
Automated Specification Driven Verification 

by Generation of  

SystemVerilog Assertions  
 

Ferdinando Pace 
SENSIRION AG 

 

 
Abstract-In this paper, a tool is described that automatically generates both testbench and SystemVerilog assertions 

checking the signal timing specified in Excel format. Such timing specifications can be dependent on programmable on-

chip parameters (e.g. A/D converter settling time, chopping frequency, filter oversampling ratio) and the generated 

SystemVerilog assertions cover exhaustively all parameter combinations. Multi-clocked timing specifications are also 

supported. Moreover, the method used to specify the timing provides a compact description for long timing sequences, e.g. 

periodic signals.  The tool is used to verify signal timings specified to drive an A/D converter inside a sensor chip 

developed by SENSIRION. In general, this tool can be used to verify signal timing specifications of analog/mixed-signal or 

digital IPs. 

 

I. INTRODUCTION 

Analog/mixed-signal IPs (e.g. A/D converters) often require complex control signal timing sequences. Such 

timing sequences can also be dependent on programmable on-chip parameters (e.g. settling time, chopping frequency 

and oversampling ratio) and more than one clock source (e.g. switched-capacitor filter where several clock edge 

combinations are used). 

Figure 1 illustrates a practical example of a timing sequence for an A/D converter using 4 phases (IDLE, RESET, 

SETTLING, CONVERSION) in which 3 signals (Reset, Settling, Chop) are driven according to timing specification 

expressed in clock cycles. A phase in which duration is not a single number indicates a programmable parameter: 

Settling can last 2 or 4 clock cycles,  period of Chop is 4 or 8 clock cycles, Chop can toggle for 32 or 64 clock 

cycles.  

Clearly, the verification effort increases significantly depending on the number of parameter combinations 

allowed.  

 

R e s e t

S e tt lin g

C h o p

3
2
4

4
8

3 2
6 4

P H A S E ID L E R E S E T S E T T L IN G C O N V E R S IO N

D u ra t io n
In  c lo c k  c y c le s

 
 

Figure 1. Example of timing sequence  

required by an A/D converter   

 

Typically, the verification challenge involves the following steps:  

 The Specification Writer understands and writes the IP timing sequence in the appropriate format.  

 The Design Engineer implements the RTL code that generates the IP timing sequence. 

 The Verification Engineer verifies that the signal timing generated by the RTL code fulfills the 

specification for all possible parameter combinations. 

 

This process is very critical because it relies on flawless communication and depends on error prone subjective 

generation and interpretation of the specification that could lead to unverified timing sequences with the risk of 

undetected design errors. 

 



Several verification methods are available: 

 Visual comparison of the timing diagram generated by the RTL design with the timing diagram 

produced by the Specification Writer or signal waveforms produced by the IP level testbench: this visual 

method is error prone by nature. 

 Semi-automated comparison with specific EDA tools (e.g. SimCompare tool by Cadence) of the 

simulation database generated by the RTL design with the simulation database generated by the IP level 

testbench: the comparison set-up is tedious. Moreover, log files generated by EDA tools have to be 

analyzed carefully otherwise there is the risk of misinterpretation of warning messages that hide key 

comparison information. 

 Assertions development (e.g. Verilog, SystemVerilog, PSL) to verify the timing diagram: the 

handcrafted development of assertions is time consuming especially if the number of assertions is 

dependent on programmable on-chip parameters.  

 

Obviously, overlooked specification errors and wrong analysis of simulation database comparisons can cause 

costly silicon respins.   

 

In order to prevent this, we need a rigorous flow from the objective specification to the verification.  

This flow is ideally implemented using an automated tool which satisfies the following requirements: 

1. Unique, objective, unambiguous description of specification 

2. User friendly, ideally an automated flow once the specification is available 

3. Cheap, open source tools 

4. Easy to integrate into existing project simulation environment 

5. Flexible, it accepts programmable on-chip parameters, multiple clock sources  

6. Exhaustive, all possible combinations for programmable on-chip parameters are covered  

7. Self-checking, automatically generated assertion statements can be tested stand-alone before being 

integrated into the simulation environment 

  

This paper proposes a tool which widely satisfies above requirements. It consists of the following sections: 

Section II gives a description of the tool. Section III shows a few signal timing scenarios together with the 

corresponding SystemVerilog assertions and the testbench waveforms produced by the tool. Section IV analyzes the 

results achieved using the tool. Section V is the final summary.   

 

 

II. TOOL DESCRIPTION 

This section describes the ATG (“Assertion and Testbench Generator”) tool. A flow diagram of ATG is given in 

Figure 2.  

XLS

Parameters ATG System Verilog
Assertions

Testbench

Clocks

Timings 

Assertion
 

 
Figure 2. Flow diagram 

 

In summary, the tool accepts specifications expressed with one or more files written in the Microsoft Excel format 

(XLS) to generate as outputs a Verilog testbench and SystemVerilog assertions. 

 

II a) Inputs to ATG  

 

As input, ATG requires an XLS file composed of 4 sheets: 

 

1)  The Parameters sheet describes all signals which affect the specification of a signal inside the IP. Table 1 is 

a Parameters sheet example.  



REGISTER HIERARCHY `DACQ.DAcqCfg2RegxDP `DACQ.DAcqCfg1RegxDP `DACQ.DAcqAdvCfgRegxDP `DACQ.DAcqAdvCfgRegxDP 

SIGNAL NAME SE OS CH CM 

SIGNAL WIDTH  [2:0] [1:0]  

Values 

0 0 0 0 

1 1 1  

 2 2  

 3   

 4   

 5   

 6   

 7   

 
Table 1. Parameters sheet example 

 

2)  The Clocks sheet describes clocks which affect the signal specifications. Table 2 is a Clocks sheet example 

and Figure 3 shows the corresponding waveforms.  

 

 PClkxCI DclkxCI 

phase 
delay 0ns 1ns 

high  
pulse 5ns 7ns 

low 
pulse 5ns 3ns 

 
Table 2. Clocks sheet example 

 

 

Figure 3. Clocks sheet waveforms generate by Table 2  

 

3)  The Timings sheet describes the timing sequence specification for each signal. Below follows a description 

of the sheet structure. An example is given in Table 3. 

o The 1
st
 column describes the boolean condition under which the SystemVerilog assertion property 

terminates (DISABLE condition).  

o The 2
nd

 column describes the boolean condition under which the SystemVerilog assertion property 

triggers (TRIGGER condition)  

o The 3
rd

 column describes the label used by ATG to build SystemVerilog assertion for a group of 

rows. This label can be omitted if a group of rows is not required. 

o The 4
th

 column describes the repetition factor for the group of rows specified in the 3
rd

 column. 

This value can be omitted if a group of rows is not required. All consecutive rows which have the 

same values for both 3
rd

 and 4
th

 columns are grouped together to build the SystemVerilog assertion. 

The following values are valid for the repetition factor (please refer to [1] for more details about 

valid SystemVerilog assertion constructs): 

 Sequence repetition expression allowed by SystemVerilog language: 

 [* N  ] where N is a positive integer  

 [* N : M ] where N, M are positive integers 

 [* N : $ ] where N is a positive integer 

 [= N ] where N is a positive integer 

 [-> N  ] where N is a positive integer 

 Arithmetical function of parameters defined in the Parameters sheet.   



o The 5
th

 column describes the label used by ATG to build SystemVerilog assertion for the 

corresponding row. This label can be also omitted. 

o The 6
th

 column describes the repetition factor for the corresponding row. The same values as 

described for the 4
th

 column are valid. 

o The columns from 7
th

 to the one before last describe the signal values for the current row.  

o The last column describes the event at which:  

 The signal values for the current row are generated by the testbench (launching event) 

 The signal values for the previous row are checked by the SystemVerilog assertion 

property (capturing event).  

The concept is that the signal values generated by the testbench on the launching event of the 

current row are checked by the assertion property on the capturing event of the next row. This 

convention is introduced to allow the specification of multi-clocked timing diagrams where a 

signal launched on a clock event is checked on the following clock event. The clocks used by 

launching and capturing events may also be different. 

 

 

DISABLE TRIGGER 
Group  
Name 

Group  
Value 

Row  
Name 

Row 
Value Chop Settling Reset EVENT 

Reset==1 $fell(Reset)        @(posedge Clk) 

     [* 3 ] 1’b1 1’b1 1’b0 @(posedge Clk) 

     5*(SE+1) 1’b1 1’b0 1’b0 @(posedge Clk) 

  conversion 2**(2+CH+OS) chop_low 2**(2-CH) 1’b0 1’b0 1’b0 @(posedge Clk) 

  conversion 2**(2+CH+OS) chop_high 2**(2-CH) 1’b1 1’b0 1’b0 @(posedge Clk) 

         @(posedge Clk) 

 
Table 3. Timings sheet example referred to Parameters sheet described in Table 1 

 

4)  The Assertion sheet is the prefix name assigned to the SystemVerilog assertion property.  

 

II b) The ATG tool implementation 

 

The ATG tool is composed of two scripts (see Figure 4) written in the Python language: 

1. Assertion.py generates a SystemVerilog coverage module that contains all SystemVerilog assertions 

generated. The TRIGGER condition extracted from XLS file is used to build the assertions. This 

module is recommended to be plugged into the IP or DUT level simulation environment. 

2. Testbench.py generates a Verilog testbench that calls Assertions.py to generate the SystemVerilog 

assertion properties and, additionally, produces the stimuli to trigger and verify those properties. An 

artificial TRIGGER condition (Assertion_Trigger signal, see Figure 6) with non-overlapped 

SystemVerilog implication operator (“¦=>”) is imposed by the script to build the assertions such that it 

is easier to verify the assertions without the burden to generate the TRIGGER condition specified in 

XLS file. The testbench is very useful if the user would like to debug the generated assertions with the 

help of signal waveforms. Moreover, the signal waveforms generated by the testbench can be used as 

snapshot for reference timing specifications. 

 

The tool accepts more than one XLS file as a specification if the XLS files differ in the timing sheet only. This 

can be very useful to collect several timing specifications in a single module coverage (or a single testbench) file. 

 

Below are given examples about how to execute the scripts: 

 Assertion.py –i DSP –x Specification1.xls –o CoverageDSP.sv 

 Testbench.py –i DSP –x Specification1.xls –x Specification2.xls –o Testbench.sv  

 



ATGXLS

Parameters

Clocks

Timing 

Assertion

XLS

Parameters

Assertion.py

Testbench.sv

Clocks

Timings 

Assertion

Testbench.py

Coverage
<IP_NAME>

.sv

Simulator &
Waveform

Signal 
Waveform
Snapshot

Simulation
Environment

 
 

Figure 4. Detailed tool flow diagram 

 

 

II c) Outputs from ATG 

 

Figure 5 is an example of a SystemVerilog coverage module that contains all the SystemVerilog assertions 

generated with ATG. Figure 6 is an example of signal waveforms produced by the testbench generated by ATG. 

 

 

 
   Figure 5. SystemVerilog Coverage Module Example 

 

 

 
    

Figure 6. Signal waveforms example related to Figure 5 

 

 

 

 



III. APPLICATION EXAMPLES 

This section describes two example use cases suitable for the application of ATG.  

 

III a) Example 1 

A single clock (CK1) is used. This clock has a period of 10ns and a duty cycle of 50% (see Table 4). In Table 5 are 

specified three parameters (SE, CV and CH). A repetition factor (2**CV) for a group of 2 rows is used in Table 6 to 

describe a periodic signal (A[2]) that has a duty cycle dependent on a parameter (CH).  

 

 CK1 

phase 
delay 0ns 

high  
pulse 5ns 

low 
pulse 5ns 

 
Table 4. Clocks sheet  

 

REGISTER HIERARCHY `DSP `DSP `DSP 

SIGNAL NAME SE CV CH 

SIGNAL WIDTH  [2:0] [2:0] 

Values 
0 1 3 

1 2 5 

 
Table 5. Parameters sheet  

 

DISABLE TRIGGER 
Group  
Name 

Group  
Value 

Row  
Name 

Row 
Value A[2] A[1] A[0] EVENT 

`DSP.A[0]==1 $fell(`DSP.A[0])     1'b1 1'b1 1'b1 @(posedge `DSP.CK1) 

    reset [* 2 ] 1'b1 1'b1 1'b0 @(posedge `DSP.CK1) 

    settling SE+3 1'b1 1'b0 1'b0 @(posedge `DSP.CK1) 

  Conversion 2**CV chop_low 10-CH 1'b0 1'b0 1'b0 @(posedge `DSP.CK1) 

  Conversion 2**CV chop_high CH 1'b1 1'b0 1'b0 @(posedge `DSP.CK1) 

         @(posedge `DSP.CK1) 

 
Table 6. Timings sheet 

 

ATG generates the following SystemVerilog assertion properties from the Parameters and Timings sheets above: 

1. A_CHOP_DSP_SE_0__CV_1__CH_3__ 

2. A_CHOP_DSP_SE_0__CV_1__CH_5__ 

3. A_CHOP_DSP_SE_0__CV_2__CH_3__ 

4. A_CHOP_DSP_SE_0__CV_2__CH_5__ 

5. A_CHOP_DSP_SE_1__CV_1__CH_3__ 

6. A_CHOP_DSP_SE_1__CV_1__CH_5__ 

7. A_CHOP_DSP_SE_1__CV_2__CH_3__ 

8. A_CHOP_DSP_SE_1__CV_2__CH_5__ 

Figure 7 shows the SystemVerilog code generated by ATG for one (A_CHOP_DSP_SE_0__CV_2__CH_3__) of 

the SystemVerilog assertion properties above: 

 



 

Figure 7. SystemVerilog assertion code 

 

Figure 8 shows the testbench waveforms generated by ATG that verifies the SystemVerilog assertion code in 

Figure 7. 

 

 
 

Figure 8. Testbench waveforms 

 

III b) Example 2 

Two clocks (CK1 and CK2) are used (see Table 7). The two clocks have the same period but a different duty 

cycle.  A repetition factor (CH) for a group of 6 rows is used in Table 9 to describe the signals generated by the 

clocks. 

 CK1 CK2 

phase 
delay 0ns 1ns 

high  
pulse 5ns 7ns 

low 
pulse 5ns 3ns 

 
Table 7. Clocks sheet  

 

REGISTER HIERARCHY `DSP.Reg1 `DSP.Reg1 `DSP.Reg2 

SIGNAL NAME SE CV CH 

SIGNAL WIDTH  [2:0] [2:0] 

Values 1 3 5 

 
Table 8. Parameters sheet  

 

DISABLE TRIGGER 
Group  
Name 

Group  
Value 

Row  
Name 

Row 
Value `DSP.A `DSP.B `DSP.C `DSP.D EVENT 

1’b0 $rose(`DSP.D)     1'b0 1'b0 1'b0 1'b0 @(posedge `DSP.CK1) 

    ALLZERO CV 1'b0 1'b0 1'b0 1'b1 @(posedge `DSP.CK1) 

  Conversion CH RISE_A SE 1'b1 1'b0 1'b0 1'b0 @(posedge `DSP.CK1) 

  Conversion CH RISE_B SE 1'b1 1'b1 1'b0 1'b0 @(posedge `DSP.CK2) 

  Conversion CH RISE_C SE 1'b1 1'b1 1'b1 1'b0 @(posedge `DSP.CK1) 

  Conversion CH FALL_C SE 1'b1 1'b1 1'b0 1'b0 @(posedge `DSP.CK2) 

  Conversion CH FALL_B SE 1'b1 1'b0 1'b0 1'b0 @(posedge `DSP.CK1) 

  Conversion CH FALL_C SE 1'b0 1'b0 1'b0 1'b0 @(posedge `DSP.CK2) 

          @(posedge `DSP.CK1) 

 
Table 9. Timings sheet  

 



ATG generates a single SystemVerilog assertion property (A_CHOP_DSP_SE_1__CV_3__CH_5__) from the 

Parameters and Timings sheets. Figure 9 shows the SystemVerilog assertion code generated by ATG. Figure 10 

shows the testbench waveforms generated by ATG to verify the SystemVerilog assertion code. 

 

 

 
Figure 9.  SystemVerilog assertion code 

 

 

Figure 10.  Testbench waveforms 

 

 

IV. CONCLUSIONS 

In this paper, I developed and used ATG to verify the signal timings specified to drive an A/D converter inside a 

sensor chip. The programmable parameters affecting this A/D converter signals were the settling time, the chopping 

frequency, the oversampling ratio, the conversion mode (unlimited or single shot) and a single clock source. The 

number of parameter combinations is 128. ATG generated the SystemVerilog properties covering all combinations 

that were verified with both the testbench generated by ATG and top level simulations. 

ATG was used to produce both example test cases described in the section III with the intention to show how to 

use ATG in different signal timing scenarios. 

The next step is the deployment of ATG to the digital and analog designers in order to collect their feedback for 

the usability of the tool and further improvements required.  

I believe that if a single clock source is required for the specification, ATG is mature enough to specify and 

verify analog/mixed-signal circuits. Moreover, ATG can also be used to build assertion properties and 

SystemVerilog coverage modules required for IP functional verification. 

 

V. SUMMARY 

In this paper, the tool ATG was presented which provides automated specification driven verification by 

generation of SystemVerilog assertions from parametric timing specification. 

It has been shown that the use of ATG to verify complex signal timing sequences can significantly reduce the 

verification effort covering exhaustively the specification given.  

 

ACKNOWLEDGMENT 

I would like to thank Daniel Mueller and Samuel Fuhrer for their very careful and valuable review of the paper. 
 

REFERENCES 
[1] B. Cohen, S. Venkataramanan, A. Kumari and L. Piper, “SystemVerilog Assertion Handbook, 3rd Edition” pp. 23,144 

 
 
 
 
 


