

1

Automated SystemC Model Instantiation with

modern C++ Features and sc_vector1
Ralph Görgen, OFFIS, Oldenburg, Germany (ralph.goergen@offis.de)

Philipp A. Hartmann, Intel, Duisburg, Germany (philipp.a.hartmann@intel.com)

Wolfgang Nebel, CvO University Oldenburg, Germany (nebel@informatik.uni-oldenburg.de)

I. INTRODUCTION

SystemC-based models are often instantiated automatically, at least parts of it. They mainly consist of configurable

components taken form some catalogue or library and a description of their configuration and connections. The

instantiation of the actual SystemC objects is done automatically according to the description. In addition,

automatic instantiation of SystemC components occurs inside configurable components, for instance in

components with a configurable number of I/O ports, bus connections, or arbitrary signal dimensions.

This contribution describes how modern C++ features introduced in C++11 and C++14 can facilitate the

implementation of such automatisms in combination with sc_vector. We show how anonymous functions

(lambda functions), type inference (auto), and constant expressions (constexpr) can be used in the context

of SystemC to make the designers life easier. We illustrate the practical application with code examples of a

configurable platform consisting of an arbitrary hierarchy of computational elements and communication links.

In addition, the possibility for supporting initializer lists and push_back in sc_vector is discussed.

The paper is organized as follows: First, we will to introduce sc_vector and our platform model shortly in

Section II and Section III. Then, we explain the creation of vector elements with anonymous functions in

Section IV, vector based binding and the benefits of auto in Section V, and the application of relaxed constant

expressions in Section VI. Finally, the discussion of initializer lists and push_back in sc_vector is given in

Section VII, and Section VIII concludes the paper.

II. SC_VECTOR

To enable the configurability in our platform model, we use sc_vector. sc_vector is a container class for

arbitrary numbers of SystemC objects. Unlike std::vector, it does not require its content objects to be

Assignable and CopyConstructible, requirements that cannot be fulfilled by SystemC modules or ports. In

addition, sc_vector supports specific features for SystemC: The definition of a custom creator to call module

constructors with more arguments than the default name argument and port binding for entire vectors instead of

element per element.

Another feature is the function sc_assemble_vector. It creates vectors of members of vector elements. E.g.,

if we have a vector containing modules and each of these modules has an input port called in_1, we can assemble

the in_1 ports of all modules to a new vector. This is especially helpful for vector based port binding.

A complete description of sc_vector and sc_assemble_vector can be found in Section 8.5 of the

SystemC LRM [2].

III. USE CASE

The FiPS platform simulation will serve as an example here [1]. The platform represents a heterogeneous multi-

processor system and consists of a configurable number of processing elements (PE) that are clustered to

hierarchical nodes. The processing elements are connected by a hierarchical and heterogeneous communication

network.

Figure 1: Small Platform Example

1 This work has been partially supported by the EU projects FiPS (FP7-609757) and CONTREX (FP7-611164).

mailto:ralph.goergen@offis.de
mailto:philipp.a.hartmann@intel.com
mailto:nebel@informatik.uni-oldenburg.de

2

Figure 1 shows an example for a small platform. On the left side, there are four nodes containing two PEs each

and these four nodes are again clustered to a node. Another node containing four PEs is shown on the right side.

In general, a node can contain

- a configurable number of sub-nodes,

- a configurable number of PEs,

- a node local communication bus, and

- a configurable number of communication bridges to connect local busses to other hierarchy levels.

The models for different kinds of PEs, busses, and bridges are available in a library that contains configurable

models for all these elements. Configuration, architecture, and communication setup of the entire system are

described in an XML file. Based on this description, the instantiation of the platform model is done fully

automatic.

In the implementation, all of the platform components are based on four configurable SystemC module types,

simple_node, simple_pe, simple_bridge, and simple_comm_link. More components derived

from these basic modules and providing a more specific behavior are available in the library as well, but we will

skip details about them because they play no role for this paper. Two of these simple module types make use of

sc_vector. simple_comm_link and simple_node. The first contains a number of fifos and provides

their interface as exports. Since the number of fifos and exports is configurable, they are implemented as vectors.

A simple_node contains sc_vectors for its sub-nodes (of type simple_node), PEs (of type

simple_pe), and bridges (of type simple_bridge). Furthermore, the simple_node contains a vector of

exports of type sc_signal_out_if. Each component provides some status information in form of an export

to its parent. The vector of exports in simple_node is used to aggregate these exports and provide them to the

next hierarchy level for further analysis. In the following, we will describe how modern C++ features can be used

to handle these vectors.

IV. CREATION OF VECTOR ELEMENTS WITH ANONYMOUS FUNCTIONS

The first aspect of sc_vector we want to look at is filling it with elements. This can be done by passing the

number of required elements to the constructor or by calling member function init2. In the following

examples, we use only the constructor but the same techniques can be used with init as well. In both cases,

sc_vector instantiates the given number of element objects automatically. This is fine for all element types

that require a name as its only constructor argument. In our case, all component constructors expect more than

one argument. For such element types requiring more constructor arguments, another version of the

sc_vector constructor and init function is available expecting a so-called Creator as a further argument:

The SystemC LRM shows two cases how to use the Creator: passing a function object or passing a member

function. C++11 offers a further option: passing an anonymous function.

A. Anonymous Function (Lambda)

C++11 introduced the anonymous function or lambda. It is a function definition that is not bound to an identifier.

But lambda expressions return function objects and can be used to initialize such. Its syntax is

Therein, capture defines how variables are made accessible from within the lambda function body. In principle,

all objects visible in the scope where the lambda definition resides can be made visible in the lambda body as

well. The capture can specify and restrict this:

- [] captures nothing, no variables accessible in the lambda body

- [&] captures all variables by reference if used in the lambda body

- [=] captures all variables by value if used in the lambda body

- [a,&b] captures a by value and b by reference

The capture is followed by the parameter list. This is the same as for other functions: A comma-separated list of

parameter declarations is given in round brackets. Next is the return type definition. It consists of the dereference

operator -> and the actual return type. This part can be omitted if the function body contains nothing but a single

return statement. Then, the return type is determined by the type of the returned expression.

Finally, we have the function body. This is again the same as in other functions: A list of statements embraced in

curly brackets.

2 Member function create_element can be used as well but will not be explained here.

template< typename Creator >

sc_vector(const char* , size_type , Creator);

[capture](parameters) -> return_type { function_body }

3

B. Populating the vector of PEs

Now, we want to apply this to our platform model. As mentioned before, the simple_node contains a member

pes_, which is an sc_vector of simple_pe elements. This vector is supposed to be populated via the

sc_vector constructor in the simple_node’s constructor initializer list.

First, we want to look at the simple_pe constructor.

It expects three arguments, a name like all SystemC modules, an address used for internal identification of this

PE and a pointer to a trace file for data logging. This is more than one constructor argument; hence, we need a

Creator for the population of the vector. Instead of a function object or a member function, we can now use a

lambda expression directly in the argument list of the sc_vector constructor.

The above listing shows the constructor definition of class simple_node with its member initializer list. The

last part of the initializer list and the constructor body are omitted here because there is no difference to other

constructors here.

In the first four lines, we see the constructor parameters of simple_node, a module name n, an integral number

defining the base address of this node, an integral number defining the number of PEs in this node, and a pointer

to a trace file. Then, the initializer list follows. In line 5, the module name is passed to the super class constructor,

in line 6 and 7, the members base_address_ and num_pes_ are initialized, and in line 8 to 11, pes_, the

vector of PEs, is initialized by calling the three-argument version of the sc_vector constructor.

The first argument is the base name for the vector elements and the second argument the number of vector

elements. The third argument is the custom creator specified as a lambda expression here. It starts with the capture

definition [=], i.e. all variables are accessible in the lambda function body and captured by value. Then, we have

the parameter list consisting the name and index parameters as required for all sc_vector custom creators.

Finally, there is the lambda function body. The return type can be omitted because we have only a single return

statement. In the function body, all we have to do is creating a simple_pe object with the desired constructor

arguments and returning it. Note that we can use lambda parameters (nm and i), members of simple_node

(base_address_)3, as well as parent constructor parameters (tf) here.

With this, we have a very simple and compact method to define custom creators for sc_vector. This simple

form of lambda expressions is sufficient in most cases because the most common usage scenario for custom

creators is passing arguments to the element constructor.

V. BINDING VECTORS WITH SC_ASSEMBLE_VECTOR AND AUTO

Next, we want to look at binding of vectors. In our use case, we look again into simple_node. Figure 2

shows a simplified structure of such a module. As mentioned in Section III, a simple_node contains vectors

of sub-nodes, PEs, and bridges. Each of these components provides a single export for status information and all

of these exports should be bound to a vector of exports in the simple_node module.

3 Using members to initalize other members should be done with care; it can go wrong if the members are

declared in the wrong order.

1 simple_pe(sc_core::sc_module_name name

2 , const size_t address

3 , sca_util::sca_trace_file * tf);

1 simple_node::simple_node(sc_core::sc_module_name n

2 , size_t base_addr

3 , size_t num_pes

4 , sca_util::sca_trace_file * tf)

5 : sc_module(n)

6 , base_address_(base_addr)

7 , num_pes_(num_pes)

8 , pes_("pe"

9 , num_pes_

10 , [=](const char * nm, size_t i)

11 { return new simple_pe(nm, base_address_ + i, tf); })

12 , //...

4

Figure 2: Simplified structure of simple_node module

Before we can use the vector binding, we first need sc_assemble_vector. This function can always be

used to assemble a new vector from members of vector elements, e.g., ports of modules in a vector.

In many cases, we can call bind directly on the object returned by sc_assemble_vector or pass it as

argument to another bind call without storing it in a variable. We will see later, that this is not possible in our

case. We need the begin and end iterators of the created assembly. Thus, we need to store it in a variable. To

do so, we need a variable declaration, for the declaration we need the variable type, and here is our next

problem: What is the actual return type of sc_assemble_vector? According to the declaration shown

above, it is sc_vector_assembly<T,MT>. However, what are the exact values for T and MT? This does

not matter in C++11 because we have auto.

A. Type Deduction with auto

Variable declarations with explicitly specified type are very hard in some cases because of the massive use of

template types and template metaprogramming techniques in today’s C++ libraries. To overcome this, C++11

introduced automatic type deduction with auto. This keyword can be used wherever the variable declaration

contains an immediate initialization. It specifies that the type of the variable is automatically deduced from the

initializer using the rules for template argument deduction.

This is especially helpful for complex template types like sc_vector_assembly or iterators.

B. Binding Vector Assemblies with auto

In our platform, we use sc_assemble_vector for the exports mentioned above. The exports in the sub-

nodes, PEs and bridges are not given as vectors, but the components themselves are. The following statement

assembles all members status_ of the simple_pe objects in the vector pes_ to a new vector.

With this, we are able to assemble three new vectors containing the status exports of the sub-nodes, PEs, and

bridges. To bind then, we want to use the bind methods provided by sc_vector.

1 template< typename T, typename MT >

2 sc_vector_assembly<T,MT> sc_assemble_vector

3 (sc_vector<T> & , MT (T::*member_ptr));

1 auto a = 1 + 2; // int

2 auto b = some_function() // return type of some_function()

sc_core::sc_assemble_vector(pes_,&simple_pe::status_);

1 template< typename BindableContainer >

2 iterator bind(BindableContainer&);

3

4 template< typename BindableIterator >

5 iterator bind(BindableIterator , BindableIterator);

6

7 template< typename BindableIterator >

8 iterator bind(BindableIterator , BindableIterator , iterator);

5

The first version of bind is for binding an entire other vector to this vector, the second expects iterators to

determine the first and last element of another vector to be bound4. The last version expects an iterator pointing

to an element of this vector as third argument. This method does not start binding with the first element but with

the element referred to by the iterator passed as third argument. All three methods return an iterator referring to

the first unbound element of this vector after the binding has been performed.

C. Using auto for sc_vector_assembly and iterators

We want to use the third version to bind the three blocks of exports. It allows us to set the iterator returned by

the bind call as starting point for binding the second block. Now, auto comes into play because we need the

begin and end iterators of the vector assembly. Furthermore, we can use auto for the declaration of the

iterator referring to the first unbound element of the vector of exports.

We see the four vectors in this example, the vector of exports status_v_ and the vectors of sub-nodes nodes_,

PEs pes_, and bridges bridges_. Each simple_node, simple_pe, and simple_bridge contains an

export named status_p_. In the first two lines in the listing above, we declare a variable va_n and initialize

it with a vector assembly containing the status_p_ exports of all elements of vector nodes_. In line 3, this

assembly is bound to the first elements of status_v_ using its begin and end iterators. In addition, a variable

it_status is declared and initialized as an iterator referring to the first unbound element in status_v_. In

the next two lines 4 and 5, another variable va_pe is declared to hold the vector assembly containing the

status_p_ members of all simple_pe objects contained in pes_. Then, this assembly is bound to

status_v_ in line 6. it_status occurs twice here. On one hand, it is passed to the bind method to define

the starting point for this binding operation. On the other hand, the return value of bind is assigned to it to set it

to the new first unbound element after the binding operation has been performed. Finally, the same is done for the

vector of bridges in lines 7 to 9.

All variables that need to be declared here can be declared with auto. This avoids unnecessary typing of long

type names and thinking about template arguments. Altogether, this results in a very compact way to implement

the binding.

D. Using auto for loop iterators

Another very helpful use-case for auto is the initialization of iterators in for loops. Let us assume that we want

to loop over the elements of the vector of exports mentioned above. Without auto, we would have to write the

following.

With auto, we can reduce this to

4 Like in other iterator based operations, the method starts binding with the element referred to by the first

argument and does not bind any element including or following that referred to by the second argument.

1 auto va_n =

2 sc_core::sc_assemble_vector(nodes_,&simple_node::status_p_);

3 auto it_status = status_v_.bind(va_n.begin(), va_n.end());

4 auto va_pe =

5 sc_core::sc_assemble_vector(pes_,&simple_pe::status_p_);

6 it_status = status_v_.bind(va_pe.begin(), va_pe.end(), it_status);

7 auto va_br =

8 sc_core::sc_assemble_vector(bridges_,&simple_bridge::status_p_);

9 it_status = status_v_.bind(va_br.begin(), va_br.end(), it_status);

1 for (sc_core::sc_vector<

2 sc_core::sc_export <

3 sc_core::sc_signal_out_if<int> > >::iterator

4 it = status_v_.begin();

5 it < status_v_.end();

6 ++it) {

7 ...

1 for (auto&& it = status_v_.begin();

2 it < status_v_.end();

3 ++it) {

4 ...

6

And with the range-based for-loop feature introduced in C++11 as well, we can write this even more compact:

Writing compact code like that does not only lead to less typing during the implementation. The result is easier to

understand and to maintain as well.

VI. FUNCTION CALL AS TEMPLATE ARGUMENT WITH CONSTEXPR

The last feature we want to discuss is the possibility of doing more advanced calculations in template argument

lists.

Template classes are used very widely in SystemC; not only with type parameters but as well with integer

parameters. Examples are sc_bv<W>, sc_lv<W>, or sc_int<W>. Since template arguments have to be

compile time constant, expressions that can be used here are very limited. In C++03, it is possible to use literals

or constants of build-in C types and basic operators such as +, -, or * in such expressions. It was not allowed to

call functions or use complex types.

In our platform, this leads to a problem because we need an sc_bv with a width equal to the number of bits

required to represent a given integral number. To calculate this, we need to calculate the binary logarithm of the

number and this calculation requires a loop statement. Loop statements are not compile time constant and are not

allowed to be used in a template argument list. An implementation would be possible with template meta-

programming expressions but this is very complicated and error-prone.

C++11 introduces relaxed constant expressions to overcome this and they are further relaxed in C++14.

A. Relaxed Constant Expressions with constexpr

Constant expressions in C++ are expressions like 4+5 that can be evaluated by the compiler. A major novelty in

C++11 is that function calls are allowed in constant expressions as long as the function is specified as

constexpr and fulfills the requirements for constexpr functions. The main requirements are that the

function must have a non-void return type and the body may contain only declarations, null statements and a

single return statement. All expressions therein have to be constant expressions themselves. A more complete list

of the requirements can be found in [3].

In C++14, these limitations are further relaxed. For instance, conditional statement and loop statements are

allowed now as well.

B. Implementing log2(n) as Constant Expression

 The implementation of the binary logarithm is very simple now. We declare a function log2 as constexpr

and its body contains a single return statement only. The loop is implemented by a recursive call to log2.

Now, we can use the function log2 in the initialization of other constants or as template argument.

The further relaxed limitations for constant expressions in C++14 enable the implementation of the same

function as well with an if-statement or a while-loop.

1 for (auto&& it : status_v_) {

2 ...

1 constexpr int log2(int a)

2 {

3 return (a > 0) ? 1 + log2(a >> 1) : 0;

4 }

1 static const int c1 = log2(256);

2 sc_dt::sc_bv<log2(c1)> var;

1 constexpr int log2_if(int a)

2 {

3 if (a > 0)

4 return 1 + log2(a >> 1);

5 else

6 return 0;

7 }

7

In SystemC, this feature is very valuable for the calculation of widths of bit vectors (sc_bv, sc_lv) or

arbitrary sized integers (sc_int, sc_uint, sc_fixed, …).

VII. OUTLOOK: EXTENDING SC_VECTOR TO SUPPORT INITIALIZER LISTS AND PUSH_BACK

Finally, we want to discuss possible extensions of sc_vector to support other methods to populate the vector.

A. std::initializer_list in C++11

Initializer lists5 are well known in C-style arrays: A comma-separated list of objects in braces.

This concept is extended in C++11 by introducing a template class:

This allows instantiating initiator lists as objects and using them as parameters, for instance in constructors. An

object of type std::initializer<T> encapsulates an array of objects of type const T and gives access to

its elements. Most container classes in the C++ Standard Library like std::vector or std::list support

this already by providing a constructor with an initializer list parameter.

B. std::initializer_list and sc_vector

To support initializer lists in sc_vector, we need to add an according constructor. The implementation of the

constructor body is no problem. We can iterate over the initializer list and initialize the internal data structure in

sc_vector with its elements. But, the element type of the std::initializer_list is a bit more

problematic. In general, the lifetime of the array elements in an initiator list is bound to the initializer list object

itself, and as a constructor argument, they are destructed by the end of the constructor. As a result, we have to

copy the array elements, but this is not possible for SystemC objects because SystemC objects cannot be copied.

A way to overcome the prohibition to copy SystemC elements is using an initializer list of pointers. A constructor

declaration could look like:

With this, we need to provide a list of pointers to the constructor like in the following example.

The realization of this extension can be done with very little effort. All that needs to be done is the implementation

of the new sc_vector constructor. However, it has drawbacks. The syntax is a bit strange because we have to

use new in the list, and we cannot check if all the pointers are valid. When the user passes a pointer to a temporary

to the list, the vector will not notice until it tries to dereference the pointer ending up with a memory access

violation.

5 Not to be confused with member initializer list which part of a constructor definition.

1 constexpr int log2_loop(int a)

2 {

3 int ret = 0;

4 while (a > 0)

5 {

6 a >>= 1;

7 ++ret;

8 }

9 return ret;

10 }

int my_array[] = { 1 , 2 , 3 , 42 };

template< class T > class initializer_list;

1 template < typename T >

2 class sc_vector : //...

3 {

4 sc_vector(std::initializer_list< T* > elements);

5 // ...

1 sc_core::sc_vector< my_mod_t > v =

2 { new my_mod_t("ab"), new my_mod_t("cd"), new my_mod_t("ef") };

8

C. Supporting push_back in sc_vector

Another method to append elements to a std::vector is using push_back. The method appends the object

given as argument to the vector. This is unsupported in sc_vector because it requires copying objects as well. In

the following, we outline a way to allow this for pushing temporaries into a vector. It relies on the so-called rvalue

references and move semantics introduced in C++11. Explaining rvalue references and move semantics in detail

would go far beyond the scope of this paper. A more detailed description of these concepts can be found in [4].

In short, an rvalue is a temporary object, i.e. an object returned by a function or explicit constructor call and not

assigned to an identifier. Rvalue references, identified by T&&, are non-const references to rvalues, i.e. references

to modifiable temporaries. This allows the implementation of move constructors that take an rvalue reference as

argument and ‘steal’ it. Instead of copying the argument to the new object, its content is moved to the new object

and the argument may be left empty. In earlier C++ versions, it was not possible to distinguish between normal

copy operations and copying from a temporary. Thus, initializing an object with a temporary requires a copy of

the temporary and all its content because of the temporary’s limited lifetime. With move, we can avoid such

unnecessary deep copies by moving the temporary’s content to the new object.

To support this, we need two things. The first is a push_back method in sc_vector with an rvalue reference

parameter:

The second thing requires more effort: We have to make the supported element types MoveConstructible. In detail,

this means implementing move constructors for all classes of SystemC objects that may be used as elements of

sc_vector. This contains implicitly the definition of a move semantics for these objects and answering

questions like:

- What members have to be copied and what members can be moved?

- What happens to the argument object or how does an ‘empty’ object look like?

- What bookkeeping tasks have to be performed regarding the SystemC object hierarchy?

When these questions are answered and the according constructors are provided, we can push temporaries to an

sc_vector as follows:

VIII. CONCLUSION

We presented an implementation example that uses new C++ features introduced in C++11 and C++14 in

combination with sc_vector to facilitate the automated instantiation of SystemC models. The practical use of

these features for SystemC designers has been shown by code examples. Finally, we discussed the implementation

of a support for initializer lists and push_back in sc_vector as an outlook to future work.

REFERENCES

[1] P. Knocke, R. Görgen, J. Walter, D. Helms, and W. Nebel, „Using early power and timing estimations

of massively heterogeneous computation platforms to create optimized HPC applications”, Proceedings

of 2014 International Conference on Embedded and Ubiquitous Computing - EUC 2014.

[2] IEEE Computer Society, “IEEE Standard for Standard SystemC Language Reference Manual”, IEEE

Std 1666-2011, Jan 2012.
[3] “C++ Reference: constexpr specifier”, http://en.cppreference.com/w/cpp/language/constexpr

[4] Scott Meyers, “Effective Modern C++”, O’Reilly Media 2014, ISBN 1-491-90399-5

1 template < typename T >

2 class sc_vector : //...

3 {

4 push_back(T&& element);

5 // ...

1 sc_core::sc_vector< my_mod_t > v("my_mod_vector");

2 v.push_back(my_mod_t("ab"));

3 v.push_back(my_mod_t("cd"));

http://en.cppreference.com/w/cpp/language/constexpr

	I. Introduction
	II. sc_vector
	III. Use Case
	IV. Creation of Vector Elements with Anonymous Functions
	A. Anonymous Function (Lambda)
	B. Populating the vector of PEs

	V. Binding Vectors with sc_assemble_vector and auto
	A. Type Deduction with auto
	B. Binding Vector Assemblies with auto
	C. Using auto for sc_vector_assembly and iterators
	D. Using auto for loop iterators

	VI. Function Call as Template Argument with constexpr
	A. Relaxed Constant Expressions with constexpr
	B. Implementing log2(n) as Constant Expression

	VII. Outlook: Extending sc_vector to Support Initializer Lists and push_back
	A. std::initializer_list in C++11
	B. std::initializer_list and sc_vector
	C. Supporting push_back in sc_vector

	VIII. Conclusion
	References

