caused by 
frequent data accesses related to the size of the filter kernel. Despite this limitation, the overall energy 
consumption exhibits a significant improvement. The observed energy consumption ranges between 18% 
and 62% of the original software implementation. 

 

 
 
 
 

VI. CONCLUSION AND FUTURE WORK 
In this paper, the automation framework SW2TLM is demonstrated using real world image processing 

applications. It supports engineers in the increasingly difficult design space exploration of complex 
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Figure 7. Communication overhead shown in percentage of complete accelerator delay  

Figure 8. Power consumption increase to SW (left) Energy consumption relative to SW (right)  

(4) 



hardware/software systems. Users are only required to characterize the investigated software section to generate a 
corresponding accelerator model embedded into a complete virtual prototype on the TL-level. The framework 
leverages a sophisticated virtual platform to explore the accelerators behaviour and the overhead incurred from the 
communication. The reported communication, performance and power parameters are a valuable foundation to base 
future architecture decisions on. The presented evaluation illustrated how important it is to include communication 
overhead into the exploration space, as it can account for most the overall accelerator computation time (here up to 
70%). Also, capturing accurate overall energy consumption is essential for the design in constrained or battery 
dependant domains. 

Upcoming development on the automation framework will address the following points: first, the estimation of 
the accelerator power consumption will be improved by investigating different implementations of memory cells 
through the synthesis tool as well as considering zero-copy accelerator architectures. Secondly, extending the 
support of complex data structures of the automatic decoder and encoder function generation. This issue is known in 
the HLS domain, as data handling and organization in software observes a far greater degree of freedom compared 
to hardware implementation. And lastly, extending the virtual platform by modern low power techniques to 
investigate the effects of dynamic frequency and voltage scaling when offloading computational tasks to dedicated 
accelerators. 
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