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Introduction 

 

This paper will introduce a fully featured ARMv8 mobile SoC design describing the key IP components, their 

salient features with specific emphasis on aspects that influence system performance and how they can be 

assembled into a CPU Subsystem. The challenge of tuning these components in order to maximize the system 

performance is described in detail including the introduction of performance characterization and the definition 

and use of example workloads for measuring, analyzing and debugging performance issues. Results from 

simulation of these various performance tests are introduced and discussed illustrating a systematic approach to 

ensuring maximum SoC performance is delivered. 

 

ARMv8 CPU Subsystem Challenges 

 

Multi-core, multi-cluster big.LITTLETM systems using the ARM CortexTM-A57 and Cortex-A53 typically contain a 

complex mix of high performance IP including GPU, High-Definition Display drivers and Video engines. In a 

mobile application the choice of DDR standard can have a big influence on cost and performance and in general 

performance is sacrificed to keep costs and power consumption down. However, regardless of which DDR 

option is chosen it is desirable to maximize the utilization of the memory system for the multiple, simultaneous 

demands placed upon it by the wide range of high-performance cores in the SoC. 

 

Analyzing the system performance and tuning the infra-structure fabric, such as ARM CorelinkTM CCI-400 and 

CorelinkTM NIC-400 interconnects, in combination with the DDR controller presents designers with a big 

challenge. These challenges come in many forms; firstly the architecture needs to be defined, then high-level 

decisions need to be taken for example which IPs will be I/O coherent and hence need to have paths to memory 

passing through the cache-coherent interconnect and others which don’t. Clock speeds and the clock domains of 

the various components need to be defined and the asynchronous bridges between these domains needing to 

be sized.  

 

A UVM based approach is introduced as part of a systematic approach to performance characterization and 

performance tuning using synthetic traffic generators to model simulated system workloads. By defining 

workloads for specific system use-cases, corner case performance limitations can be found, understood and 

potentially eliminated.  

 

 

  



The CPU Subsystem 

 

Figure 1 shows a block diagram of the reference ARM v8 CPU Subsystem used throughout this paper. It contains 

2x clusters of processors in a big.LITTLE configuration, one cluster contains 4x ARM Cortex A57 (big) processors, 

the second cluster contains 4x ARM Cortex A53 (little) processors. Each cluster is isolated in a separate Dynamic 

Voltage and Frequency Scaling (DVFS) domain to allow the system to optimally deliver the processing 

performance needed at a minimal power point. DVFS allows Voltage and Frequency to be raised or lowered in 

combination when more or less computing performance is needed, higher frequency will need a higher 

operating voltage and vice-versa. 

 

 
Figure 1: ARM v8 CPU Subsystem 

 

The diagram shows the different clock and power domains as well as the AMBA Domain Bridges (ADB) that are 

needed when connecting two RTL modules in different domains. While the ADBs don’t change the function they 

do introduce latency and they need to be sized as they contain FIFO structures to buffer transactions. The 

master IPs such as Video, LCD Controllers, GPU, PCIe, DMA and System Control Processor are all connected 

together and to the DDR memory system using a number of ARM Corelink System IP components.  

 

The coherent domain in the system is managed by the CCI-400 Cache Coherent Interconnect which provides 

snooping support to allow the big.LITTLE clusters to share L2 Caches, but also provides snoop support for other 

I/O coherent masters such as the GPU to utilize the L2 caches in the clusters. The coherent domain is extended 

using a NIC-400 interconnect and in addition a NIC-400 is used to provide non-coherent access for three of the 

masters to connect to the DDR.  

 

Two other components sit between the masters and the DDR controller, the first is the Corelink TZC-400 

Trustzone Controller which provides a memory protection scheme for the system and the Corelink SMMU-500 

System Memory Management Unit. The SMMU provides single or dual stage address translation to provide 

hardware support for virtualization. The SMMU is a distributed IP which is highlighted in blue in the diagram and 

comprises a number of Translation Buffer Units (TBU) connect to a Translation Control Unit (TCU) which 

provides common page-table walking for the Translation Look-aside Buffers (TLB) in each of the TBUs. Each TBU 

is connected to the TCU using an AXI streaming interface which is not shown on the diagram for simplicity sake.  



Configuration Challenges 

 

Many of the IPs in the infrastructure have a substantial number of configuration options, the NIC-400 

interconnects for instance have configurable interfaces where performance related parameters like bus-width, 

read issuing, write issuing and Quality of Service (QoS) priority levels are set. For each AMBA interface the user 

can specify dynamic regulators to control bandwidth or latency, they automatically adjust QoS levels between 

defined limits based on how well the needs of the interface are being serviced. If for example the latency of 

transactions has got larger the user can configure the interconnect such that it’s QoS value will be increased and 

increased until it is given sufficient priority to get the bandwidth/latency service it needs. 

 

Similar configuration options need to be defined for the CCI-400, the ADB-400 components too need configuring 

to specify the FIFO depths inside them. An additional consideration is whether the system will use QoS Virtual 

Networks (QVN). This is an additional capability provided when architecting systems which contain QVN capable 

DDR controllers.  

 

One of the most common ways to manage traffic prioritization is to use a DDR controller with a large number of 

AMBA interfaces and configure the DDR controller to prioritize the different interfaces. However this poses 

significant layout challenges as each AMBA AXI interfaces contains hundreds of signals and routing congestion 

becomes a limiting factor when performing SoC layout. 

 

QVN alleviates the congestion problem by enabling multiple virtual channels to operate over one physical AMBA 

AXI interface. For example four virtual connections can be routed across one physical AXI connection. Further 

system-wide choices that need to be made such as clock speeds, bus-widths and power domains cut across all of 

the other IP configuration options presenting the designer with a bewildering array of choices. 

 

The SMMU-500 has a number of additional configuration options that can dramatically affect the performance 

of the system. Inside each TBU is a TLB which needs to be sized, the user needs to define the number of entries 

in the TLB ideally to match the needs of the IP requiring translation. The decision on sizing the TLBs needs to 

take account of the likely page fault rate and the cost (in performance terms) of a page fault. This is complicated 

by again many choices in the page table setup choices.   

 

Approach 

Given all of the options described in the previous section it is paramount that a systematic approach is taken 

when selecting, configuring and assembling the system IP into a CPU subsystem. In order to get accurate results 

for analysis the chosen approach is to run RTL simulation and leverage Universal Verification Methodology 

(UVM) to create standard testbenches using a standardized High-Level Verification Language (HVL) 

SystemVerilog. In addition to the benefits of using a standard methodology and language, UVM enables the use 

of commercial grade Verification IP (VIP).  

The chosen approach is to replace the master IP in the design, for example the processor clusters, LCD 

Controllers and Video engine with AMBA VIP. This has a double benefit, VIP is much more controllable than IP 

and hence it is far simpler to create very tightly defined AMBA traffic. Secondly, it generally improves simulation 

performance for large complex IP the most significant of which are the processor clusters. Figure 2 illustrates the 

concept where “Active” VIP is used to model AMBA ACE, ACELite and AXI4 Master IP and “Passive” VIP is used to 

monitor AMBA AXI4 Slave interfaces.  



Figure 2 shows the conceptual UVM testbench   

Using the Master VIP, traffic can be driven into the subsystem and used to target paths through all of the 

infrastructure IP. In order to drive legal paths through the system the testbench needs to have some additional 

information about the legal routes through it, this is provided by a routing model which allows tests to query 

paths either to or from any master to or from any slave. An additional benefit of this testbench structure is that 

tests can be written in a totally portable way. For example a test can be written which selects a single slave and 

systematically drives traffic from all the legal masters that are able to drive traffic to that slave. 

Creating these testbenches can be achieved manually however substantial productivity gains can be made using 

testbench automation as provided by Cadence Interconnect Workbench (IWB). By defining input meta data 

using a Microsoft Excel Spreadsheet a testbench to perform subsystem verification and performance analysis 

can be automated. Figure 3 shows an example of the spreadsheet used to create testbenches for the CPU 

subsystem. 

Figure 3: Spreadsheet for testbench automation 



The spreadsheet defines buses by protocol, signal name, location in the design hierarchy and many more items 

for both masters and slaves and a routing table which can also include details about memory striping, a feature 

of the Corelink CCI-400 cache coherent interconnect. 

The testbench automation provided by IWB uses this meta data to generate a testbench containing all the 

AMBA VIP configuration as well as Interconnect Validator, a system scoreboard that provide comprehensive 

coherency checks, data consistency checks and also records performance data for analysis. In addition IWB 

generates a suite of performance characterization tests which cover path by path maxBandwidth, minLatency, 

Outstanding Transaction sweeps and DDR Characterization tests. For example Figure 4 shows the results of 

driving write bursts with a sweep of burst lengths from the big Cluster to the striped DDR memory. 

The test generates saturating 

transactions, in other words write 

bursts are driven into the system to 

the maximum write issuing level that 

the interconnect is capable of 

accepting. As can be seen as the 

burst length increases the 

corresponding bandwidth increases. 

Remember that only one path is 

active in any of these 

characterization tests and hence 

these figures are the best that the 

subsystem can ever achieve. The 

goal of these characterization tests 

are to find basic assembly and 

configuration bugs. For example 

clock configuration; write issuing 

configuration; data bus width 

configuration; DDR choice; all of these class of bugs can be found through this kind of automated test. 

Once characterization has been completed and all bandwidth and latency goals are comfortably met in single 

master -> slave paths, the next challenge is to create more realistic scenarios with multiple active masters 

generating AMBA traffic workloads that 

more closely resemble likely models of 

system operation.  

Figure 5 shows an example of a medium 

intensity workload. The chart shows the 

bandwidth that each of the masters 

achieves, it matches the requested 

bandwidth defined by the scenario. For 

example the VIPs standing in for the HD 

LCD controllers are both configured as if 

they were running 4K2Kp30 RGBa 8-bit 

(4-bytes per pixel), this represents a pixel 

rate of 297 Mhz. Although in a real 

system there would be gaps in the 

bandwidth requirement representing the 

Figure 4: Write maxBandwidth from big cluster to DDR 

Figure 5: Read/Write Bandwidth per master 



blanking periods we have deliberately modelled a constant bandwidth requirement given predicting blanking 

across two displays is unlikely to align and the hence the worst case scenario is both displays driving pixels. Also 

notice how the LCD displays only have read bandwidth and they do not contribute any write bandwidth. In this 

scenario we can see that the 

big.LITTLE clusters generate 1.25 

Gbytes/s of both read and write 

traffic; all the traffic is constrained 

to operate on 64 byte transactions 

as this represents a cache line. The 

roughly horizontal lines on the chart 

indicate that each and every master 

is getting the bandwidth they are 

demanding, hence the system can 

cope with this setup comfortably. 

This is confirmed when we look at 

the latency of transactions and 

figure 6 shows the latency of write 

transactions as  well as the 

outstanding transaction values of 

the same masters.  

Outstanding transactions are ones 

that have performed an address phase which has been accepted by the interconnect but are waiting for the data 

phase to complete. As we can see from the chart the latency of transactions is consistently under 75ns and the 

outstanding transaction levels 

never go above 2 for the 

big.LITTLE clusters and just 1 for 

the video. The outstanding 

transaction level is a great 

proxy for how much “back-

pressure” there is in the 

system.  

If we now look at a second 

scenario where the activity of 

the big.LITTLE clusters has been 

ramped up to 2.5Gbytes/s, 

looking at read data bandwidth 

in Figure 7 we see that 

although the cluster bandwidth 

is broadly achieved there is 

considerably more variability in 

the bandwidth levels.  
Figure 7: High-stress scenario, Read bandwidth by master 

Figure 6: Write Latency with OT overlayed 



Figure 8 however highlights 

that although the read 

levels of the system are 

close to being achieved this 

comes at the price of write 

bandwidth. As can be seen 

although requesting 

2.5Gbytes/s the write 

bandwidth achieved is 

frequently below 1Gbyte/s 

for both big.LITTLE clusters. 

The spike in bandwidth 

towards the end of the 

simulation is caused by pent 

up demand in the masters 

that are being throttled by 

the system. Once all the 

read traffic has been 

completed the pent-up 

write traffic gets completed.  

One of the questions a system designer might ask at this point is “How bad do the read/write latencies on the 

big.LITTLE clusters get?” 

The quickest way to get to this kind of information is to display a latency distribution filtered for just the 

big.LITTLE masters. Figure 9 shows the distribution as well as a table view to sort transactions by any metric, in 

this case latency. A distribution with a long “tail” is a strong indication that latency is out of control that the 

system is heavily loaded. Viewing, analyzing and debugging the system in this transactional view of the world 

provides the power of a TLM-

like perspective but with the 

accuracy of RTL. These results 

are cycle-accurate and run on 

the real IP not abstract TLM 

models. Also, the transaction 

tables are linked to the signal 

level waveform viewer; this 

allows the user to jump into 

signal-level debug with markers 

to show the start and end of 

transactions. 

From Figure 8 it can also be 

seen that the Video engine has 

very variable bandwidth that 

often dips close to zero. If we 

look at the Latency over time 

chart for this IP and overlay the 

Outstanding Transaction (OT) 

levels we can see in Figure 10 

Figure 8: High stress Write Bandwidth by Master 

Figure 9: Latency Distribution of big.LITTLE Latency 



that the video engine (in green) is stalled for a considerable time and that the OT level goes up to over 20. 

Referring back to Figure 1 we can see that the Video Engine is connected to the DDR controller in a non-

coherent way in combination with the HD LCD displays. It shares the same port which services display data. In 

general in a mobile system it 

is key that the displays don’t 

lose data as this will cause 

flickering. Hence they are 

configured with a higher 

priority than other masters. 

In the first scenario the video 

got all of the bandwidth it 

requested, see Figure 5, 

however in the high intensity 

scenario, see Figure 10 the 

big.LITTLE clusters have such 

high bandwidth demands, 

double the original scenario, 

the video gets relegated to 

the lowest priority and hence 

it’s bandwidth targets are 

missed and it’s latency explodes by a factor of greater than 2000. The explosion of OT levels is a an excellent 

proxy for what is sometimes termed “back-pressure” in the system.  

For added debug capability the chart also shows some key events from the DFI interface which is between the 

DDR controller and DDR PHY. The events shown (see the marks towards the top of the chart) are the refresh and 

pre-charge events from each DDR bank. This capability to display events from the Device Under Test (DUT) 

provides additional high-level information which can ease debugging performance issues. The events are logged 

using a simple monitor which can be user written. Visual correlation of system events and performance issues 

are a powerful tool in understanding how the system IP behaves under duress. 

  

Figure 10: Write Latency over time with OT overlayed. 



Summary 

As the complexity of multi-core, multi-cluster CPU sub-systems continues to increase there is a corresponding 

increase in the complexity of performance tuning the sub-system design for best results. This paper introduces a 

systematic approach to achieving this goal. Functional verification methodology can provide assurance that the 

CPU sub-system will function correctly but this is not enough, a performance verification methodology is also 

needed which can provide an approach to ensure all performance requirements are validated against realistic 

workloads.  
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