
DVCon 2015 Paper

 Automated Performance Verification to Maximize your ARMv8 pulling power

Author: Nick Heaton – Cadence Design Systems nickh@cadence.com Tel: +44 7876 198909

Co-Author: Simon Rance – ARM Ltd Simon.Rance@arm.com Tel: +1 (214) 585 3210

Introduction

This paper will introduce a fully featured ARMv8 mobile SoC design describing the key IP components, their

salient features with specific emphasis on aspects that influence system performance and how they can be

assembled into a CPU Subsystem. The challenge of tuning these components in order to maximize the system

performance is described in detail including the introduction of performance characterization and the definition

and use of example workloads for measuring, analyzing and debugging performance issues. Results from

simulation of these various performance tests are introduced and discussed illustrating a systematic approach to

ensuring maximum SoC performance is delivered.

ARMv8 CPU Subsystem Challenges

Multi-core, multi-cluster big.LITTLETM systems using the ARM CortexTM-A57 and Cortex-A53 typically contain a

complex mix of high performance IP including GPU, High-Definition Display drivers and Video engines. In a

mobile application the choice of DDR standard can have a big influence on cost and performance and in general

performance is sacrificed to keep costs and power consumption down. However, regardless of which DDR

option is chosen it is desirable to maximize the utilization of the memory system for the multiple, simultaneous

demands placed upon it by the wide range of high-performance cores in the SoC.

Analyzing the system performance and tuning the infra-structure fabric, such as ARM CorelinkTM CCI-400 and

CorelinkTM NIC-400 interconnects, in combination with the DDR controller presents designers with a big

challenge. These challenges come in many forms; firstly the architecture needs to be defined, then high-level

decisions need to be taken for example which IPs will be I/O coherent and hence need to have paths to memory

passing through the cache-coherent interconnect and others which don’t. Clock speeds and the clock domains of

the various components need to be defined and the asynchronous bridges between these domains needing to

be sized.

A UVM based approach is introduced as part of a systematic approach to performance characterization and

performance tuning using synthetic traffic generators to model simulated system workloads. By defining

workloads for specific system use-cases, corner case performance limitations can be found, understood and

potentially eliminated.

The CPU Subsystem

Figure 1 shows a block diagram of the reference ARM v8 CPU Subsystem used throughout this paper. It contains

2x clusters of processors in a big.LITTLE configuration, one cluster contains 4x ARM Cortex A57 (big) processors,

the second cluster contains 4x ARM Cortex A53 (little) processors. Each cluster is isolated in a separate Dynamic

Voltage and Frequency Scaling (DVFS) domain to allow the system to optimally deliver the processing

performance needed at a minimal power point. DVFS allows Voltage and Frequency to be raised or lowered in

combination when more or less computing performance is needed, higher frequency will need a higher

operating voltage and vice-versa.

Figure 1: ARM v8 CPU Subsystem

The diagram shows the different clock and power domains as well as the AMBA Domain Bridges (ADB) that are

needed when connecting two RTL modules in different domains. While the ADBs don’t change the function they

do introduce latency and they need to be sized as they contain FIFO structures to buffer transactions. The

master IPs such as Video, LCD Controllers, GPU, PCIe, DMA and System Control Processor are all connected

together and to the DDR memory system using a number of ARM Corelink System IP components.

The coherent domain in the system is managed by the CCI-400 Cache Coherent Interconnect which provides

snooping support to allow the big.LITTLE clusters to share L2 Caches, but also provides snoop support for other

I/O coherent masters such as the GPU to utilize the L2 caches in the clusters. The coherent domain is extended

using a NIC-400 interconnect and in addition a NIC-400 is used to provide non-coherent access for three of the

masters to connect to the DDR.

Two other components sit between the masters and the DDR controller, the first is the Corelink TZC-400

Trustzone Controller which provides a memory protection scheme for the system and the Corelink SMMU-500

System Memory Management Unit. The SMMU provides single or dual stage address translation to provide

hardware support for virtualization. The SMMU is a distributed IP which is highlighted in blue in the diagram and

comprises a number of Translation Buffer Units (TBU) connect to a Translation Control Unit (TCU) which

provides common page-table walking for the Translation Look-aside Buffers (TLB) in each of the TBUs. Each TBU

is connected to the TCU using an AXI streaming interface which is not shown on the diagram for simplicity sake.

Configuration Challenges

Many of the IPs in the infrastructure have a substantial number of configuration options, the NIC-400

interconnects for instance have configurable interfaces where performance related parameters like bus-width,

read issuing, write issuing and Quality of Service (QoS) priority levels are set. For each AMBA interface the user

can specify dynamic regulators to control bandwidth or latency, they automatically adjust QoS levels between

defined limits based on how well the needs of the interface are being serviced. If for example the latency of

transactions has got larger the user can configure the interconnect such that it’s QoS value will be increased and

increased until it is given sufficient priority to get the bandwidth/latency service it needs.

Similar configuration options need to be defined for the CCI-400, the ADB-400 components too need configuring

to specify the FIFO depths inside them. An additional consideration is whether the system will use QoS Virtual

Networks (QVN). This is an additional capability provided when architecting systems which contain QVN capable

DDR controllers.

One of the most common ways to manage traffic prioritization is to use a DDR controller with a large number of

AMBA interfaces and configure the DDR controller to prioritize the different interfaces. However this poses

significant layout challenges as each AMBA AXI interfaces contains hundreds of signals and routing congestion

becomes a limiting factor when performing SoC layout.

QVN alleviates the congestion problem by enabling multiple virtual channels to operate over one physical AMBA

AXI interface. For example four virtual connections can be routed across one physical AXI connection. Further

system-wide choices that need to be made such as clock speeds, bus-widths and power domains cut across all of

the other IP configuration options presenting the designer with a bewildering array of choices.

The SMMU-500 has a number of additional configuration options that can dramatically affect the performance

of the system. Inside each TBU is a TLB which needs to be sized, the user needs to define the number of entries

in the TLB ideally to match the needs of the IP requiring translation. The decision on sizing the TLBs needs to

take account of the likely page fault rate and the cost (in performance terms) of a page fault. This is complicated

by again many choices in the page table setup choices.

Approach

Given all of the options described in the previous section it is paramount that a systematic approach is taken

when selecting, configuring and assembling the system IP into a CPU subsystem. In order to get accurate results

for analysis the chosen approach is to run RTL simulation and leverage Universal Verification Methodology

(UVM) to create standard testbenches using a standardized High-Level Verification Language (HVL)

SystemVerilog. In addition to the benefits of using a standard methodology and language, UVM enables the use

of commercial grade Verification IP (VIP).

The chosen approach is to replace the master IP in the design, for example the processor clusters, LCD

Controllers and Video engine with AMBA VIP. This has a double benefit, VIP is much more controllable than IP

and hence it is far simpler to create very tightly defined AMBA traffic. Secondly, it generally improves simulation

performance for large complex IP the most significant of which are the processor clusters. Figure 2 illustrates the

concept where “Active” VIP is used to model AMBA ACE, ACELite and AXI4 Master IP and “Passive” VIP is used to

monitor AMBA AXI4 Slave interfaces.

Figure 2 shows the conceptual UVM testbench

Using the Master VIP, traffic can be driven into the subsystem and used to target paths through all of the

infrastructure IP. In order to drive legal paths through the system the testbench needs to have some additional

information about the legal routes through it, this is provided by a routing model which allows tests to query

paths either to or from any master to or from any slave. An additional benefit of this testbench structure is that

tests can be written in a totally portable way. For example a test can be written which selects a single slave and

systematically drives traffic from all the legal masters that are able to drive traffic to that slave.

Creating these testbenches can be achieved manually however substantial productivity gains can be made using

testbench automation as provided by Cadence Interconnect Workbench (IWB). By defining input meta data

using a Microsoft Excel Spreadsheet a testbench to perform subsystem verification and performance analysis

can be automated. Figure 3 shows an example of the spreadsheet used to create testbenches for the CPU

subsystem.

Figure 3: Spreadsheet for testbench automation

The spreadsheet defines buses by protocol, signal name, location in the design hierarchy and many more items

for both masters and slaves and a routing table which can also include details about memory striping, a feature

of the Corelink CCI-400 cache coherent interconnect.

The testbench automation provided by IWB uses this meta data to generate a testbench containing all the

AMBA VIP configuration as well as Interconnect Validator, a system scoreboard that provide comprehensive

coherency checks, data consistency checks and also records performance data for analysis. In addition IWB

generates a suite of performance characterization tests which cover path by path maxBandwidth, minLatency,

Outstanding Transaction sweeps and DDR Characterization tests. For example Figure 4 shows the results of

driving write bursts with a sweep of burst lengths from the big Cluster to the striped DDR memory.

The test generates saturating

transactions, in other words write

bursts are driven into the system to

the maximum write issuing level that

the interconnect is capable of

accepting. As can be seen as the

burst length increases the

corresponding bandwidth increases.

Remember that only one path is

active in any of these

characterization tests and hence

these figures are the best that the

subsystem can ever achieve. The

goal of these characterization tests

are to find basic assembly and

configuration bugs. For example

clock configuration; write issuing

configuration; data bus width

configuration; DDR choice; all of these class of bugs can be found through this kind of automated test.

Once characterization has been completed and all bandwidth and latency goals are comfortably met in single

master -> slave paths, the next challenge is to create more realistic scenarios with multiple active masters

generating AMBA traffic workloads that

more closely resemble likely models of

system operation.

Figure 5 shows an example of a medium

intensity workload. The chart shows the

bandwidth that each of the masters

achieves, it matches the requested

bandwidth defined by the scenario. For

example the VIPs standing in for the HD

LCD controllers are both configured as if

they were running 4K2Kp30 RGBa 8-bit

(4-bytes per pixel), this represents a pixel

rate of 297 Mhz. Although in a real

system there would be gaps in the

bandwidth requirement representing the

Figure 4: Write maxBandwidth from big cluster to DDR

Figure 5: Read/Write Bandwidth per master

blanking periods we have deliberately modelled a constant bandwidth requirement given predicting blanking

across two displays is unlikely to align and the hence the worst case scenario is both displays driving pixels. Also

notice how the LCD displays only have read bandwidth and they do not contribute any write bandwidth. In this

scenario we can see that the

big.LITTLE clusters generate 1.25

Gbytes/s of both read and write

traffic; all the traffic is constrained

to operate on 64 byte transactions

as this represents a cache line. The

roughly horizontal lines on the chart

indicate that each and every master

is getting the bandwidth they are

demanding, hence the system can

cope with this setup comfortably.

This is confirmed when we look at

the latency of transactions and

figure 6 shows the latency of write

transactions as well as the

outstanding transaction values of

the same masters.

Outstanding transactions are ones

that have performed an address phase which has been accepted by the interconnect but are waiting for the data

phase to complete. As we can see from the chart the latency of transactions is consistently under 75ns and the

outstanding transaction levels

never go above 2 for the

big.LITTLE clusters and just 1 for

the video. The outstanding

transaction level is a great

proxy for how much “back-

pressure” there is in the

system.

If we now look at a second

scenario where the activity of

the big.LITTLE clusters has been

ramped up to 2.5Gbytes/s,

looking at read data bandwidth

in Figure 7 we see that

although the cluster bandwidth

is broadly achieved there is

considerably more variability in

the bandwidth levels.
Figure 7: High-stress scenario, Read bandwidth by master

Figure 6: Write Latency with OT overlayed

Figure 8 however highlights

that although the read

levels of the system are

close to being achieved this

comes at the price of write

bandwidth. As can be seen

although requesting

2.5Gbytes/s the write

bandwidth achieved is

frequently below 1Gbyte/s

for both big.LITTLE clusters.

The spike in bandwidth

towards the end of the

simulation is caused by pent

up demand in the masters

that are being throttled by

the system. Once all the

read traffic has been

completed the pent-up

write traffic gets completed.

One of the questions a system designer might ask at this point is “How bad do the read/write latencies on the

big.LITTLE clusters get?”

The quickest way to get to this kind of information is to display a latency distribution filtered for just the

big.LITTLE masters. Figure 9 shows the distribution as well as a table view to sort transactions by any metric, in

this case latency. A distribution with a long “tail” is a strong indication that latency is out of control that the

system is heavily loaded. Viewing, analyzing and debugging the system in this transactional view of the world

provides the power of a TLM-

like perspective but with the

accuracy of RTL. These results

are cycle-accurate and run on

the real IP not abstract TLM

models. Also, the transaction

tables are linked to the signal

level waveform viewer; this

allows the user to jump into

signal-level debug with markers

to show the start and end of

transactions.

From Figure 8 it can also be

seen that the Video engine has

very variable bandwidth that

often dips close to zero. If we

look at the Latency over time

chart for this IP and overlay the

Outstanding Transaction (OT)

levels we can see in Figure 10

Figure 8: High stress Write Bandwidth by Master

Figure 9: Latency Distribution of big.LITTLE Latency

that the video engine (in green) is stalled for a considerable time and that the OT level goes up to over 20.

Referring back to Figure 1 we can see that the Video Engine is connected to the DDR controller in a non-

coherent way in combination with the HD LCD displays. It shares the same port which services display data. In

general in a mobile system it

is key that the displays don’t

lose data as this will cause

flickering. Hence they are

configured with a higher

priority than other masters.

In the first scenario the video

got all of the bandwidth it

requested, see Figure 5,

however in the high intensity

scenario, see Figure 10 the

big.LITTLE clusters have such

high bandwidth demands,

double the original scenario,

the video gets relegated to

the lowest priority and hence

it’s bandwidth targets are

missed and it’s latency explodes by a factor of greater than 2000. The explosion of OT levels is a an excellent

proxy for what is sometimes termed “back-pressure” in the system.

For added debug capability the chart also shows some key events from the DFI interface which is between the

DDR controller and DDR PHY. The events shown (see the marks towards the top of the chart) are the refresh and

pre-charge events from each DDR bank. This capability to display events from the Device Under Test (DUT)

provides additional high-level information which can ease debugging performance issues. The events are logged

using a simple monitor which can be user written. Visual correlation of system events and performance issues

are a powerful tool in understanding how the system IP behaves under duress.

Figure 10: Write Latency over time with OT overlayed.

Summary

As the complexity of multi-core, multi-cluster CPU sub-systems continues to increase there is a corresponding

increase in the complexity of performance tuning the sub-system design for best results. This paper introduces a

systematic approach to achieving this goal. Functional verification methodology can provide assurance that the

CPU sub-system will function correctly but this is not enough, a performance verification methodology is also

needed which can provide an approach to ensure all performance requirements are validated against realistic

workloads.

About the Authors

Nick Heaton is an ASIC and EDA veteran with more than 30 years of experience in the design and verification of

complex SoCs. Nick graduated from Brunel University, London in 1983 with First Class Honors

in Engineering and Management Systems. In 1993, he founded specialist ASIC Design and

Verification Company Excel Consultants, servicing customers such as ARM® and Altera. In

2002, Nick joined Verisity (now Cadence) as Manager of Northern European Consulting

Engineering. Nick currently works in the Cadence Research & Development organization as a

Distinguished Engineer with special responsibility for Interconnect Workbench.

Simon Rance is Senior Product Manager at ARM and has been involved in chip design and automation for over

15 years. His career has spanned IC architecture, design & verification, software development,

IP and EDA solutions. He has written and presented several papers and topics world-wide

around IP design, chip assembly and automation techniques. In ARM, he is managing System IP

Tooling world-wide.

