

Automatic Exploration of Hardware/Software Partitioning

Syed Abbas Ali Shah, Sven Alexander Horsinka, Basitan Farkas, Rolf Meyer, Malden Berekovic

E.I.S., TU Braunschweig

Chair for Chip Design for Embedded Computing

Source: ayehu.com

CONFERENCE AND EXHIBITION SoCRocket - The building blocks SoCRocket is more than a model library

01/03/2017

DESIGN AND VERIFICATION Included SystemC Models (core) All models where developed with RTL UNITED STATES equivalents as blueprint

CONFERENCE AND EXHIBITION CONFERENCE AND EXHIBITION UNITED STATES SOCROCKET - DSE Flow Runtime re-configuration

01/03/2017

Syed Abbas Ali Shah, TU Braunschweig Germany

CONFERENCE AND EXHIBITION CONFERENCE AND EXHIBITION UNITED STATES Baseline SoC architecture based on SoCRocket IPs

CONFERENCE AND EXHIBITION Accelerator architecture and data

SW2TLM automated tool chain and CONFERENCE AND EXHIBITION UNITED STATES

CONFERENCE AND EXHIBITION CONFERENCE AND EXHIBITION Software function

Performance analysis parameters

Parameter Name	Description
t _{receive}	Writing data to HW ACC directly or via DMA
t _{transmit}	Reading data from HW ACC directly or via DMA
t _{decode}	Decoded data in ACC
t_{encode}	Encode data in ACC
t _{computation}	HW ACC computation time
$t_{com-overhead}$	Communication overhead
$t_{acc\ total}$	Total HW ACC execution time
t_{sw}	Execution time in of selected software section
t _{app}	Absolute application execution time

 $t_{acc_total} = t_{receive} + t_{decode} + t_{computation} + t_{encode} + t_{transmit}$

Performance analysis parameters

Parameter Name	Description
$p_{leakage}$	Static power consumption
$p_{internal}$	Internal part of dynamic power consumption
$p_{switching}$	Switching part of dynamic power consumption
p_{total}	Total power consumption
<i>e</i> _{total}	Total energy consumption

 $P_{total} = P_{leakage} + P_{internal} + P_{switching}$

 $e_{total} = P_{total} * t_{app}$

Discrete Cosine Transformation (DCT) The main part of JPEG encoder

Image Filtering (IF)	A low pass FIR filter commonly used for reducing the noise in an image
Image Integration (II)	Used in computer vision algorithms for image pyramid implementation

Conference and exhibition Combined accelerator delays

The overhead introduced by decoding, encoding and transmission can account for up to 70% of the overall accelerator delay (image integration)

Highest speedup is achieved for computational complex image filtering (up to 6.5x)

$$Co_{t} = \frac{t_{receive} + t_{decode} + t_{encode} + t_{transmit}}{t_{acc_total}}$$

CONFERENCE AND EXHIBITION CONFERENCE AND EXHIBITION UNITED STATES Power & Energy consumption relative to SW

- As the TL model of the ISS does not incorporate idle power states, the average power consumption is increased by the accelerator
- Despite this limitation, the overall energy consumption is still significantly improved (between 18% and 62%)

- Automatic and fast framework for complex hardware/software systems
- Real world image processing demonstrator
- Improved engineering support for difficult DSE
- TL accelerator generation based on minimal user input
- Realistic performance, power and communication overhead analysis is performed using a state of the art virtual platform
 - Analyzing communication is of high importance (up to 70% of the computational delay)
 - Early analysis of energy consumption is critical for battery dependent systems

SoCRocket is available online: https://socrocket.github.io/

For more information do not hesitate to contact us!

Syed Abbas Ali Shah, TU Braunschweig Germany

Questions ?

Syed Abbas Ali Shah, TU Braunschweig Germany

20