
Automated Seed Selection Algorithm
for an Arbitrary Test Suite

David Crutchfield, Cypress Semiconductor
Brian Craw, Cypress Semiconductor
Jim Sharpe, Cypress Semiconductor

Brandon Skaggs, Cypress Semiconductor

Agenda
• Randomizable Test Benches and Coverage
• Verification Management System and Randomization
• Test Ranking
• Blindly Choosing Seeds
• Proposed Algorithm
• Results (the good and the bad)
• Future Work

Randomizable Test Benches
and Coverage

• Constrained Random Verification
– Methodology to apply pseudo-random stimulus to the DUT

• SystemVerilog provides coverage construct to measure completeness
– Pseudo-random stimulus applied until 100% of coverage metrics met

• SystemVerilog seed used as start value of randomization
• Random stability is not guaranteed

– Coverage from seeds can change due to many factors
• New/Modified constraints, DUT changes, Simulator versions

• Large regressions require a methodology to efficiently select seeds

Verification Management
System and Randomization

• VMS – Verification Management System
• Established a standard approach to:

– Design and test bench organization
– Specification of tools arguments
– Test list creation
– Regression status / coverage

dut.files, tb.files,
vms.cfg, test-list,
command-line,
pre/post scripts

UCDB, HTML,
Reports, logs,
email, waves,

debug, test-lists
VMS_RUN

INPUT OUTPUT

Verification Management
System and Randomization

• VMS SV seed control and randomization

Option Description

-num_seeds Specifies the number of SV seeds to generate

-rand_seed Use this argument to seed the random number generator

-sv_seed Specifies explicitly which SV seed to use (no generation)

test1 -num_seeds 10 -rand_seed random //10 random seeds
test2 -num_seeds 3 -rand_seed 1000 //seed generator with 1000
test3 -sv_seed 12345678 //SV seed of 12345678

Test Ranking
• Mentor Questa stores coverage in UCDB (Unified Coverage DataBase)
• UCDB for each test => merged UCDB
• UCDBs ranked for coverage by Questa VM (Verification Management)

– Separated into contributing and non-contributing
ranktest.contrib
<path>/test1_203493581.ucdb
<path>/test1_2301405129.ucdb
<path>/test1_271092741.ucdb
<path>/test2_3359947225.ucdb
<path>/test2_4247070545.ucdb

ranktest.noncontrib
<path>/test1_2055117863.ucdb
<path>/test1_1637509452.ucdb
<path>/test2_3444222990.ucdb
<path>/test3_12345678.ucdb

Blindly Choosing Seeds
• Little thought put into test contribution to coverage
• Just choose X number of seeds per test for each regression

– Shotgun approach
– Leads to large coverage redundancy among test-seed pairs
– Wastes licenses and hardware resources

Regression 1 test list
test1 -num_seeds 10 -rand_seed random
test2 -num_seeds 10 -rand_seed random
test3 -num_seeds 10 -rand_seed random

Regression 2 test list
test1 -num_seeds 10 -rand_seed random
test2 -num_seeds 10 -rand_seed random
test3 -num_seeds 10 -rand_seed random

Regression 3 test list
test1 -num_seeds 10 -rand_seed random
test2 -num_seeds 10 -rand_seed random
test3 -num_seeds 10 -rand_seed random

Proposed Algorithm
• Key Components:

– Eliminate tests that don’t contribute
– Reward tests with more seeds in

proportion to their contribution
– Low contributing tests provide diminishing

returns over time

Test List
(T tests)

Generate Test List with Seeds

Xtotal = T tests * S seeds

Launch X
Simulations

Rank Tests for
Contribution

Coverage
100%

Y

Identify Contributing
Tests (CT) from Current

Regression

N

Build Test List Based on Optimum
Coverage Contribution

foreach Test (Tn)
 Snew = Scontr * Ws
 if Scontr == S
 Snew = Snew * Wfc

Xtotal = T tests * Snew seedsMerge X Test UCDBs
With Previous Merged

UCDB

Generate Final
Contributing Test List

Done

N Coverage
Increase > Thc

Y

Proposed Algorithm
• Initial test list with initial seed count

Test List
(T tests)

Generate Test List with Seeds

Xtotal = T tests * S seeds

Launch X
Simulations

Rank Tests for
Contribution

Coverage
100%

Y

Identify Contributing
Tests (CT) from Current

Regression

N

Build Test List Based on Optimum
Coverage Contribution

foreach Test (Tn)
 Snew = Scontr * Ws
 if Scontr == S
 Snew = Snew * Wfc

Xtotal = T tests * Snew seedsMerge X Test UCDBs
With Previous Merged

UCDB

Generate Final
Contributing Test List

Done

N Coverage
Increase > Thc

Y

Proposed Algorithm
• Test UCDBs are Merged and Ranked

Test List
(T tests)

Generate Test List with Seeds

Xtotal = T tests * S seeds

Launch X
Simulations

Rank Tests for
Contribution

Coverage
100%

Y

Identify Contributing
Tests (CT) from Current

Regression

N

Build Test List Based on Optimum
Coverage Contribution

foreach Test (Tn)
 Snew = Scontr * Ws
 if Scontr == S
 Snew = Snew * Wfc

Xtotal = T tests * Snew seedsMerge X Test UCDBs
With Previous Merged

UCDB

Generate Final
Contributing Test List

Done

N Coverage
Increase > Thc

Y

Proposed Algorithm
• Quit when Coverage Target or Threshold

is met

Test List
(T tests)

Generate Test List with Seeds

Xtotal = T tests * S seeds

Launch X
Simulations

Rank Tests for
Contribution

Coverage
100%

Y

Identify Contributing
Tests (CT) from Current

Regression

N

Build Test List Based on Optimum
Coverage Contribution

foreach Test (Tn)
 Snew = Scontr * Ws
 if Scontr == S
 Snew = Snew * Wfc

Xtotal = T tests * Snew seedsMerge X Test UCDBs
With Previous Merged

UCDB

Generate Final
Contributing Test List

Done

N Coverage
Increase > Thc

Y

Proposed Algorithm
• Based on Ranking Results identify only

Contributing Tests
• Start with this for new test list

Identify Contributing
Tests (CT) from Current

Regression

Test List
(T tests)

Generate Test List with Seeds

Xtotal = T tests * S seeds

Launch X
Simulations

Rank Tests for
Contribution

Coverage
100%

Y

Identify Contributing
Tests (CT) from Current

Regression

N

Build Test List Based on Optimum
Coverage Contribution

foreach Test (Tn)
 Snew = Scontr * Ws
 if Scontr == S
 Snew = Snew * Wfc

Xtotal = T tests * Snew seedsMerge X Test UCDBs
With Previous Merged

UCDB

Generate Final
Contributing Test List

Done

N Coverage
Increase > Thc

Y

Proposed Algorithm
• Reward based on Contribution
• What should Reward be?
• For paper, Reward is multiplied if

maximum Contribution, “Double Down”
Build Test List Based on Optimum

Coverage Contribution

foreach Test (Tn)
Snew = Scontr * Ws
if Scontr == S

Snew = Snew * Wfc

Xtotal = T tests * Snew seeds

Test List
(T tests)

Generate Test List with Seeds

Xtotal = T tests * S seeds

Launch X
Simulations

Rank Tests for
Contribution

Coverage
100%

Y

Identify Contributing
Tests (CT) from Current

Regression

N

Build Test List Based on Optimum
Coverage Contribution

foreach Test (Tn)
 Snew = Scontr * Ws
 if Scontr == S
 Snew = Snew * Wfc

Xtotal = T tests * Snew seedsMerge X Test UCDBs
With Previous Merged

UCDB

Generate Final
Contributing Test List

Done

N Coverage
Increase > Thc

Y

Results (Methods Tried)
• Two different test benches tried with 10 tests each
• Methods tried

– Shotgun
Ask for ten random seeds per test for each regression

– Algorithm with weighting factors; Ws=2, Wfc=1 (no double down)
Reward all contributing tests by giving them 2x more seeds

– Algorithm with weighting factors; Ws=2, Wfc=2 (double down)
Reward all contributing tests by giving them 2x more seeds
Reward all maximum contribution tests with 2x more seeds

• Thc=0 for all methods (Run until incremental coverage is 0)

Results TB1 – Shotgun
• 100 tests each regression, regardless of contribution
• 900 total tests executed

Test # Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 Reg 9 Totals Seeds Kept
Per Test

T1 10 10 10 10 10 10 10 10 10 90 13
T2 10 10 10 10 10 10 10 10 10 90 41
T3 10 10 10 10 10 10 10 10 10 90 8
T4 10 10 10 10 10 10 10 10 10 90 38
T5 10 10 10 10 10 10 10 10 10 90 20
T6 10 10 10 10 10 10 10 10 10 90 6
T7 10 10 10 10 10 10 10 10 10 90 8
T8 10 10 10 10 10 10 10 10 10 90 9
T9 10 10 10 10 10 10 10 10 10 90 6
T10 10 10 10 10 10 10 10 10 10 90 11
Totals 100 100 100 100 100 100 100 100 100 900 160

Results TB1 – Shotgun
• 160 seeds kept
• 77.47% coverage after 51 hours

Regr # Coverage % Tests Run Contributing Tests
per Iteration

Final Rank
Contribution

Total Wall
Clock Time (s)

Total Kept
Seeds

1 76.05 100 69 19 22612.77 69
2 76.26 100 52 16 44114.21 101
3 76.74 100 33 17 65462.10 120
4 76.98 100 30 16 86872.50 135
5 76.99 100 30 19 107173.24 146
6 77.04 100 28 22 128018.57 158
7 77.24 100 27 24 147417.34 159
8 77.47 100 14 12 166907.69 158
9 77.47 100 15 15 186266.24 160

Results TB1 – Ws=2, Wfc=1
• Tests per regression depends on contribution
• Stopped after Reg 6
• 600 total tests executed

Test # Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 Reg 9 Totals Seeds Kept
Per Test

T1 10 16 14 2 2 2 N/A N/A N/A 46 13
T2 10 20 34 38 30 16 N/A N/A N/A 148 41
T3 10 10 6 2 0 0 N/A N/A N/A 28 8
T4 10 20 30 36 32 20 N/A N/A N/A 148 38
T5 10 16 18 14 6 4 N/A N/A N/A 68 20
T6 10 6 2 0 0 0 N/A N/A N/A 18 6
T7 10 10 6 2 0 0 N/A N/A N/A 28 8
T8 10 14 4 2 0 0 N/A N/A N/A 30 9
T9 10 14 8 4 4 0 N/A N/A N/A 40 6
T10 10 12 12 8 2 2 N/A N/A N/A 46 11
Totals 100 138 134 108 76 44 0 0 0 600 160

Results TB1 – Ws=2, Wfc=1
• 160 seeds kept
• 78.00% coverage after 40 hours
• Shotgun coverage of 77.47% met after Reg 3 (24 hours)

Regr # Coverage % Tests Run Contributing Tests
per Iteration

Final Rank
Contribution

Total Wall
Clock Time (s)

Total Kept
Seeds

1 76.05 100 69 27 22612.77 69
2 76.68 138 67 35 54187.42 114
3 77.55 134 54 37 87251.37 134
4 77.78 108 38 25 113711.20 148
5 78.00 76 22 23 133868.65 152
6 78.00 44 13 13 144371.49 160
7 N/A N/A N/A N/A N/A N/A
8 N/A N/A N/A N/A N/A N/A
9 N/A N/A N/A N/A N/A N/A

Results TB1 – Ws=2, Wfc=2
• Tests per regression depends on contribution
• Stopped after Reg 6
• 666 total tests executed

Test # Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 Reg 9 Totals Seeds Kept
Per Test

T1 10 16 12 8 4 6 N/A N/A N/A 56 12
T2 10 40 48 40 34 20 N/A N/A N/A 192 51
T3 10 10 4 2 0 0 N/A N/A N/A 28 6
T4 10 40 58 44 24 10 N/A N/A N/A 186 45
T5 10 16 10 6 2 0 N/A N/A N/A 44 14
T6 10 6 6 2 0 0 N/A N/A N/A 24 5
T7 10 10 2 0 0 0 N/A N/A N/A 22 6
T8 10 14 6 6 2 0 N/A N/A N/A 38 7
T9 10 14 6 2 0 0 N/A N/A N/A 32 7
T10 10 12 12 6 4 2 N/A N/A N/A 46 10
Totals 100 178 164 116 70 38 0 0 0 666 163

Results TB1 – Ws=2, Wfc=2
• 163 seeds kept
• 79.02% coverage after 47 hours
• Shotgun coverage of 77.47% met after Reg 2 (19 hours)

Regr # Coverage % Tests Run Contributing Tests
per Iteration

Final Rank
Contribution

Total Wall
Clock Time (s)

Total Kept
Seeds

1 76.05 100 69 28 22612.77 69
2 77.78 178 82 41 67125.55 126
3 78.03 164 58 35 111433.47 142
4 78.63 116 35 29 141276.32 151
5 79.02 70 20 19 159551.93 156
6 79.02 38 11 11 169013.31 163
7 N/A N/A N/A N/A N/A N/A
8 N/A N/A N/A N/A N/A N/A
9 N/A N/A N/A N/A N/A N/A

Results TB1
• Graph of three trials
• Algorithm always better than

shotgun (coverage and
runtime)

Results TB2 – Shotgun
• 100 tests each regression, regardless of contribution
• 900 total tests executed
• 159 seeds kept
• 73.94% coverage after 321 hours

Regr # Coverage % Tests Run Contributing Tests
per Iteration

Final Rank
Contribution

Total Wall
Clock Time (s)

Total Kept
Seeds

1 72.88% 100 50 20 112214.64 50
2 73.20% 100 32 17 245781.12 65
3 73.35% 100 29 19 407193.75 91
4 73.43% 100 29 15 554897.93 105
5 73.89% 100 25 19 665679.11 123
6 73.90% 100 24 13 780300.98 134
7 73.93% 100 24 21 895211.77 147
8 73.94% 100 20 19 1005816.78 154
9 73.94% 100 16 16 1154565.67 159

Results TB2 – Ws=2, Wfc=1
• Tests per regression depends on contribution
• Stopped after Reg 9
• 818 total tests executed

Test # Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 Reg 9 Totals Seeds Kept
Per Test

T1 10 20 30 34 28 18 8 2 2 152 44
T2 10 20 24 12 6 0 0 0 0 72 16
T3 10 14 10 2 0 0 0 0 0 36 6
T4 10 6 2 0 0 0 0 0 0 18 3
T5 10 4 0 0 0 0 0 0 0 14 0
T6 10 2 0 0 0 0 0 0 0 12 0
T7 10 10 8 2 2 0 0 0 0 32 5
T8 10 20 36 62 90 82 66 54 38 458 131
T9 10 2 0 0 0 0 0 0 0 12 1
T10 10 2 0 0 0 0 0 0 0 12 1
Totals 100 100 110 112 126 100 74 56 40 818 207

Results TB2 – Ws=2, Wfc=1
• 207 seeds kept
• 74.39% coverage after 1392 hours!
• Shotgun coverage of 73.94% met after Reg 4 (409 hours)

Regr # Coverage % Tests Run Contributing Tests
per Iteration

Final Rank
Contribution

Total Wall
Clock Time (s)

Total Kept
Seeds

1 72.88% 100 50 17 112214.64 50
2 73.56% 100 55 25 327634.83 88
3 73.68% 110 56 37 773717.09 124
4 74.12% 112 63 30 1471147.61 166
5 74.16% 126 50 35 2587410.89 184
6 74.19% 100 37 24 3378029.35 202
7 74.38% 74 28 24 3954061.21 203
8 74.39% 56 20 18 4614303.64 202
9 74.39% 40 7 7 5009957.93 207

Future Work
• Understand the right reward

– Proportional to coverage?
– Should length of test be a factor?
– Proportional to coverage / length of test?

• Build statistical data from more regressions

	Automated Seed Selection Algorithm for an Arbitrary Test Suite
	Agenda
	Randomizable Test Benches and Coverage
	Verification Management System and Randomization
	Verification Management System and Randomization
	Test Ranking
	Blindly Choosing Seeds
	Proposed Algorithm
	Proposed Algorithm
	Proposed Algorithm
	Proposed Algorithm
	Proposed Algorithm
	Proposed Algorithm
	Results (Methods Tried)
	Results TB1 – Shotgun
	Results TB1 – Shotgun
	Results TB1 – Ws=2, Wfc=1
	Results TB1 – Ws=2, Wfc=1
	Results TB1 – Ws=2, Wfc=2
	Results TB1 – Ws=2, Wfc=2
	Results TB1
	Results TB2 – Shotgun
	Results TB2 – Ws=2, Wfc=1
	Results TB2 – Ws=2, Wfc=1
	Future Work

