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Abstract— Automating the debug of regression test failures can be done using either the continuous integration 

methodology [1] or an automatic debug tool for regression tests [2]. In both cases the goal is to identify the bad commit.  

However, for large commits it would be even better if we could identify the exact bad lines of code within the commit. 

There is a methodology called delta debugging [3] that may be used to address this problem, but it has issues. In this 

paper we show how to overcome these challenges. 
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I. INTRODUCTION 

A. Debugging Regression Failures 

During product development of ASIC's or software, new bugs are continuously introduced by mistake causing the 
quality of the product to deteriorate. These bugs are called regression bugs. Regression bugs are captured by running 
regular test runs, so called regression tests, which typically are RTL simulations that are run once or several times per 
day.  

Automatically debugging the regression failures can be done with the continuous integration methodology [1]. This 
popular approach to regression testing consists of testing every commit to the revision control system with a short non-
random test suite. The idea is that if this short test suite fails then we know which commit caused the problem, and the 
committer can be automatically notified about his or her mistake. For larger test suites and for random tests it is 
possible to use tools such as PinDown[2]. In both cases the goal is to identify the bad commit. 

For larger commits it would be useful to know the exact lines that caused a test to fail, but as commit sizes vary, it 
would also be interesting to know how many of the commits that would benefit from line granularity. 

B. Delta Debugging 

Delta Debugging [3] is a methodology where different combinations of code chunks are tested together in order to 
narrow down a problem. The advantage is that it can find the exact line of code, but only under certain conditions. 

 

 

Figure 1. Delta Debugging Example with 8 code chunks. Chunk no 7 contains the bug. 

 

Figure 1 contains an example of delta debugging. The starting point is two versions of the code, a version that 
passes the tests and a newer version which fails the same tests due to a regression bug having been introduced. 
Comparing the two versions of code we see that there are 8 chunks of code that are different in this example. The 
purpose of delta debugging is to identify which chunk or chunks that contain the regression bug. This is done by 



splitting the chunks in sub-groups and the re-run the failing tests on each sub-group in order to find the minimum 
number of chunks which still reproduce the failures. 

In step 1 the chunks 1-4 are tested but they fail to reproduce the failure as the test is passing. In step 2 the failures 
are reproduced on chunks 5-8, which means the algorithm has now successfully narrowed down the bug to one of 
these 4 chunks. When such a milestone is reached the algorithm splits the remaining 4 chunks into 2 sub-groups and 
continue the testing. In step 3 chunks 5-6 fail to reproduce the failures but chunks 7-8 successfully reproduces the 
failure. Splitting up chunks 7 and 8 the algorithm achieves a result in step 5 where it manages to narrow down the 
problem to chunk no 7. 

Delta debugging can also manage the situation when a bug is introduced in two chunks. Figure 2 shows such an 
example where a regression bug only causes tests to fail if both chunk 6 and 7 are present at the same time. The delta 
debug algorithm starts in the same way as in Figure 1, but after step 4 the two examples deviate.  

In Figure 2 the algorithm does not succeed in narrowing down the problem further in step 3 and 4. Consequently it 
groups the remaining chunks differently and tries again in step 5 and 6. The latter combination manages to reproduce 
the failure as it contains both the chunks 6 and 7. The algorithm continues in step 7 and 8 and tries to narrow down the 
issue further, but fails, and the final result is that the bug is contained within chunks 6 and 7.  

 

 

Figure 2. Delta Debugging Example with 8 code chunks. Chunk No 6 and 7 are faulty. 

C. Binary Search 

Another approach to narrow down problems is to use binary search along the timeline of the commits to the 
revision control system [4]. 

 

 

Figure 3. Binary Search Example with 8 commits to the revision control system, forming one timeline. Commit no 5 is 

faulty. 

 

Figure 3 provides an example of binary search across the timeline that the 8 commits to the revision control system 
is forming. A test passes on the older commit no 1 (step 1) and fails on the newer commit no 8 (step 2). The binary 
search algorithm tests commit no 4 in step 3 as it is roughly in the middle and finds that it is passing. In step 4 commit 
no 6 is tested as it is in the middle of commit no 4 (where the test passed) and commit no 8 (where the test failed). As 
it fails the algorithm tests commit no 5 in the last step and finds that it fails, which is the end result. 



II. COMPARING DELTA DEBUGGING WITH BINARY SEARCH 

A. Is Delta Debugging better than Binary Search? 

In the paper about Delta Debugging [3] the algorithm is presented as a better algorithm for automatic debugging than 

binary search. Is that true? Before answering that question, let us first look at some limitations of the two different 

algorithms. 

 

B. Limitations Of Delta Debugging 

Delta debugging has some limitations. The delta debug algorithm is not aware of any timeline as it only compares 
two different versions of the code and this may lead it astray. 

 

 

Figure 4. Delta Debugging Example with 8 commits to the revision control system, forming one timeline, where commits 

no 1-4 must be present in order for chunks 5-8 to be applied. Commit no 7 is the only faulty chunk, but the algorithm 

thinks it is commit no 5, because everything fails if commits no 1-4 are not present. 

 

In Figure 4 the algorithm will come to the incorrect conclusion (commit no 5) because it is not aware of the 
timeline. In this example commits no 1-4 are required to be committed first in order for later commits (no 5-8) to be 
applied, otherwise the tests fail. The delta debug algorithm will find failures whenever it tests commits no 5-8, but it 
cannot distinguish real failures from just the limitation that is not aware of the timeline and is thus excluding commits 
no 1-4.   

A second limitation of the delta debug algorithm is that it assumes that there are no complicated dependencies with 
commits or chunks far apart. Once it has narrowed down the problems to the commits no 5-8 the problem must be in 
some of the commits within range. However, in reality as we see in Figure 4, there can be dependencies to commits 
outside this range that complicates the picture. In step 2 in Figure 4 the failure has been narrowed down to commits no 
5-8, but when the algorithm tries to further narrow down the problem it runs into a problem as it misses the 
dependencies to commits no 1-4. 

To sum it up, delta debugging is good at narrowing down failures to a sub-set as long as there is no timeline and no 
complicated dependencies with chunks far apart. 

C. Limitation Of Binary Search 

Binary search performs better than delta debugging when there is a timeline because it respects the timeline. It 
does not try to test combinations of commits that have never existed together. Each commit was made by an engineer 
in a way that made sense at the time (even though it may contain bugs). This is different from delta debugging which 
tests any combination of code without caring whether the resulting code base makes sense. For example, in Figure 4 
the delta debug algorithm tested commits no 5-8 without commits no 1-4, which produced a version of the code that 
had never existed. This is because commits no 5 and onwards built upon the changes made in commits no 1-4, but the 
delta debug algorithm ignores this. 

 However, binary search does not work when there is more than one faulty commit. In Figure 5 there is a faulty 
commit (no 5) which has already been fixed in commit no 7. But as the algorithm never tests commit no 7 it fails to 
recognize that the test is passing on this commit. It consequently zooms in on the already fixed commit no 5 instead of 
zooming in on the only existing open commit no 8. 

 



 

Figure 5. Binary Search Example with 8 commits to the revision control system, forming one timeline. Commit no 5 and 8 

are both faulty, but commit no 5 have been fixed in commit no 7. However as the binary search algorithm fails to see the 

test pass when running on commit no 7 the algorithm fails to zoom in and find the faulty algorithm in commit no 8, which 

is the only open issue. 

 

Binary search only works when there is only one faulty commit affecting the failing test. It does not go 

completely lost in the example in Figure 5, commit no 5 is a real bug but it has already been fixed. For multiple bugs 

binary search may miss some bugs, but the faulty commits it does find are real but may not still be open. 

D. Best Way to Combine Delta Debugging and Binary Search 

Let’s summarize the strengths and weaknesses of the two algorithms: 

 

 
 

No of Bugs 

 

Timeline Exists 

 

No Timeline 

Single Bug Binary Search Both 

Multiple Bugs None Delta Debug 

Table 1. Debug Scenarios supported by the Delta Debug and Binary Search algorithms 

 

In ASIC projects there is always some sort of a timeline with commits being made to a revision control system. 

The timeline may be complex, e.g. a project is spread out over different repositories, each with a slightly different 

timeline, but even in this case it is important to respect the overall timeline and not create combinations of code that 

have never existed in reality. 

In some projects there is a small set of directed tests run on each commit to quickly detect simple mistakes, e.g. 

compilation mistakes, which can be covered by these short tests. This setup is called continuous integration. If a test 

fails, then there is no timeline between the test that fails and the previous revision where the test passes, because the 

small test is run on each commit.  

However for large test suites and for constrained random tests the previous commit has not been tested, either 

because the test suite is too large to be able to run it on every commit or because it has not been run with the same 

seed as in the last run. Most tests fall into this category in ASIC projects. 

Inside a single commit, there is no timeline. All lines were updated at the same time. 

So what is the best way to achieve automatic debug down to a single line (or a couple of lines) in an ASIC 

project? The answer is: you need to use both delta debugging and binary search as one algorithm is not better than 

the other one in all respects. Start with binary search in order to identify the faulty commit, while respecting the 

timeline, and then use delta debugging to further narrow down the problem within a commit.  

 

III. PERFORMANCE 

A. Commit Sizes in Real ASIC projects 

 
For small commits of a couple of lines we don’t need to debug further in order to know which lines of code that 

caused a test to fail. However for larger commits it would be useful to know which code lines that triggered the failure. 
What proportion of the commits would benefit from further fine grained debugging beyond just the commit? 

 

 



We looked at the commit sizes and bug frequency in two large ASIC projects. We investigated the following 
commits: 

 

Project 

No of 

Commits 

Between 

Bad 

Commits 

Days 

Between 

Bad 

Commits 

Time 

Period 

Total 

Commits 

1 40.5 2.8 

Jan 1– 

Aug 11 

2014 

4690 

2 45.0 1.3 

Aug 1 

2013 – 

Mar 1 

2014 

8585 

Table 2. Median Commits and Days between Bad Commits 

 

 We plotted the distribution of commit sizes, separating bad commits that triggered test failures from all commits. 

   

 

 
Figure 6. Number of lines per commit for bad commits compared to all commits, sorted per quartile of commits. Median 

number of lines in a commit is 7.5 lines across both projects, compared to a median 27 lines for bad 

 
The median commit (see Figure 6) is just 7.5 lines across both ASIC projects, which is fairly small and there 

would be little benefit to further debug these commits. However the median bad commit was 27 lines, probably 
reflecting the fact that errors are more likely to be introduced the more lines that are changed. For the 75% quartile the 
commit sizes grow up to 140 lines and the rest of the commits are larger than that. The conclusion is that debug with 
line granularity would be beneficial for roughly half the bad commits, which are 27 lines or larger. In the example that 
follows in the next section we use the median commit sizes (7.5 lines for any commit, 27 lines for a bad commit). 



 

B. A Scenario Based on Median Commit Sizes From Real ASIC projects 

First, let us define a scenario (Figure 7) based on the median commit sizes (taken from Figure 6) measured in real 

ASIC projects. 

 
Figure 7.  A scenario with 1000 commits between two runs, where the commit sizes are set to the median values, i.e. 7.5 

lines for any commit and 27 lines when looking at only the bad commits 

 

We have already concluded that the best way to debug is to first use binary search in order to find the bad commit 

and then use delta debugging to find the exact line of code.  

We will use binary search with one performance improvement: instead of just testing one revision in the middle of 

the timeline we will test 10 evenly distributed revisions. In the example in Table 3, we start with 1000 commits and 

test 100 commits in parallel in the first iteration, then zoom in where a transition is detected from pass to fail and 

then test every 10 commits in parallel. In the third iteration we use the binary search algorithm to test every single 

commit in the tranche of 10 commits where we have detected a transition from pass to fail in iteration 2. 

In the same way, we are testing up to 10 different combinations of line chunks during delta debugging of the 

faulty commit. As the median bad commit is 27 lines, we are going to split that group in two halves (13 and 14 lines) 

in the first iteration and in parallel their sub-groups as well (6 and 7 lines). In total the parallel delta debug algorithm 

will test groups of 14, 13, 7, 6 and 3 line chunks in the first iteration. In the second iteration groups of 4, 3, 2 and 1 

lines will be tested. If we are lucky the algorithm may already complete here if the first single lines that we test in 

isolation contains the bug. However, in this example we are going for the most pessimistic result. The last single bad 

line that is tested happens to contain the problem, which happens after 7 iterations. 

 

 
Table 3. How many times do we need to re-run the failing test (iterations) based on the scenario described in Figure 7? 

The answer is 5-7 times, depending on how lucky we are: if the first single line we test in isolation contains the bug the 

algorithm completes after 5 iterations and if it is the last single line that we test in isolation then it takes 7 iterations. 

 

Using median commit sizes for the ASIC projects we have measured that we would be able to automatically 

debug a failing test down to the single bad line of code from a range of 1000 commits in the time it takes to re-run 

the failing test 5-7 times (including compilation time and the time it takes to check out the code from the revision 

control system).  

It is also worth noting that already after 3 iterations the person who committed the bad commit can be notified that 

the commit is bad.  



C. File Granularity 

Up to now we have looked at line granularity and compared the result with commit granularity. In the previous 

section we saw that in an example with 1000 commits using median commit sizes it took 3 iterations to reach 

commit granularity and an additional 2-4 iterations, in total 5-7 iterations, to reach line granularity. However, a third 

approach is possible: file granularity. This means pointing out which files that have been updated within a commit, 

but not pointing out the exact line within the file. Performance-wise file granularity will end up somewhere in 

between commit granularity and line granularity. This can be useful for large commits, e.g. merger of branches, with 

several hundreds of files. In this scenario it can be useful to debug down to the file and that result can be produced 

with reasonable performance, unlike line granularity which may take too much time.  

From an algorithmic point of view file granularity is identical to line granularity but the definition of code chunk 

changes. Instead of being a minimum number of updated lines or characters, all updates in one file is counted as one 

chunk. 

Let’s first look at the median commit sizes in terms of number of files that were updated in each commit. Here we 

are using the same data set as we did for line granularity.  

 
Figure 8.  Number of updated files per commit for bad commits compared to all commits, sorted per quartile of commits. 

Median number of updated files in a commit is 1 file across both projects, compared to a median of 2 files per commit for 

bad commits 

 

The median commit (see Figure 8) is just 1 file across both ASIC projects, which cannot be furthered debugged 
with file granularity. However the median bad commit was 2 files across both projects, probably reflecting the fact 
that errors are more likely to be introduced the more code that is changed. For the 75% quartile the commit sizes grow 
to 3 files for bad commits. The conclusion is that debug with file granularity would be beneficial for roughly half the 
bad commits, as they have 2 files updated per commit or more. However it is really the 75% quartile that benefits from 
file granularity as there are 3 or more files changed. This is different from line granularity which was useful in both 
the 50% and 75% quartile. 

Let us look at an example with 1000 commits using the median sizes (1 file for any commit, 2 files bad commits). 

 

Figure 9.  A scenario with 1000 commits between two runs, where the commit sizes are set to the median values, i.e. 1 

updated file for any commit and 2 modified files for bad commits 

Debugging the example in Figure 9 with file granularity requires 4 iterations as shown in table 4. 



 

Table 4. How many times do we need to re-run the failing test (iterations) based on the scenario described in Figure 9? 

The answer is 4 times, one extra time to get file granularity for the median bad commit 

File Granularity takes only 1 additional iteration in the median case, compared to commit granularity. This can be 
compared to the extra 2-4 iterations required by line granularity. By changing the definition of a code chunk from a 
minimum set of line updates to all updates in the entire file we can improve the performance substantially.  

D. Trade-off between Debug Granularity and Performance 

There is a trade-off between debug granularity and performance as we have seen in this chapter. Choosing the right 
balance is something that has to be decided on a case per case basis depending on the characteristics of the verification 
environment and the individual test times. The simplest way would be for the user to decide what debug granularity to 
use for each project. 

Another, more dynamic way, would be for the user to define what debug granularity to use depending on the 
commit size. As the first step is to find the bad commit, the commit size will be known before starting the file or line 
granularity debug. It is consequently possible to wait until the size of the bad commit is known before choosing 
granularity. For example, the user may decide to use line granularity for commits where up to 10 files have been 
updated, file granularity for larger commits up to commit sizes of 100 files and commit granularity for all commits 
larger than this limit.  

IV. METHODOLOGY 

A. How the measurements were done 

We first reasoned theoretically on the limitations of the binary search algorithm and the delta debug algorithms in 
order to combine them in the most optimal way.  

Then we measured commit sizes for 13275 commits in two real ASIC projects (see Table 2) and used the median 
values to calculate how well the combined algorithm performs for a fairly large example of 1000 commits. We did this 
exercise first for line granularity. Then we repeated the exercise for file granularity and compared the results. 

V. RESULTS 

The delta debugging algorithm is not better than the binary search algorithm in all aspects, mostly because the 

delta debugging algorithm doesn’t respect the timeline which is formed by the string of commits to the revision 

control system that typically are done in an ASIC project. Consequently it is better to start with the binary search 

algorithm that does respect the timeline, in order to first narrow down the issue to one commit. Only when the 

problem has been narrowed down to one commit then it is time to let loose the delta debug algorithm in order to find 

the individual bad line. 

Using commit sizes from real ASIC projects we saw that for the median case it will require 5-7 re-runs of the 

failing test (including compilation and checkout from the revision control system) in order to narrow down the 

problem to a single line, when analyzing a fairly large range of 1000 commits.  

Based on the same data set from real ASIC projects we saw that the median case for file granularity will require 4 

re-runs.  

The conclusion is that there is a trade-off between debug granularity and performance. Finding the right balance 

will be different for different projects as it depends on individual test times, project sizes and verification 

environment in general. We believe that the ability to select debug granularity to line or file may be useful in real 

ASIC projects. 
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