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Abstract—Comprehensive, timely verification of complex, analog functionality rich sub-system, system, IPs 

require manual simulation setup that is error prone and iterative.  It also involves an inefficient communication 

channel through manual review of specifications, intent and implementation between different teams of 

complementary competencies.  Further there are several error prone, duplicated manual efforts involved including 

test bench for circuit simulation and behavioural model validation.  These bottlenecks and limitations also extend to 

several aspects of digital RTL implementation / coding.  To overcome these bottlenecks we have devised a 

methodology by which we propose to improve the communication efficiency, enable efficient digital design methods, 

and enable early analog functional simulations through automated generation of correct-by-construct analog 

simulation test benches, generation of RTL codes and assertions.  We have implemented and demonstrated an 

efficient and intuitive infrastructure for such automation and for analog simulation output waveform analysis. 

Keywords—AMS co-simulation; functional verification; simulation; Integration specification document; testbench 

generation 

I.  INTRODUCTION 

Typical mixed signal system on chip (SoC) design [1][2][3] involves several complex manual efforts 

including compiling the system specifications as a document, register transfer level (RTL) design, system 

integration, test bench and test case creation.  This further involves transistor level custom design for analog 

functionalities and manual waveform analysis of analog simulations.  For complex mixed-signal SoC design this 

poses a big challenge to meet time to market criteria.  All these manual processes are error prone and time 

consuming.  Even the high level synthesis involves manual coding the golden source models in C or System-C 

like high level languages.  

Transistor level implementation of mixed-signal modules usually takes longer time to mature.  The limitations 

due to different times of maturity of analog and digital sections of the design are usually overcome with use of 

analog behavioural models (ABMOD) and mixed-signal simulations with various models of different abstraction 

levels.  Usually the ABMODs are made available to SoC integration before reasonable circuit maturity to enable 

early system level simulations.  But all these involve parallel efforts in validating the ABMODs including the 

duplicate test bench creation.  

The digital interfaces to analog modules are taken care by capturing the stimuli in Value Change Dump 

(VCD) format from targeted SoC level simulations and using them for analog module level simulations.  The SoC 

level integration usually happens very late in the design cycle.  Independent and rigorous verification of complex 

test cases of the system prior to the availability of VCDs, with an accurate digital control environment is usually 

not possible or delayed.  Further analog mixed signal (AMS) co-simulation at SoC level is only possible at a very 

mature stage of the system integration.  This poses a major challenge to IP maturity and sign-off in the SoC 

context, especially when there is a huge portfolio of complex analog functionality rich IPs (sub-systems) being 

reused with little or no modifications. 
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The above discussed process of defining the integration specification, setting up the test bench based on 

system specification and reviewing involves a lot of communication bottleneck between different teams of 

complementary competencies like analog, digital & system level.  It was found that in the past project executions, 

these bottlenecks cause late identification of critical bugs which cause costly iterations and delay in time to 

market. 

To overcome the above stated bottlenecks, in this paper we describe a methodology that we developed for 

automated generation of a portion of RTL design and an automated test bench generation for analog IP 

verification using an executable specification as a starting point.   

A test case of a power management system in a mixed signal SoC including the analog power up is 

considered.  The automated analog test bench generation resulted in a significant cycle time reduction due to 

saved iterations and enabled analog IP level SPICE simulations almost 3 months in advance compared to earlier 

executions of similar complexity with usual concept to tape-out cycle time of about 12 months.  The automated 

digital RTL generation for a specific sub-set of system functionalities is implemented and applied.  This paper 

will discuss the implementation details, advantages and limitations of the current implementation, key results and 

the directions scope for improvements.   

The rest of the paper is organised as follows: Section II describes the integration specification documentation 

(ISD) and the limitations of existing simulation based verification methods.  Section III presents our proposed 

method of specification driven automated generation of certain designs and analog simulation test benches.  

Section IV identifies scope for some future extensions to make the proposed methods more efficient and have a 

wider adaptability.  The concluding remarks and summary is provided in Section V. 

II. INTEGRATION SPECIFICATION AND SIMULATION BASED VERIFICATION 

Integration specification documentation (ISD) is the usual means by which functional modules’ integration 

requirements or needs are compiled and communicated across electrical, physical implementation and to the 

system (SoC) integration functions.  The requirements are the necessary boundary conditions to be met for a 

proper integration including a) any input signal timing requirements; b) load boundary conditions; c) physical 

design limitations like the bounds on the acceptable parasitic elements; d) signal integrity influencers like the 

bounds on signal and noise coupling; and e) reliability requirements.   

Many of these conditions have targeted tools / flows to ensure their compliance especially for reliability, 

signal integrity, physical design and power management.  The compliance of most functional and electrical 

constraints including power-up scenarios, many mode transition (like different performance and power modes) 

are usually verified only through functional simulations.  A typical functional verification flow is illustrated in 

Figure 1. 

Many boundary conditions are ensured in design usually by ensuring the complete and comprehensive 

functional simulations are performed with in the stated / specified range.  When multiple inputs and load 

conditions set the specific boundary the comprehensiveness may be difficult to ensure and there can be coverage 

gaps.  Further, it has been an observation of the authors over a long period that the specifications are not complete 

for lack of complete understanding of the various system level intricacies, and given the manual effort in tracking 

the verification plan against the specifications the simulations are not comprehensive. 

Usually based on the manual process of reading, consulting and understanding the specifications provided, the 

different verification scenarios are planned, corresponding test conditions are arrived at, and test benches are built 

manually.  The test benches are then reviewed by representative owners of complementary competencies and 

stake-holders like the applications, systems, system integration, physical design, DFT & test, reliability, and 

electrical/functional design for their comprehensiveness and correctness.  Further the feedback from these reviews 

may result in iterations of this process until the test benches and scenarios signed-off to be mature. Thus the 

relevant communication bottleneck and complexity between different teams of complementary competencies 

(analog, digital, system & test) that matures at a much later stage in product development cycle involved in 

manual reviews that play a major role in sign-off.  
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At early stages of design (especially the transistor level design implementation) maturity, the functional 

verification closure to ensure specification compliance, architecture validity, and system integration correctness 

are enabled by fast simulation models i.e., ABMOD.  While the ABMODs don’t have to cover all the 

performance metrics (bandwidth, noise figure, power supply rejection, common mode rejection, harmonic 

distortion, linearity etc. to name a few critical ones, though this list is not comprehensive) they should 

comprehend all functional behavior between all possible input / output terminal combinations including all 

functional and testability modes of operation.  Since only a sub-set of all such combinations are valid scenarios of 

interest, it is mandatory to identify those invalid modes and at least provide simulation time assertions upon 

exercise of such modes.  This is especially important to highlight and avoid any system integration issue early, as 

not all such scenarios may show up as recognizable functional failure signatures during simulations either due to 

their inherent nature or due to lack of comprehensiveness of the verification suite. 

One such critical boundary condition is the default state of several input control signals of the analog 

functional modules upon power-up of the system.  Any violation of these may result in irrecoverable system 

failure, and will be hard to debug.  The aforementioned assertions come in handy to save long debug effort and 

they aid localize the problem quickly and easily. 

Further the validation of ABMODs against the specification at early stages of design maturity and 

implementation at mature stages is another important requirement, since most verification coverage at system or 

SoC level is obtained with RTL or gate level (GL) simulations using the ABMODs in event driven simulators.  

Since the AMS co-simulation coverage is limited to critically identified test conditions targeting system level 

analog behaviours and integration aspects, its coverage to overall verification coverage is limited.  The test 

benches for ABMOD validation are usually manually developed independent of the electrical test benches used 

for IP sign-off simulations. This further duplicates the effort towards test bench creations and hence may cause 

errors. 

Thus a sub-system level verification and model validation is usually not comprehensive until significant 

maturity in the SoC level integration, verification, and AMS co-simulation each contributing incrementally. 

Even though AMS co-simulation flows have matured and are the right medium for complex system level 

verification, usually SoC level AMS co-simulation is gated by significant maturity of the IP design and system 

integration.  Further SoC level functional verification is not the right medium for IP maturity sign-off.  For 

complex analog mixed signal (AMS) IPs enabling AMS co-simulation may not be easy in the absence of right 

bus function models (BFM) that comprehend and emulate the system level scenario.  Finally the most analog 

simulation sign-off happens through a slow, iterative, and error prone process of manual waveform analysis / 

review.  The specific complexity and bottleneck of the verification we focus on and the typical relative design 

maturity time line are illustrated in Figure 2.   

 

 
Figure 1. Typical IP level verification sign-off flow 



 

4 

 

 

III. SPECIFICATION DRIVEN AUTOMATION OF DESIGN & TEST BENCH 

A. Automated test bench generation flow 

To overcome the above stated bottlenecks, we conceptualised a methodology illustrated in Figure 3, with the 

following key components: 

1. A product data sheet in XML format, XML being the widely used format for data sheet compilation 

& a main source from which various other format including PDF data sheets are generated for 

publication [4]. 

2. An extended integration document in a machine readable format (spread sheet) which is derived 

from the XML data sheet above, with additional fields that are custom to each type of IP to capture 

information needed for design, integration and verification which are not be available in the master 

data sheet.  In the absence of XML product data sheet this may serve as the sole specification 

document. 

3. An automation engine (perl, TCL and/or Cadence Skill language based) to read, interpret and 

generate portions of the RTL design, test benches that are correct by construct. 

4. A black box simulation of the above infrastructure enables quick and automatic generation of 

waveforms for documentation.  These can be embedded back into the original XML or spread sheet 

documents for ease of review.  The integration document & the supporting documentation generated 

as stated above form an improved infrastructure for efficient and timely communication between 

different teams of complementary competencies. 

5. This infrastructure also supports other existing input methods like VCD file based stimuli, Spice 

stimuli.  The PVT corner information are provided as separate inputs. 

6. An automated engine to post process simulation waveform results and generate HTML reports with 

goal checking.  Enables assertion based verification with a sub-set of assertions generated 

automatically from the specification. 

This methodology lends itself to easy extension for other features including the below listed:  

1. Automatic generation of models of various abstraction levels like the functional, timing, power, 

electrical and physical information in various formats needed for SoC integration. 

2. Extension to enable a push button system level analog simulation and verification framework. 

3. The existing advanced digital system verification methodologies (like UVM, System Verilog & 

Specman™) to automate generation of test cases may complement our methodology to achieve 

greater automation. 

 
 

Figure 2. Key bottlenecks of analog IP anbd AMS SoC verification & Typical relative design maturity time line 
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B. Automated RTL & BMOD STUB generation flow 

The concept is further enhanced as shown in Figure 4, to automate sections of design RTL and ABMOD 

generation.  All required information from a product or IP specification (in a mark-up language like HTML, 

XML, or spread sheet) is extracted through an XML parser [5], and then an intermediate spreadsheet (CSV) file is 

generated.  This is further augmented either manually or through inputs from other collaterals to include 

information that is not available in the data sheet but are needed for the targeted automation.  Using these 

information, a custom digital generation engine is developed to automatically generate stubs of RTL code of the 

design [6], and necessary information for verification including assertions and formal connectivity checks.  Some 

of the information that can be achieved through this generation process includes pin multiplexing information for 

the interfaces including general purpose IOs, translation of register address mapping, input boundary condition 

assertions for ABMOD including reset/default states of the input control signals, and valid voltage/current levels.  

C. Components of integration specification document 

A typical ISD with bare minimum information will have the fields illustrated in List 1.  While the below list is 

representative and shows some of the important entries, it is not a comprehensive list. 

 
Figure 3. Automated IP level analog test bench generation 

 
Figure 4. Automated RTL, ABMOD & test bench generation 

1. Sub-block: Identifies the unique sub-functional module of the IP. 

2. Ball / Pin: Identifies the name of the package interface of the IC corresponding to the specific IP 

level interface port (it could be ball identifier for BGA packages or a pad/pin identification).  

3. Port: It identifies all interfaces of the IP. 

4. Direction: The signal direction, which could be input, output or inout / bidirectional. 

5. Register: Identifies if this is mapped to a register interface. 

6. Bits: Number of bits if the interface is a bus/vector. 

7. Description: A verbose textual description of the interface for documentation purposed only and 

usually not used for any automation. 

8. Default value: Default or power-up state of the interface. 

List 1. Fields of integration specification 
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The content of ISD is enhanced with the fields shown in List 2 that capture information uniquely needed and 

necessary for test bench automation.  Again this list is not comprehensive but representative for illustration 

purposes.  The Stimuli field shows a useful input format called PBIT that allows to specify a signal pattern.  

D. Implementation 

An engine is built using Perl script, which parses the ISD to extract necessary information.  This information 

9. Power-up value:  Power-up state of the interface if different from default value at system reset.  

This is only meaningful in such cases where the system power-up transient state has to be identified 

separately from a reset state.  This happens for a system with complete power management 

integration. 

10. NVM: Identifies if this interface is mapped to a non-volatile memory interface like Flash or EFuse 

and the type.  This helps in identifying a technology dependent un-initialised state of this interface. 

11. Voltage domain: Identifies the related voltage/power domain. 

12. Min., Nom., Max.: Minimum/Nominal/Maximum levels of the valid voltage/current.  Important for 

power, and analog interfaces. 

13. Associated Ground: If there are multiple grounds in the system 

14. Current: Maximum allowed current. 

15. IR drop: Maximum allowed IR drop. 

16. Location: Physical coordinates of the related PAD interface. 

17. Source: Identifies the source, if it is an input signal.  It could be either board level, system level, 

another IP in the system or internal to the IP. 

18. Test Scan: Identifies if it is a test interface used during system scan test mode or default test mode. 

19. Test Iddq: Identifies if it is a test interface used / exercised in IDDQ test mode. 

20. Input / Output capacitance: Parasitic input capacitance estimate or maximum output capacitance 

that can be driven if it is an output. 

21. Leakage current (if Power): This quantifies the leakage current consumption if it is a power or 

ground interface in power-down condition. 

22. Type (A/D/C): Identifies if the interface is analog, digital or a clock. 

23. P/G/S: Identifies if the interface is a power, ground or signal. 

24. S/A: Identifies if the interface is synchronous or asynchronous in nature.  It is usually relevant only 

for digital interfaces and for those interfaces with timing criticality. 

25. Pad/Signal: If the signal a PAD connected external interface.  It is usually needed for ESD 

requirements. 

26. Control H/L: Active high or low control. 

27. IO type: Additional custom information like CMOS or WIRE compatible connections and if it is tri-

stated. 

28. Min. Route Spacing, Min. Route Width: Information for physical design constraints. 

29. Guard ring: If guard ring protection is needed and the type, namely co-axial or micro-strip etc. 

30. Active power: Power consumption level, usually needed for power/ground interfaces. 

31. LDO SD condition: If the interface is an output of an integrated power-supply, the logical 

shutdown/power-down condition.  This is used for power intent specification. 

32. Block level interface: Other interfaces / connections for integration purpose. 

33. Remarks: Verbose text for documentation. 

1. Feedback point 

2. Routing capacitor, Routing resistor, Routing inductor 

3. Load capacitor, Cap ESR 

4. Load inductor, Ind. ESR 

5. Load resistor 

6. Stimuli: PBIT [dc voltage, value for 0 bit, value for 1 bit, 0-1 time delay(s), 0-1 rise time(s), 1-0 

time delay(s), 1-0 fall time(s), bit transition time(s), delay time(s), periodic / non-periodic], bit 

value pattern(1/0) 

List 2. Integration document enhancements for test bench automation 



 

7 

 

 

thus extracted is used in combination with the additional information available as the user configuration 

illustrated in List 3, usually needed as simulation information, to generate required test bench for simulation. 

 

The design preparation phase includes generating a compatible design netlist with the DUT instantiated in a 

test bench with all the DUT terminals connected to net names with an aligned consistent naming convention, one 

such example would be to include the instance name prefix to the DUT symbol pin name as the unique test bench 

level net name connecting to that pin.  An auto_file_name option would allow the tool to use a default naming 

convention for all output files and other artefacts. 

E. Automation of results analysis 

As already discussed in section III.B, assertions (including analog checks) can be generated using the above 

infrastructure, there is additional automation infrastructure as shown in Figure 3 & Figure 4 is implemented for 

automation of post-processing of analog simulation results (waveforms).  This requires as a primary input a 

specification file (a sample is shown in Example 1) consisting of various measurements on identified signals, the 

goals (or valid limits) and the different table section in which the consolidated results are to be reported.   

$voltage_corner="typ";  # typ, min or max 

$temperature=27;   

$process="nominal";  #nominal, weak, strong, strong_lkg, skewnp or skewpn 

$instance_name="I0";  #NET name prefix used in spice file  

$netlist_path="/sim/tb_DUT.spi"; 

$model_path="/db/pdk/tech_node/models//model.paths.nom"; 

# input for transient simulation 

$TSTEP="10e-9"; 

$TSTOP="5e-3"; 

$TPUNCH="100e-6,400e-6,600e-6,3.4e-3,3.7e-3,4.0e-3"; 

$int_doc_file="/sim/dut_int_doc_1p0.csv"; 

$tb_file_name="atb_DUT.spi"; 

# Optional (Default=No) 

$auto_file_name="yes"; 

# Optional (Default=PWD) 

$run_path="/sim/DUT/TESTBENCH_AUTO"; 

# Optional (Default=0) 

$debug=1; 

$debug_log="debug.log"; 

List 3. Contents of simulation information file 

* Defines a new report table by name “Power-up Sequence” with one column 

*{NEW_TABLE "Power-up Sequence<br>" "<br>" "Delay" } 

* Measuring delay between VI0_EN_1P8V & VXIO.GEN_1P8V 

*VXI0.GEN_1P8V {DELAYXX 1 1.6 VI0_EN_1P8V 1 1.3 >500e-6&<540e-6} 

* Defines a new report table by name “Power-up Measurements” with 7 columns 

*{NEW_TABLE "Power-up Measurements<br>" "<br>" "Value before PORZ<br>(V or A)" "Value after 

PORZ<br>(V or A)" "N<sub>TR</sub>" "T<sub>TR</sub><br>(Secs)" 

"T<sub>R/F</sub><br>(Secs)" "Dip<br>(V or A)" "Peak<br>(V or A)"} 

VI0_EN {GETY 0 <10e-3} {GETY 4.5e-3 >=1.4}  

VXI0.VDD_INT_1P2V {GETY 0 <10e-3} {GETY 4.5e-3 >0.9&<1.4} {dip 110e-6 5e-3 >0.8&<1.2} {peak 

15e-6 5e-3 <1.3}  

VI0_VDD_AD_1P8V {GETY 0 <10e-3} {GETY 4.5e-3 >=1.6}  

VI0_VDD_CORE_1P2V {GETY 0 <10e-3} {GETY 4.5e-3 >=0.8} {dip 4.1e-3 5e-3 } {peak 4e-3 5e-3} 

VI0_VDD_SRAM_1P2V {GETY 0 <10e-3} {GETY 4.5e-3 >=0.8} {dip 4.2e-3 5e-3 } {peak 4e-3 5e-3} 

VI0_PORZ_CORE_1P2V {GETY 4.0e-3 <10e-3} {GETY 4.5e-3 >=0.8}  

Example 1. Measurement specification file 
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It is implemented using a proprietary waveform post-processor (TISpice PUNCH waveform format) interface 

using Perl, and an extension for FSDB file format is currently supported.  This post-processor processes the saved 

waveforms from analog simulations, and performs all operations in the measurement specification file and 

generates an output report in HTML format that consists of several tabulated results. 

The measurement specification file is defined with a custom syntax briefly explained as follows and whose 

user interface details are illustrated in List 4. 

Any line starting with a”*” is comment and ignored except the pattern “*{“.  This is used to define new 

results section that would be reported as a new table in the HTML output.  All other measurements are specified 

as per the syntax below, in which each <measurement_operation_#> is reported on a separate column of the 

report table.   

<signal_name> {<measurement_operation_1> [<arguments>] [<signal_name] [<goal>]} … 

[{<measurement_operation_n> [<arguments>] [<signal_name] [<goal>]}] 

A new table is created with the following command: 

*{NEW_TABLE <title_as_quoted_string> <comments> <column_heading_1> … <column_heading_2>} 

IV. FUTURE SCOPE 

The following are some significant extensions of this work identified to make this more formal, useful and 

easy for interception: a) Identification and extraction of relevant information from specification or integration 

document and include them IPXACT so that formal tool flows available for system integration supported by 

IPXACT are utilized and vice-versa; b) Current implementation of analog test bench generation only support a 

sub set of analog functionality and simulation aspects, and hence identifying, formalizing  and intercepting all 

requirements needed to target simulation of wider analog functional portfolio; c) Verification of SoC memory 

map, connections such as DMA triggers and interrupts; d) Supporting synthesis/STA timing constraints 

generation; e) Analog assertions generation. 

Punch2report_pc.pl [-help] [<punch_list_file> <signal_list_file> <report_name>] 

 

-help Provides usage information on command line 

 

<signal_list_file> The file that specifies the signals to be processed, type of processing / measurement, 

intended goals for comparison and highlighting in the report and an inherent report content formatting. 

 

Comment:  

* 

 

User format for table generation: 

*{ NEW_TABLE <argument_list>}   

*{NEW_TABLE <title_as_quoted_string> <comments> <column_heading_1> … <column_heading_2>} 

 

Signal processing: 

<signal_name> [time] [{command [args]}] 

<signal_name> {<measurement_operation_1> [<arguments>] [<signal_name] [<goal>]} … 

[{<measurement_operation_n> [<arguments>] [<signal_name] [<goal>]}] 

 

Waveform measurements  & Commands supported: 

GETX, GETY, AVG, RMS, FREQ, DELAYXX, DIP, PEAK, SET_THRES, SET_GP, SET_TOL, TRANS, 

TRANSITION_TIME, RISE_FALL_TIME, NEW_TABLE 

 

Macros: 

Combination of the above can be defined as a user defined macro 

 

List 4. Illustration of user interface for waveform post-processor 
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V. CONCLUSIONS 

We proposed and implemented specification driven automation to generate correct-by-construct a) analog test 

bench for simulation, b) RTL design for IO pin multiplexing and register address mapping, and c) simulation 

results waveform analysis for analog functions.  Application of this method improves efficiency and 

comprehensiveness of verification of analog functionality rich systems (IP) and enables an early closure of the 

same, by improving the communication across complementary competencies of product development.  While the 

current flow uses the specifications in spreadsheet or XML formats as input, further extensions of this technique 

by standardizing their interoperability with IPXACT based flows would make their adaptability broader. 
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