NNNNNNNNNNNNNNNNNNNNNNN

Automated Test Generation to
Verify IP Modified for System
Level Power Management

Christophe Lamard, STMicroelectronics
Frederic Dupuis, Cadence

[,;I- ©.augmented cadence

NNNNNNNNNNNNNNNNNNNNNNN

GPU Power optimization

* We integrate internal and third party GPU IP

— Replace generic Macro Block according to the
technology

— Tune power capabillity

— Split hierarchy design according to layout team
request

— Adjust DFT structure

-
3/2/2022 Christophe Lamard STMicroelectronics 2

\ 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

GPU power optimization

Optimized GPU Dynamic Power Profile

-
3/2/2022 Christophe Lamard STMicroelectronics 3

2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Dynamic Power verification

 New bug types comes with power management

Missing Isolation bugs

Control Sequencing bugs
Retention scheme errors

Memory corruption

Power sequence scheduling errors
Software/Hardware dead lock
Power On Reset bugs

* Verification team need to manage dynamic power simulation:
— Create Power test sequence
— Run dynamic power simulation

— Add Bower checker

3/2/2022

Christophe Lamard STMicroelectronics 4

\ 2015

DESIGN AND VERIFICATION™

NNNNNNNNNNNNNNNNNNNNNNN

Sub-system Integration

e \We deliver our test to SOC, Validation and SW team
— need for portable tests (not UVM)
— Tests are written in ‘C’

* We have created :
— Atest bench API to control:
* |P Powers state
* |P top signal like clamp, reset, clock

— An |IP API to control IP power sequence @

* Retention seguence []

* Clock, reset and clamp control
— Some Power monitor/checker

3/2/2022 Christophe Lamard STMicroelectronics 5

\ 2015

DESIGN AND VERIFICATION™

DvCON Closer look at tests
requirements

e Let s consider 2 power switch A and B.
— 3 different possible values: nom, overdrivel, overdrive2
— They are linked by a rule :
value power switch B <=value power switch A

N Blue triangle = initial state

S ” Red Square = transition state
- Green points = functional state
S 3 . 3
i Gray line =rule
g 5 ° o o Transitions below the line are

allowed.
5K [[[
off nom ov1 ov2

Power switch A

-
3/2/2022 Christophe Lamard STMicroelectronics 6

\ 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Defining one test

 Atestis always:
1) Put the power logic in a functional state
2) Run a functional tests on the IP

Functional state : Power switch A = OV2 and Power Switch B = OV1
User need to define transition from initial state to this functional state

™
[gV]
3 ol 2 .
o m
_C ~
g 3 ¥ ' S 3 . ®
% 3
e —
o)
g g [Y ® g E
L e ; L2 e] @ @
S & o n n Sa = o m
off nom ov1 ov2 off nom ov1 ov2

Power switch A Power switch A

3/2/2022 Christophe Lamard STMicroelectronics 7

\ 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Defining one test (cont)

 Additional power elements must be configured to be in a
functional state :

— Clock for power domain A and B
— Reset and Clamp for Aand B

e Different rules also exist for these elements :
— Can be configured when power switch is not off
— Some clock frequency cannot be used with some power switch value

e Some more complex tests scenario are needed
— Go in a functional state,

— Switch off the power
— Go in a different functional state

-
3/2/2022 Christophe Lamard STMicroelectronics 8

\ 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Manually developed C code

 Here is one C code example to check this functional state :

turn_on_power_switchA();
turn_on_power_switchB();

% » setup_clamp_reset_powerB();
o _ setup_clock_powerB(freqO)
g 8 (1 * setup_clamp_reset_powerA();
é _ setup_clock_powerA(freql) ;
ch g g 9 o

change_power_switchA(ov1);

change _power_switchB(ov1);

of nom ovl ov2 change_power_switchA(ov2);
Power switch A run_functional_test();

off
[3

* Obviously there are much more possible tests :
— Change the path (different transitions)

— Change clock frequency, change setup time of clamp/reset

3/2/2022 Christophe Lamard STMicroelectronics 9

\ 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Need for automation

* On this simple example we would need at least 6 tests (for
each functional state)

* In our GPU design we have :
— More power switch (up to 6)
— More complex rules

— Specification may change during project S

Power switch A

* Developing a test requires deep knowledge of power spec
* Not possible to create and maintain all needed tests.

* We have developed 20 tests (targeting 20 states)

— Most of the time same path is used (extension of previous test)
— Other power elements often configured same time

 Need for automation to create tests for all possible state

- - ______________________________________
3/2/2022

Christophe Lamard STMicroelectronics 10

\ 2015

DESIGN AND VERIFICATION™

DV Defining new methodology
using automation tool

e Main contribution of the automation tool are
— Model based approach

simple and abstract way to define and constrain the power
elements

— Goal directed test creation

Thanks to the use case based solver (describe what, not
how). It means describing expected power state, not the
transitions to reach it.

— Automated test generation

Simple way to achieve 100% coverage of specified goals.
Goals here would be the complete list of functional state

-
3/2/2022 Christophe Lamard STMicroelectronics 11

\ 2015

DESIGN AND VERIFICATION™

NNNNNNNNNNNNNNNNNNNNNNN

Model based approach

* Do not describe path from initial state to
functional state
* But:

— Describe all power elements and their possible
values

— Define all possible transitions and their relations
with other power elements

— Map to each transition the associated API call

* Force to have a systematic description and
completely understand the power specification

-
3/2/2022 Christophe Lamard STMicroelectronics 12

\ 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Describe all power elements

* |f we use power switch B of our previous example
— Possible values: off, nominal , overdrivel, overdrive?2
— List of transition, associated rules and API

off to_nom pswitchA = off turn_on_power_switchB()
nom_to_off pswitchA = off (*) turn_off power_switchB()
nom_to ovl pswitchA > nom change power_switchB(ov1);
ovl to _nom pswitchA > nom (*) change_power_switchB(nom);
ovl to ov2 pswitchA == ov2 change power_switchB(ov2);
ov2 to ovl pswitchA == ov2 (*) change power_switchB(ov1);

(*) implicit rules (already put for power switch A) but added for clarity and
debug purposes

-
3/2/2022 Christophe Lamard STMicroelectronics 13

\ 2015

DESIGN AND VERIFICATION™

NNNNNNNNNNNNNNNNNNNNNNN

Goal directed test creation

* User can define a test in a goal directed way.

* Define what (the expected functional state) and not how (the
path to reach it)

Power switch B == OV1 and Power switch A == OV2

* Tool will automatically find a path from initial state to this
state.

 Each generation may create a different path.

* Itis not possible to create a test that contradicts the rules
Power switch B == OV2 and Power switch A == OV1 (illegal state)

— Tool will report an error.
— No time spent on trying to run/debug a wrong test

-
3/2/2022 Christophe Lamard STMicroelectronics 14

2015

DESIGN AND VERIFICATION™

NNNNNNNNNNNNNNNNNNNNNNN

Automated test generation

e User can also request tests in all possible functional state

Power switch B == “all value” and Power switch A == “all value”

* Only legal tests will be created (following the rules)
— No need to know all of them, the tool with find them
— Tool will also report the non valid case, useful for debug

e |n our case, tool has been able to create 192 tests, all
reaching a different functional state.

— Different path have been used and the different power
elements have been configured at different point of time

— Coverage of all possible path might be possible too but
this was not our main requirement

-
3/2/2022 Christophe Lamard STMicroelectronics 15

\ 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Pros/Cons of the methods

* Pros:
— Enable to divide power specification and focus piece by piece

— Create a kind of embedded power specification
» Usable and readable by anyone

— Changes to power specification could easily be reported
* Add/remove a transition, add/remove/change rules

— Goal directed test creation is very efficient (develop a new test
In seconds)

e Cons:
— Extra work for first tests.
— Need to develop a new model and learn a new language
— Model has to be exhaustive

-
3/2/2022 Christophe Lamard STMicroelectronics 16

\ 2015

DESIGN AND VERIFICATION

DVCLIN ‘Choice of automation tool :
Perspec System Verifier

* We developed and used this methodology using Perspec
System Verifier:

— Model based approach of the tool

— Graphical representation of the generated test
e UML activity diagram showing all transition from initial to final state

— Generated C test Is linear and readable
e Simplify debug

* First model was developed with local AE support
* No need for deep knowledge of the language

— Learning curve is in days

— Not the complexity of UVM for example

3/2/2022 Christophe Lamard STMicroelectronics 17

\ 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Goal directed test creation

* User can ask the tool to create a test in a specific functional
state :

File View Tools Config Commands Help cadence

System Verifier Composer (64) - O x

[Mew [B] save | & Reload B sove B | G5

€0 Gallery 0D a - & .IFI ‘S Content Of

By Types - | | ¥ | JolE s Attributes Tokens Constraints 4 b B

- Name Value ¥
o LIULR 1 EyuL p_switch_1_state |7 -]
& do_config_sleep_HIGH() (Tl power_fsm_t p_switch_2_state [Overdrivel [
&) do_config_sleep_low() p_switch_3_state | =]
&) do_config_sleep_lowz2() p_switch_4_state [overdrivez [
&) do_config_clamp_clock_oni p_switch_5_state |7 (<]
&) do_config_clamp_clock_offi rst_subsys 7
&) do_switch_memgpu_on() rst_gpu OFF
- power_state - :
&) do_switch_memgpu_off() rst_ucl Owerdrival
&) do_rst_uc2_lowl() clk_IP_value oM
& do_rst_uc2 HIGH() A al: do_test_gpu_provider clamp Owerdrivez
. Tror F”I T

AaggGPU_tgst_c [E) GPU_test c 2 clamp_clock
& monitor() sleep value B &|
&) do_test_reg_st_glue() power_state_next rst_uc2 [[
&) do_test_pmb_st_glue() memgpu_value |7 [
&) do_test_gpu_provider() = -

o A [y power_fsm_t
[[
Showing 49 items Showing 14 items

S

3/2/2022 Christophe Lamard STMicroelectronics 18

\ 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

File Wiew Tools Config Commands Help

[New [Bl save | € Reload

B sove B | §

By Types

& clock_freqo()

&) do_config_sleep_HIGH()

& do_config_sleep_low()

& do_config_sleep_low2()

&) do_config_clamp_clock_on()

&) do_config_clamp_clock_off()

& do_switch_memgpu_on()

&) do_switch_memgpu_off()

& do_rst_uc2_low()

& do_rst_uc2_HIGH()
4TEGPU test ¢

& monitor()

& do_test_reg_st_glue()

& do_test_pmb_st_glue()
m FON + PR A

Showing 49 items

SE Gallery]

4> Solution: do_test_gpu_provider 1

[RS

A) [10: do_config_sleep_low [152]

fEE power_manager_c DVE.power_manager

& 111 clock_freq0 [154]

EE power_manager_c DVE.power_manager

& i12; do_rst_uc2_HIGH [156]

E power_manager_c DVE.power_manager

CSREY -

b = do_test_gpu_provider 1

[J

Showing 1 items

E Solutions o a

4 i13: clamp_off [158]

L power_manager_c DVE power_manager

A0 114 reset_gfx_off [160]

£ power_manager_c DVE.power_manager

A i15: reset_slice_ghx_off [162]

EE power_manager_c DVE.power_manager

&1 al: do_test_gpu_provider [164]

E CPU_test_c DVE.GPU_test

-0 X

cadence

3/2/2022

Goal directed test creation

System Verifier Composer (641_-;_

Scenario is partially represented

Tool identified a path, and
created a scenario with all the
transitions from initial state up
to final state

The graphical representation

also enables:

e Quick analysis of the
solution, and identification of
model bugs

« Exchange /discuss with other
stakeholders like design and
architects.

« Simplify debug analysis of
failing tests

Christophe Lamard STMicroelectronics

19

\ 2015

DESIGN AND VERIFICATION™

DV

CONFERENCE AND EXHIBITION

Automatic test creation

* User can ask the tool to create a test in all specific
functional state . 192 tests in our case

System Verifier Composer (64) - 0O x

File View Tools Config Commands Help cadence

[New Save | €& Reload | [z Fill [Sove £ | $
€ Gallery o a - 2 O~ - ‘A Content OF
By Types v | | ¥ | JoRE Attributes Tokens Constraints 4 b B
- Name Value ¥
ik DVE [=] p_switch_1_state [B

4 ICE power_manager_c (m power_fsm_t p_switch_2_state |ww Fill ** |E||
&) turn_on_powerl() p_switch_3_state [=
&) turn_off_powerl() p_switch_4_state [+ fjj =
&) turn_off20M_power2() p_switch_5_state [Fi+ =
&) turn_ON2off_power2() rst_subsys 7
&) turn_ONtoOwverdrivel powe rst_gpu OFF .
&) turn_OverdriveltoON_powe power_state rst_ucl g*:ardrl\rel
A turn_on_power3() cli_IP_value .

’ lam Crverdrive?

&) turn_off_power3() _) clamp e
& turn_on_Overdrivel power &) al: do_test_gpu_provider clamp_clock K .
A1 turn_off_powera() [E]l CPU_test_c ? sleep_value [F =
&) turn_OverdriveltoON_powe rst_uc2 [? =
& turn_ONtoOverdrivel powe 2tahst S, = L memgpu_value ¢ =
&) turn_ONtoOverdrive2_powe

m A turn Dvearelrivea 2okl nn'.mE' I'ﬂ Dﬂwer_fsm_t

Showing 49 items Showing 14 items

e — l PSSR

3/2/2022 Christophe Lamard STMicroelectronics 20

\ 2015

DESIGN AND VERIFICATION™

DVLCOIIN

CONFERENCE AND EXHIBITION

Results

 Higher coverage in less time than manual tests development
— All 192 generated tests are different and cover all states
— Covering transition we did not think off

— Estimated manual effort to reach same coverage: 192

days
Lines of code | Develop | Maintenance Nb tests Nb test/day
ment (each change) /Day in case of 5 changes
Manual 20 days 3 to 4 days 1 0.57
(1OOX20)
Perspec 192 800 10 days 1 day 19.2 12.8
Ratio 0.4 19.2 22.4

3/2/2022 Christophe Lamard STMicroelectronics 21

\ 2015

DESIGN AND VERIFICATION™

NNNNNNNNNNNNNNNNNNNNNNN

Conclusion and future works

* Coverage confirmed by PST coverage during simulation

e |dentified bugs in:
— Embedded design checkers
— UPF file (missing/unreachable states)
* Increase confidence in power sequence supports

 Methodology could be applied to any LP verification

e Future works :
— Reuse model at SOC level to create system level LP tests
— Deploy on even more complex IPs
— Model based enable to combine LP and functional tests

-
3/2/2022 Christophe Lamard STMicroelectronics 22

	Automated Test Generation to Verify IP Modified for System Level Power Management
	GPU Power optimization
	GPU power optimization
	Dynamic Power verification
	Sub-system Integration
	Closer look at tests requirements
	Defining one test
	Defining one test (cont)
	Manually developed C code
	Need for automation
	Defining new methodology using automation tool
	Model based approach
	Describe all power elements
	Goal directed test creation
	Automated test generation
	Pros/Cons of the methods
	Choice of automation tool : Perspec System Verifier
	Goal directed test creation
	Goal directed test creation
	Automatic test creation
	Results
	Conclusion and future works

