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Abstract- Verification of IP modifications to support complex system level power management is a must, but it is 

typically left to verification engineers to write the software to change power programming while testing to ensure 
continued operation of the IP. This paper looks at how automation of test generation can radically change not only the 
time it takes to create complex tests, but also the efficiency of testing needed to achieve maximum coverage. 

INTRODUCTION 

Today’s SoCs require sophisticated power management capabilities to meet the myriad of power requirements for 

different use cases.  Developers often have to modify purchased IP to support complex system level power 

management capabilities developed for the SoC, typically the verification of the added functionality is best done 

using bare metal software that can test the IP under different power management configurations and transitions. 

When this testing is created manually, it is a prohibitively complex task, especially if you need the testing to drive 

toward some coverage closure across not only all power states, but also all legal power state transitions. For these 

reasons, ST looked for ways to better automate the use-case based test development process using a coverage driven 

approach. This paper will show how automation enabled ST to improve test development by an order of magnitude, 

accomplishing testing goals with fewer people in days, what would have taken weeks, requiring more developers 

and achieving less coverage. 

 

LOW POWER IP VERIFICATION CHALLENGES 

 

In the last years we have seen more and more power control and structure added in IP designs. The power 

management is not anymore done only at SOC level. Complex IPs like GPU also have embedded power 

management control. 

In ST’s GPU team, we adjust power management structure and control according to the ST Technologies rules. 

Starting from third party GPU RTL, we tune or add power control according to the ST internal power specification.  

We swap generic switch with ST power switch and generic IP provider memory with ST memories. Some GPU 

providers already insert power structure in their RTL, but to meet ST technology requirements the power structure 

had to be adjusted. Many providers add clock and reset gate control to reduce dynamic power, in this case, ST 

generates a power island in line with the clock and reset gate path to reduce static power. 

So our task  consists of adding or tuning power retention, power island, power management state machine, 

memories, power switch and their controls to the RTL received. Of course, we also need to verify these changes to 

check that they are in line with power specification and that we haven’t inserted any bugs.  

On earlier projects, the power verification was pretty simple. There were only one or two power supplies to switch 

ON or OFF. We now have more and more complex power management with more power domains, more power 

values. The number of power states available in UPF increase drastically and the number of signals to manage them 

also increases. To move from one power state to another, some rules must be applied regarding the clamp, the 

retention sequence, the clock value, and more. 

We need to completely verify the power states defined in the UPF, implementation tools use only this information 

and if a power state is missing in the UPF, but is mandatory in the power sequence we could be in trouble. Some 

protection or repeater cells could be added in layout tools and no trouble is highlighted by static tools, but in the 

silicon we may face a current peak or wrong control signal value. 

 



We need to provide integration tests to SOC verification team, SOC validation team and also SW team. 

Methodology like UVM could not be used since the tests are not portable. All the tests are written in C and are run 

on a Host Code Execution (HCE) platform at IP level.  

We created a C API to manage and control all the power functions.  Some functions are directly accessing the 

power logic in the IP, while other functions are controlling input pins or issue some specific Verilog commands (to 

set power supply level for example). For these we have created a dedicated power control module in Verilog that 

can be controlled through the C code as shown in figure 1. 

 
Figure 1: Power Verification Setup 

 

 

Before describing the automation methodology and tool, let’s have a closer look at our test requirements.  

 

TEST REQUIREMENTS 

 There are several power elements to configure in order to reach a functional state, state in which the IP is ready 

for operation. Among these power elements the main ones are the different power switches. 

If we consider for example, two different power switches: power switch A and power switch B.  Both power 

switches can have different values: OFF, nominal value, overdrive1 and overdrive2. Most of the time these two 

power switches are not independent, they are linked by a rule that must be respected at any time of operation. Let s 

consider a simple rule: power switch B value must be less or equal to the value of power switch A. This is 

represented in figure 2. 

In this graph, the blue triangle is the initial state, both power switches are turned off. The green points represent 

all the power functional states (6 different) and the red squares are possible transition states (power switch B is off). 

Note that power switch value must be configured sequentially, so it is not possible in this example to go directly 

from OFF value to overdrive1 or overdrive2 for example. To reach one of the functional states, we need to configure 

the two power switches by creating step by step transitions, but always below the gray line (representing the rule: 

power switch B value <= power switch A value).  
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Figure 2: functional power state example 

 

The tests we need to develop must all:  

1. Move the design into a functional power state  

2. Run a functional test on the design to check functionality has not been impacted by low power logic 

For example we may decide to create a test in the functional state: power switch A = ov2 and power switch B = 

ov1.  There are different possible path to reach this state. Two examples are provided in figure 3 and figure 4. 

 

 
        Figure 3: path to a functional state (1)           Figure 4: path to a functional state (2) 
 

 

So far we talked only about the power switches, their values and rules that must be followed to reach a functional 

state. But there are additional power elements that must be taken into consideration and properly configured to be in 

a functional power state. The three other power elements are the clamp, the reset and the clock frequency, one for 

each power domain or power switch. Configuration of these elements must also follow some strict rules. For 

example the clamp and reset can be configured only when the associated power switch is not off (whatever the 

value). Some clock frequency can be set only if the power switch value is greater than a specific value.  

Also in the examples, we are describing the path from initial state (all power switch off) to a functional state. But 

we have to describe the path back to initial state too in order to create more complex scenarios like:  go in a 

functional state, then switch off the power, then go in a different functional state. 

 

Once the scenario is described, we need to put this scenario in a C code.  Typical C code following path defined in 

figure 3 could be: 

 



turn_on_power_switchA();   

turn_on_power_switchB(); 

setup_clamp_reset_powerB(); 

setup_clock_powerB(freq0) 

setup_clamp_reset_powerA(); 

setup_clock_powerA(freq1) ; 

change_power_switchA(ov1); 

change_power_switchB(ov1); 

change_power_switchA(ov2); 

run_functional_test(); 

 

Obviously different C code could be written to check this functional state. We can for example change the 

transition and the path from initial state (following path defined in figure 4 or creating a new one). The place where 

the clamp and reset are configured can be changed anytime between the turn on of the power switch and the call to 

run_functional_test. The clock frequency could also be configured at different time and with different values. 

On this simple example we already see some limitation of the traditional manual test development flow. The 

number of functional power state in example from figure 2 is 6. So we would need to develop at least 6 tests to 

check all of them. We would also need to develop the tests using different path, going through the non-functional 

state. Configuration of other power elements including using different clock frequency could also be changed.  

Here the rule between the two power switches are pretty simple, we often face other cases like the voltage 

difference must not exceed a specific value. Moreover, when additional power switches are present,  they may all 

have link and rules that must not only be applied between power switch A and power switch B but also between 

power switch B and power switch C for example.  Finally, during the project, changes in the power specification 

could occur, changing the possible values of a power switch, and/or changing the rules between them. 

In our GPU design, the number of power switches could be up to 6 with complex rules between them and 

complex additional power elements to configure. Creating a single test, reaching a functional state and going 

through only valid transitions, requires a deep knowledge of the entire power specification. Time is spent on creating 

the test and also in debugging it when wrong transition are created. Due to time and resource constraints we cannot 

develop and maintain test for all the possible transitions to all possible functional states manually. We would have to 

make some trade off and arbitrarily select a few of them. Also, with manual development a lot of tests are always 

using the same transition path since a new test might only be an extension of an existing one.  

In summary, with the traditional manual approach, we don’t have a clear picture of all the possible combination of 

functional state and other power element like clock frequency. A systematic approach would be needed to list all of 

them and create a test for each of them. Because of limited time and resources, it was infeasible to do this, so we 

created and maintained 20 tests manually. Not all functional states could have been covered this way: the 20 tests 

could cover a maximum of 20 functional states. We were looking for a different approach that would allow us to 

reach all the possible functional state in order to fill the holes we knew we had in our flow.  

 

NEW METHODOLOGY USING TEST GENERATION AUTOMATION 

The new methodology we developed based on automation tool offered us 3 important capabilities: 

 Model based approach:  An easy and abstract way to define and constrain the SoC power management 

capabilities  

 Goal directed test creation: A use-case based solver technology to automatically identify path to reach a 

functional state 

 Automated generation of tests to achieve 100% coverage for the specified goals. Reaching all possible 

functional states and randomizing transition paths 

In addition to these three capabilities, we also found it helped us maintain the test database and with creating more 

complex use cases. This paper focuses on how automated test generation improved our coverage which was 

ultimately measured as productivity. 

With the model based approach, focus is not anymore on defining completely a test from the initial state to the 

expected functional state. The solution is to describe independently all the power elements available in our system. 

The description must contain all the possible value of a specific elements (possible clock frequency, possible values 

of a power switch …). It must also contains all the possible changes or transition of this element. Power switch may 



go from OFF to nominal value, from nominal to overdrive1 … The rules under which the transition can occur must 

also be described. Finally, the corresponding API call to this transition must be associated to it.  

This approach is completely different than traditional test development flow but really allowed us to focus on the 

details of each element. We had cases where listing all possible transitions enabled us to find holes or unclear points 

in the power specification.  

If we look at the power switch B of our previous example (figure 2), we can extract the following information: 

Power Switch B can take value: OFF, nominal, overdrive1 and overdrive2. The list of transitions, rules and 

associated API call are defined in table 1: 
TABLE 1 

POSSIBLE LIST OF TRANSITION OF POWER SWITCHB 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that the rules with the (*) are implicit rules. These rules are not mandatory since an equivalent rule should be 

put on power switch A. But we decided to write them in any case for clarity and debug reasons.  

Describing all these transitions is the longest task in this methodology. However, the time to define this was 

shorter than developing the tests manually. This task has to be done once for all the tests and it really forces us to 

have a clear and complete understanding of the entire power specification. We do not need to know or remember all 

of it, just the specifics of a power element when we want to describe it. All these descriptions/models will be shown 

later in the paper.  

Once this task is completed, we can now use the goal directed test approach. This means that to describe a test we 

just have to ask for a specific functional state and the automation tool will identify a path, from the initial state to the 

expected state, following the rules defined in the model. For example, we can request a test to be created for the 

functional state: power switch B = ov1 and power switch A = ov2. We ask for what we want and not how we want 

to reach it.  

The goal directed test creation is very powerful in the sense that each generation may create a different path to 

reach this state (assuming several paths exist, which is typically the case). The test itself, is reduced to the simplest 

expression: what is the expected state. 

The other advantage is it is not possible to create an invalid test. If a user asks for an invalid state (state not 

reachable due to the rules), in this case the tool will immediately report an error saying that this state is not 

reachable. The tool will also give you the reason why based upon the rules.  So by construction, no illegal transition 

can be created, the tool will allow you to force generation of an illegal test if you want to perform negative tests.  

After having created a few tests to debug the model, we can then proceed to use the automatic generation 

capability to fill all our goals. In our case we can ask the automation tool to create a test for all possible functional 

states. Here the request would be: power switch B = all possible value and power switch A = all possible value. The 

tool will then try to create a test for all possible combination. If some are not possible due to the constraints, no test 

will be created and message will be printed. This is again very useful for debug. Note that we don t need to know or 

think upfront about all the possible values. The tool will automatically identify them. 

On the GPU IP, we have created 192 tests to meet our coverage goals with this approach. All the tests are 

different by construction and reach a different functional power state (or a cross with a power state and a different 

clock value for example). We also know that paths used to reach all of these state were randomly selected and that 

the other power elements have been configured at different point of time. We don t have real coverage on the other 

power elements configuration since this was not our requirements but we manually analyzed some of the test and 

noticed the randomization was also applied here.  

Transition Rules Associated API 

off_to_nom pswitchA != off turn_on_power_switchB() 

nom_to_off pswitchA != off (*) turn_off_power_switchB() 

nom_to_ov1 pswitchA > nom change_power_switchB(ov1); 

ov1_to_nom pswitchA > nom (*) change_power_switchB(nom); 

ov1_to_ov2 pswitchA == ov2 change_power_switchB(ov2); 

ov2_to_ov1 pswitchA == ov2 (*) change_power_switchB(ov1); 



In summary, the methodology has a lot of advantages. First it enables us to divide the power complexity and focus 

on each of the elements one by one. This modeling of the power elements creates a kind of embedded specification 

of the power specification making it easily readable or usable by anyone even without deep knowledge of it. This 

gives us the ability to reuse the power transition scenarios for other IP if needed. In case of changes in the power 

specification, instead of rewriting or analyzing changes required for all developed tests, here we can simply report 

these changes in the model (adding/removing rules, power elements …) and create new test suite matching the new 

specification. The goal directed approach is very efficient and can create new tests in seconds. 

The methodology has also some constraints. It requires extra work for the first test. It also means developing a 

new model and learning a new language. The entire power specification needs to be modeled to get the most of the 

automation capabilities. 

 

CHOICE OF AUTOMATION TOOL: PERSPEC SYSTEM VERIFIER  

We developed and use this methodology with new Cadence tool: Perspec System Verifier. This choice was done 

mainly because of the model based approach that fit our requirements. The generated test is also graphically 

represented in a UML activity diagram showing clearly all transition from initial state to functional state. This 

graphical representation is very useful to analyze and debug the model developed and the test. It is also a good way 

to communicate and exchange with design and architecture team that don’t necessarily write or work with c code for 

example. Also we found the C code generated very linear and simple to read and analyze, again this helps us in the 

debug phase. 

To apply the methodology, we had to create the power specification model with the input language of the tool. 

The first model has been developed with local application engineer support in a few days. Since there is not much 

language to learn, other models were developed by ST with limited support.  

Then, as in figure 5, the test can be created in a goal directed way by selecting graphically the expected values for 

switch A and switch B as well as reset, clock and clamp parameters.  

 

 
Figure 5: goal directed test creation with Perspec System Verifier Composer 

 

Once the goal is selected, the user can ask the tool to create a solution. Figure 6 represents an extract of the entire 

solution. A UML activity diagram from initial state to requested state is created. 

Then to create the entire test suite, reaching all possible functional states, the user can ask the tool to FILL (create 

a test for all possible values) on attributes of interest as shown in figure 7. The result of this will be a list of different 

test cases, all different for reaching different states.  

 



 
Figure 6: Excerpt of Concrete Use-Case Scenario 

 

 
Figure 7: Setting FILL Option to Create Use-Case Solutions to reach 100% Coverage 



RESULTS 

With automation we were able to generate tests that covered all legal power states and power state transitions to 

achieve higher coverage than manual test development in less time.  The model based approach enables the solver to 

identify paths or state transitions a user may not think of or did not have time to implement. 

Table 2 describes the productivity gain, comparing the number of tests, the number of lines of code for all these 

tests and the time to get the tests. It also provides information about the gain in case of specification changes.  
TABLE 2 

ANALYSIS OF PRODUCTIVITY GAIN REALIZED 

 # 

tests 

Lines of 

code 

Development  Maintenance  

(each 

change) 

# 

tests/day 

# tests/day 

 in case of 5 

changes 

Manual 20 2k 

(100x20) 

20 days 3 to 4 days 1 0.57 

SVR 192 800 10 days 1 day 19.2 12.8 

Ratio  0.4   19.2 22.4 

 

With less number of coded lines, user can create more tests and increase productivity from 1 test per day to 

around 20 tests per day. These data represents the time to create a functional test, so it includes debug time.  

Note that to reach the same level of coverage with manual test development, we would need to develop these 192 

tests, estimated to take 192 days. Thanks to automation it took only 10 days 

The coverage of generated tests has been confirmed by running the entire test suite and analyzing the effective 

power state coverage obtained in simulation. This is a very effective way to cross check the model developed with 

the UPF.  

Some bugs have been found in the internal checkers. These checkers should verify that no invalid states are 

reached. By stressing the design in some specific states or transitions, the checker were proven to be not correct and 

were reporting false errors. 

Also the UPF file was not consistent. Some states were defined but were not reachable, while others were not 

described at all.  Both could be found in simulation by either analyzing the coverage report or by automatically 

creating the checkers. 

CONCLUSION AND FUTURE WORK 

Thanks to the automatic generation of all possible use cases we increased our confidence in the low power logic 

added on this IP and dramatically improved both our coverage and productivity. Due to the complexity of today’s 

low power verification, traditional manual test creation cannot cover the entire power space and automation is a 

must. The tool used, Perspec System Verifier test creation enabled us to even tackle a more complex verification 

task and at the same time improved our productivity by an order of magnitude.  

The methodology described here can be applied to any low power verification and more generally to any complex 

FSM verification. This approach could also be beneficial for the SOC verification teams. As of today we provided 

the SOC team some integration tests (this might be a subset of the entire test suite to match additional SOC 

constraints in possible low power sequences). The model based approach allows combining different models and 

creating more complex use cases. So, in the future we could provide to the SOC team the model we developed, they 

can add additional information and simply create advanced SOC level low power scenarios. 

In our team, we have different kind of IPs to verify. Some might be even more complex. We have cases were 2 

instances of one IP are present, both have the same LP logic added and they are independent. Complexity increases 

here, but using such an automation tool will definitely simplify our work and gives us more options on how to best 

verify use cases for these complex combinations. 

 

 

 


