

Automated Specification Driven Verification by Generation of SystemVerilog Assertions Ferdinando Pace, Senior ASIC Designer, SENSIRION AG, ferdinando.pace@sensirion.com

A1. ABSTRACT

The ATG tool is described that automatically generates both testbench and **SystemVerilog assertions** checking signal timing specifications in Excel format.

- The timing specifications can be **dependent on programmable** parameters
- The generated SystemVerilog assertions cover all parameter combinations.
- Multi-clocked timing specifications are supported.
- A compact description for long timing sequences (e.g. periodic signals) is provided.
- ATG is used by SENSIRION to verify signal timings specified to drive an **A/D converter.**
- ATG can be used to verify signal timing specifications of analog/mixed-signal or digital IPs.

A2. PROBLEM: VERIFY COMPLEX SIGNAL TIMING

Analog/mixed-signal IPs often require complex signal timing.

Below it is described a timing sequence for an A/D converter using 4 phases (idle, reset, settling, Conversion) in which 3 signals (RESET, SETTLING, CHOP) are driven according to programmable parameters expressed in clock cycles.

RESET				
SETTLING				
СНОР			 	
Duration In clock cycle	S	← ¹ ₂ →	3 4	$\begin{array}{c} 32 \\ 64 \\ 128 \end{array}$
phase	idle	reset	settling	Conversion

The verification effort increases significantly depending on the number of parameter combinations allowed.

B. SOLUTION What is the Assertion&TestBenchGenerator tool? • INPUT: signal timing specification in XLS format (4 sheets per XLS file) • OUTPUT1: **SVA**ssertions describing the signal timing specification h verifying the **SVA**ssertions OUTPUT2: Testb SPEC2.xls ATG SPEC1.xls Testbench.py tbench.sv 1. Parameters 2. Clocks → SVAssertions.sv Assertion.py 3. Assertion 4. Timings Why to use it ? • Written in Python: open source • Push-button Specification2Verification tool: – Assertion.py -i DSP -x SPEC1.xls -o SVAssertions.sv — Testbench.py -i DSP -x SPEC1.xls -x SPEC2.xls -o Testbench.sv • Easy integration into existing simulation environment • Verify complex, parametric and multi-clocked signal timing specifications • Suitable for AMS IPs (e.g. A/D converter, switched cap filters) E. RESULTS • ATG was used to verify the timing of **chopping** signals, dependent on **several** programmable parameters (reset time, settling time, oversampling ratio, chopping frequency) that were specified to drive an A/D converter in a SENSIRION chip. ATG demonstrated to lower the time required to reach 100% verification coverage: SystemVerilog properties from 3 XLS files were automatically generated to allow the verification of 256 parameter combinations FEDERER SERVE DIRECTION 📕 Ace \ominus 1st Serve 📕 2nd Serve

A3. VERIFICATION CHALLENGE

- Typically, **the verification process** involves the following steps:
- The Specification Writer understands and writes the IP timing specification.
- The Design Engineer implements the RTL code generating the IP timing.
- The Verification Engineer verifies that the signal timing generated by the RTL code fulfills the specification for all possible parameter combinations.

This process is very critical because it relies on flawless communication and depends on error prone subjective generation and interpretation of the specification.

Several **verification methods** are available:

- Visual comparison of the timing diagram generated by the RTL design with the timing diagram produced by the Specification Writer: this visual method is error prone by nature.
- Semi-automated comparison (with specific EDA tools) of the simulation database generated by the RTL design with the simulation database generated **N** by the IP level testbench: **the result analysis is difficult**.
- Assertions development (e.g. Verilog, SystemVerilog, PSL) to verify the timing diagram: the handcrafted development of assertions is time consuming.

A5. AUTOMATED VERIFICATION REQUIREMENTS

A rigorous flow from the objective specification to the verification is required.

This flow is ideally implemented using an automated tool which satisfies the following requirements:

- Unique, objective, unambiguous description of specification
- **User friendly**, ideally an automated flow once the specification is available
- **Cheap**, open source tools
- **Easy to integrate** into existing project simulation environment
- **Flexible**, it accepts programmable on-chip parameters, multiple clock sources
- **Exhaustive**, all possible combinations for programmable on-chip parameters are covered
- Self-checking, automatically generated assertion statements can be tested stand-alone before being integrated into the simulation environment

C. INPUT SHEETS REQUIRED BY ATG

1. Parameters

IP	``	`DSP	`DSP	`DSP
SIGNAL NAME	S	SE	CV	СН
SIGNAL WIDTH			[2:0]	[2:0]
	(C	0	3
values	1	1	1	5
values			2	
2. Clocks			3. As	sertion
CLOCK NAME CK1			A_CHC)P
Phase delay	0ns			
High pulso	Enc			

Parameter combinations:

- SE=0, CV=0, CH=3 2. SE=0, CV=0, CH=5
- 3. SE=0, CV=1, CH=3
- 4. SE=0, CV=1, CH=5
- 5. SE=0, CV=2, CH=3
- SE=0, CV=2, CH=5 🚺
- 7. SE=1, CV=0, CH=3
- 8. SE=1, CV=0, CH=5 9. SE=1, CV=1, CH=3
- 10. SE=1, CV=1, CH=5
- 11. SE=1, CV=2, CH=3
- 12. SE=1, CV=2, CH=5

4. Timings (template)

ow Pulse 5ns

DISABLE	TRIGGER	GROUP NAME	GROUP VALUE	ROW NAME	row Value	SIGNAL A	 SIGNAL N	EVENT
condition	condition							Е
					Rvalue	Svalue	 Svalue	Е
		Gname	Gvalue	Rname	Rvalue	Svalue	 Svalue	Е
		Gname	Gvalue	Rname	Rvalue	Svalue	 Svalue	Е
		Gname	Gvalue	Rname	Rvalue	Svalue	 Svalue	Е
								E

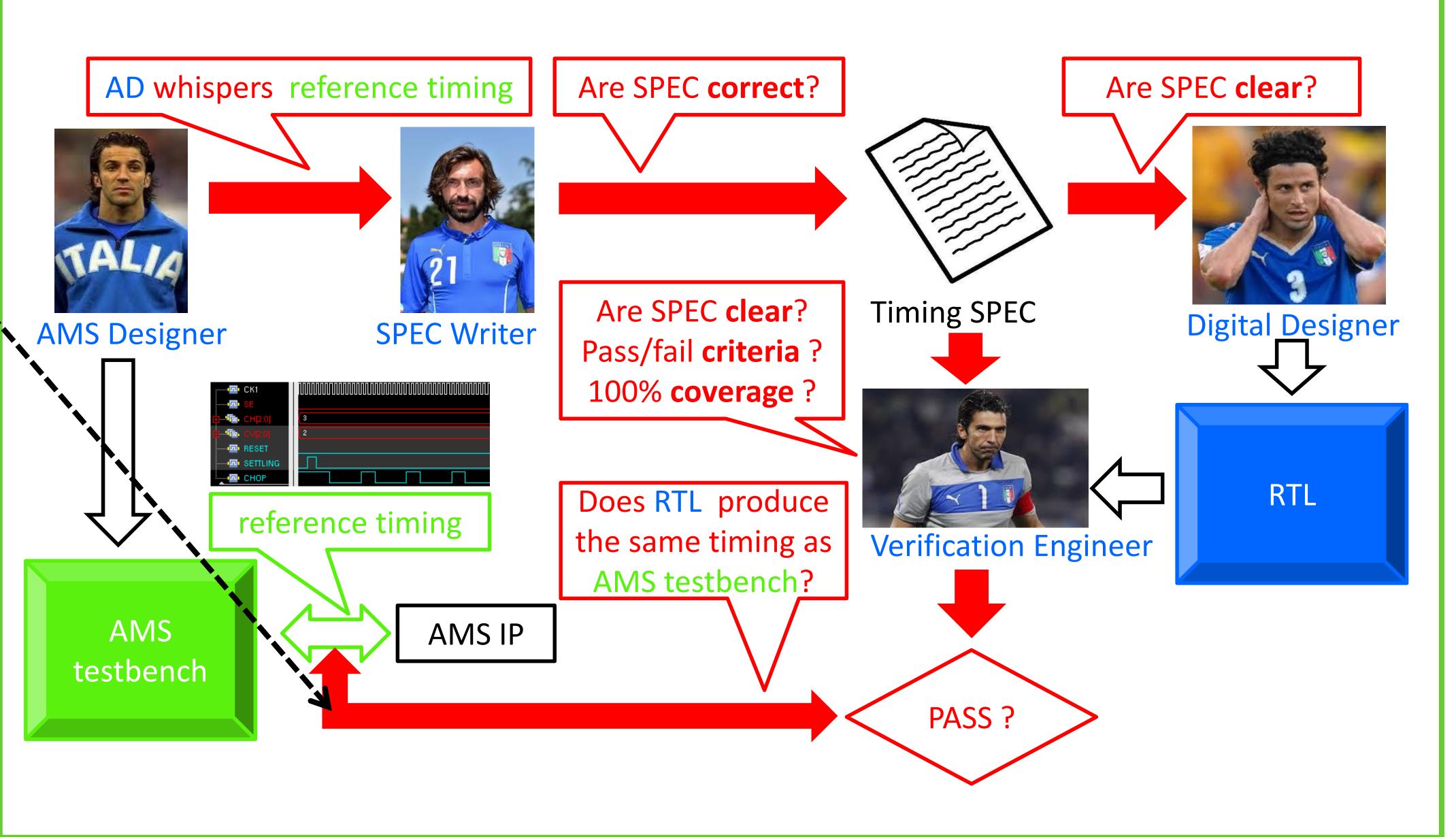
Gvalue, Rvalue:

a) Function of Parameter Sheet

b) Sequence Repetition Expression:

[*N] [* N : M] [* N : \$]

[=N] [-> N]


value: a) Verilog value b) don't care "-"

n capturing event for the <u>previous</u> row E is the as **E** is the **sequence** launching event for the <u>current</u> row

A4. SPECIFICATION2VERIFICATION: HARD TEAMWORK!

Several players involved editing and understanding the specification: time consuming & error prone Several on-chip programmable parameters affect the specification: big effort to reach 100% coverage

=> ATG is the solution !

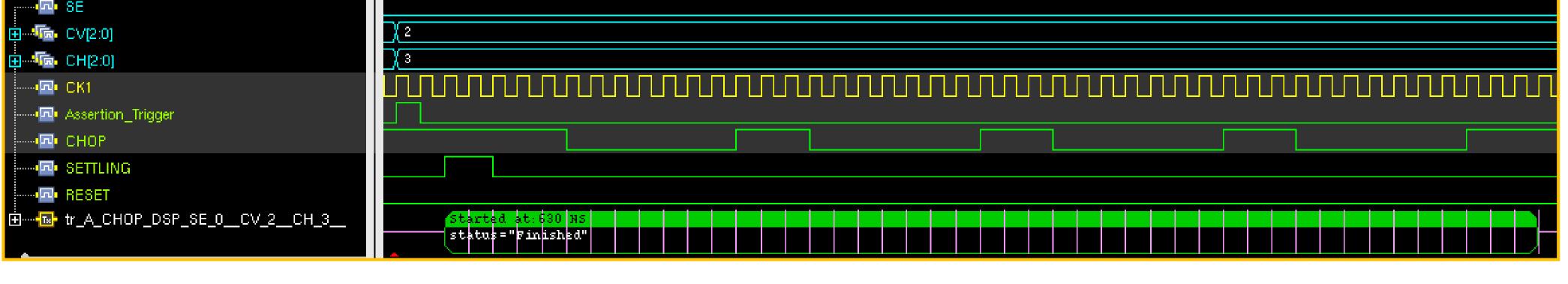
D. EXAMPLE

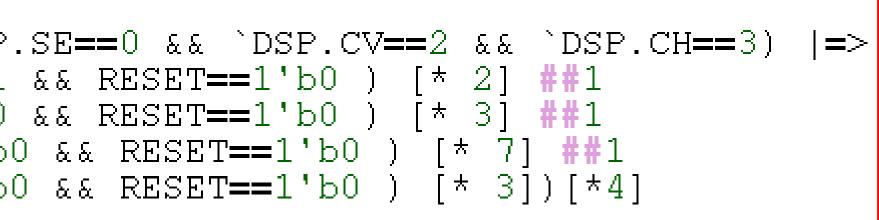
Timings sheet

DISABLE	TRIGGER	GROUP NAME	GROUP VALUE	ROW NAME	ROW VALUE	СНОР	SETTLING	RESET	EVENT
`DSP.RESET == 1	\$fell(Assertion_Trigger)								@(posedge `DSP.CK1)
				reset	[* 2]	1'b1	1'b1	1'b0	@(posedge `DSP.CK1)
				settling	SE+3	1'b1	1'b0	1'b0	@(posedge `DSP.CK1)
		Conversion	2**CV	chop_low	10-CH	1'b 0	1'b0	1'b0	@(posedge `DSP.CK1)
		Conversion	2**CV	chop_high	CH	1'b1	1'b0	1'b0	@(posedge `DSP.CK1)
									@(posedge `DSP.CK1)

SystemVerilog assertion property generated by ATG from:

Timings sheet


E CHOF


·····• RESET

Parameters, Clocks, Assertion sheets in Table C. Parameter values: SE=0, CV=2, CH=3

Ι								
	property A_CHOP_DSP_SE	_0CV_2CH_3;						
	disable iff (`DSP.RESE							
	(@(posedge `DSP.CK1) (<pre>\$fell(Assertion_Trigger) && `DSP.</pre>						
	(posedge)DSP CK1)	(CHOP==1'b1 && SETTLING==1'b1						
		(CHOP==1'b1 && SETTLING==1'b0						
) (CHOP==1'b0 && SETTLING==1'b0						
	@(posedge `DSP.CK1) (CHOP==1'bl && SETTLING==1'b0						
); endproperty							
	,,FFFZ							
	Signal waveforms of the tes	stbench generated by ATG from:						
	• Timings sheet above.							
	s mings sheet above.							
	 Parameters, Clocks, Ass 	sertion sheets in Table C. Parameter valu						
	:							
	⊞	¥ 2						
	亩							
	CK1							

lues: SE=0, CV=2, CH=3