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Abstract—The comparison of analog behavior is still a time-
consuming and error-prone procedure, which has do be done
manually and therefore mainly relies on the expertise of the veri-
fication engineer. In order to accelerate and automate this process
we introduce a new approach that enables us to quantify a degree
of perceptual similarity between analog signals. This approach
moreover follows the Universal Verification Methodology (UVM)
standard and is integrated in a SystemVerilog library, which
provides further functionalities for mixed-signal verification.
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I. INTRODUCTION

Due to better technology scaling of digital blocks compared

to analog blocks more and more parts of the analog implemen-

tation of modern IC designs are shifted to the digital domain.

However, certain analog components are still indispensable,

leading to mixed-signal designs. In terms of verification, very

few methodologies which consider the functional verification

task of digital and analog blocks exist so far, whereas many

verification methodologies for the digital domain have been

developed; the newest being the UVM standard. Compared to

the highly automated verification methodologies in the digital

domain, verification in the analog domain implies a substantial

amount of manual work and computational effort.

The high accuracy of SPICE-models is usually not essential

for top-level verification. Hence, they are often replaced by

appropriate behavioral models. This adjustment significantly

speeds up the simulation. However, during the entire design

process it has to be ensured that the behavioral model does not

diverge from the respective analog component. This progres-

sive model validation has to be done manually and is therefore

a time-consuming and error-prone procedure.

In order to automate this validation we present a new

approach to compare SPICE-models and behavioral models.

For this purpose we are applying a metric which measures the

distance between two feature vectors—in our case represented

by UVM transactions. The algorithm is based on the earth

mover’s distance, which is widely used in content-based image

retrieval. It computes the minimum costs for turning one trans-

action into another by solving a transportation problem, which

in turn can be solved by linear optimization. This algorithm is

implemented in SystemVerilog via DPI-C following the UVM

standard. This measurement enables us to quantify a degree

of similarity between an analog component and a reference

model. Thus it is possible to automatically extract information

about the behavioral match.

Furthermore, this approach is universally applicable such

that it does not depend on a particular class of analog circuitry.

In addition, the algorithm is independent of the transaction

type. Hence, the transactions can be generated through sam-

pling, Fourier analysis, or any other feature vector extraction

method. This concept is moreover not limited to comparisons

between behavioral models and SPICE-models, but can also

be applied to any comparison of analog behavior such as two

different SPICE-models or two behavioral models.

In order to demonstrate the aforementioned algorithm we

show how it can be efficiently employed within a UVM

environment. Also, we show how this environment is used

to verify different behavioral models against their respective

SPICE-models. Additionally, we present both passing and

intentionally failing tests.

The paper is structured as follows. First, we give an

overview of related work that covers approaches for comparing

analog behavior. Their results form the basis for the motivation

of our work. Following this, we briefly explain the components

and functionalities of our analog UVM environment. In section

IV we show the mathematical background of the earth mover’s

distance. In connection to that, the implementation of this

algorithm is outlined. Finally we present the results of our

approach in terms of accuracy and performance as well as the

application to real-life models.

II. MOTIVATION AND RELATED WORK

The employment of behavioral models as a substitute for

analog models requires a comprehensive and accurate vali-

dation within an adequate test environment. Moreover any

modification to the low-level model has to be detected as

soon as possible, so that the behavioral model can be adjusted

accordingly. Otherwise top-level simulations which include the

corresponding high-level replacements would lead to wrong

results and can have a determining influence on the overall

effort of IC respins. If a design for example was simulated

with a deficient behavioral model for a digital oscillator, all

clocked blocks can be affected throughout the verification pro-

cess. Such scenarios can be avoided by applying progressive

regression tests and appropriate model validations.

If a SPICE-model shall be checked against its behavioral

model the most common approach is to leverage assertions.



There are different works [1] [2] which successfully apply this

technique for mixed-signal verification. However, assertions

generally lack in abstraction since they have to be defined at

signal level. Furthermore it is indispensable to reimplement

them for the validation of new model types, so that they are

highly application-specific. Therefore assertions should only

be used as an ancillary technique for analog model validation.

An additional way to address this challenge is to make

use of signal characteristics. The work of [3] introduces a

flow for behavioral model validation which is based on user-

specific checkers. In order to develop these checkers circuit

characteristics and metrics have to be defined at first. Typical

metrics can be the gain of an amplifier or output noise.

However, this solution requires a recurring effort for the

development of checkers since they have to be elaborated and

implemented for each model validation.
Other works which apply both aforementioned approaches

are presented in [4] and [5]. They propose a methodology

called UVM-MS that includes extensions for, among others,

analog signal checking and assertion techniques for analog

properties. However, both methods show the same above

stated deficiencies. They furthermore point out the challenge

of automated analog comparison and the existing need to

manually check waveforms.
All these approaches do not contain a universal technique

for comparing analog signals. Considering for instance two

different voltage regulator models which show the impulse

responses depicted in figure 1. The first regulator (see top

graph) is a Verilog-AMS model which is defined by the

following transfer function:

G(s) =
1

1 + dTs+ T 2s2

where parameter d quantifies the damping and T denotes

a time constant. The second graph shows the output of a

real number model (RNM) implemented in SystemVerilog and

based on corresponding difference equations.
Intuitively, both signals closely resemble each other, thus

their curves can be classified as similar. Since this is only a

subjective perception we want to introduce a formal metric

which enables us to quantify such a characterization.

In addition further deficiencies of the aforementioned works

shall be removed. On the one hand they compare outputs by

evaluating particular signal characteristics which in turn means

that assertions have to be defined at signal level. On the other

hand there must be knowledge of signal thresholds, slopes,

response time etc. so that checking components of the test

bench depend on the type of circuitry. Hence we aimed at

developing a transaction-based approach which is universally

applicable to any type of circuitry.

III. ENVIRONMENT

Before dwelling on our approach, we introduce an extended

UVM environment that we developed with the aim to verify

analog behavior. We call this enhancement A-UVM (analog

UVM). The main features of A-UVM are the usage of analog

transactions [6], constrained-random analog stimulus [7] [6]
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Fig. 1: Impulse response of two different voltage regulator models. The
second model is less accurate since it produces a sampled output
signal.

and the possibility of monitoring analog behavior [6]. In the

following we briefly describe these key features.

A. Analog Transactions

Compared to the digital domain analog signals are particu-

larly characterized by their unlimited co-domain. Hence, they

can assume a specific shape as for instance linear, harmonic or

even random. While digital signals can be easily transformed

from bit level to transaction level due to their simple shape

the abstraction of analog signals poses a major challenge.

However, in order to precisely describe an analog signal it is

not sufficient to simply determine its shape. Thus additional

parameters are necessary. For instance, in order to describe

a linearly shaped signal, its slope as well as one value at a

particular point in time have to be specified. Another example

would be a sinusoidal signal which may be described by a

number of real-valued parameters (e.g. amplitude, frequency,

phase).

In A-UVM, we equate the term shape with the term protocol

known from purely digital interfaces. Furthermore the term

transaction represents a data structure which contains the

required parameters to specify an analog signal.

B. Constrained-Random Analog Stimulus

In UVM-based environments drivers are used to translate

transactions to digital signals which stimulate one or more

DUTs. In this section we explain how A-UVM accomplishes

this task for analog transactions defined in the previous section.

In order to transform analog transactions we implemented

an interface for the communication between a generic driver

and exchangeable algorithms. This interface allows new algo-

rithms to be plugged in during the simulation. The algorithms

in turn determine the type of transformation used by the driver.



They are not restricted to SystemVerilog, but can be written

in C, Matlab or other languages as well.
Every analog transaction holds meta data which contains

the algorithm name, among others. This information is read by

the driver which subsequently selects the according algorithm

from its data base. The transaction is then being passed to the

algorithm in order to convert it to signal level.

C. Monitoring Analog Behavior

The previous definitions can also be used in terms of

monitoring. An analog monitor has the task to extract signal

parameters from a given shape. For this purpose the monitor

uses an algorithm (later also referred as extraction method)

via a dedicated interface.
Since the selection of a particular algorithm may be project-

dependent we separated the monitor from the deployed mon-

itoring algorithm. This enables us to manage all monitor

functionalities in an own library. In addition to that, it allows

one to exchange monitoring algorithms during run time. This

may be useful in case signal shapes vary over time due to the

DUT being in different states.
In order to enable the monitor to initiate the generation

of transactions we added the concept of triggers to A-UVM.

A trigger is an object that raises an event which is based

on particular start activities like discontinuities, threshold

crossings or simply a lapse of time. Hence, we implemented a

selection of triggers covering frequently occurring activities. In

addition, user-defined triggers can be plugged in via a callback

mechanism. It is moreover possible to logically connect several

start events and thereby create combinations of triggers. We

finally leverage the same concept in order to terminate the

generation of transactions.

IV. MATHEMATICAL BACKGROUND

A. Bin-by-bin Measures

Various measures exist which can be used to define a

distance between elements of different sets. The sets can be

represented by distributions, histograms or vectors. When a

degree of similarity between two signals has to be measured

Pearson product-moment correlation or cosine similarity are

often applied. Both can be categorized as bin-by-bin measures

since they compare contents or corresponding elements, that

is, they compare all xi and yj for i = j.
Another important bin-by-bin measure is the Tanimoto

distance. Given two vectors x and y it is defined as follows

[8]:

dT(x,y) =
x⊺y

‖x‖2 + ‖y‖2 − x⊺y
(1)

Unlike Pearson correlation and cosine similarity this distance

can be usefully applied to one-dimensional vectors or scalars.

In this case dT(x, y) takes values in the range [−0.3, 1], hence

it is bounded above and below. Because of these properties

the Tanimoto distance will serve as so-called ground distance

for our earth mover’s distance in the following section.
However, all bin-by-bin measures have one crucial draw-

back. As mentioned previously, only pairs of elements which

have the same index are matched, so that these measures do not

incorporate information across bins. This in turn means, that

they do not necessarily match perceptual similarity well [9].

This problem can be addressed by applying cross-bin measures

like the earth mover’s distance (EMD).

B. Earth Mover’s Distance

The earth mover’s distance is an approach to measure the

distance between two multi-dimensional distributions. Infor-

mally, if one must successively transport soil from one pile to

another in order to equalize them, the earth mover’s distance

calculates the minimum cost for the total transport. The

distributions are also called signatures and represent weighted

feature vectors of both output signals. The feature vectors

in turn can be created by sampling, Fourier analysis or any

other extraction method. In the following the concept of this

approach, which is based on [10], shall be explained.

Given are two signatures X and Y where xi, yi denote

elements from the respective feature vector. Each signature

consists of n clusters.

X = {(x1, wx1
), . . . , (xn, wxn

)}

Y = {(y1, wy1
), . . . , (yn, wyn

)}

For each element xi, yi a particular weight wxi
, wyi

can be

assigned. In our case a constant weight W is sufficient since

no element shall be prioritized:

W = wxi
= wyi

=
1

n
(2)

Moreover the possibility for transports between both signa-

tures is defined as flow F = [fij ], with fij the flow between

xi and yj .

Now the idea is to find a flow F that minimizes the costs

C for the overall work:

C(x,y,F ) =
n
∑

i=1

n
∑

j=1

dij · fij (3)

where dij denotes the ground distance between xi and yj .

For our ground distance we chose the Tanimoto distance from

equation 1 since this distance can be used for scalars and is

bounded above and below. Aside from that it can be shown

that a bounded ground distance results in a bounded earth

mover’s distance.

The optimization problem in equation 3 must furthermore

satisfy the following constraints where constraint 5–7 can be

simplified according to our assumption in equation 2:

fij ≥ 0 1 ≤ i ≤ n, 1 ≤ j ≤ n (4)
n
∑

j=1

fij ≤ wxi
=

1

n
1 ≤ i ≤ n (5)

n
∑

i=1

fij ≤ wyj
=

1

n
1 ≤ j ≤ n (6)

n
∑

i=1

n
∑

j=1

fij = min





n
∑

i=1

wxi
,

n
∑

j=1

wyj



 = 1 (7)



Constraint 4 allows only unidirectional flows from X to Y .

Constraint 5 ensures that the weight in y matched to xi does

not exceed n−1, while constraint 6 ensures that also the weight

in x matched to yj does not exceed n−1. Finally, constraint 7

forces the total amount of weight matched to be equal to the

overall weight of each signature.
In summary our metric consists in solving the following

transportation problem for a pair of distributions on condition

that the above stated constraints are satisfied:

dEM(x,y) = min
F=[fij ]

C(x,y,F ) (8)

This expression represents a linear optimization problem.

Hence, it can be solved by an appropriate algorithm like

the simplex method. The metric dEM eventually yields a

value within the interval [0, 1] where 1 symbolizes complete

dissimilarity and 0 a full match.

V. IMPLEMENTATION

Before leveraging the earth mover’s distance the output

signals of the models have to be transformed in such a way that

two feature vectors of equal length are being extracted. The

vectors must moreover contain enough information to obtain

meaningful results.
Different methods can be chosen to perform this step.

Already implemented types are sampling, Fourier analysis and

the parameter extraction of standard signals like jump, ramp or

sine. Other potential methods, which could be easily added, are

for instance wavelet analysis or an extraction of mel-frequency

cepstral coefficients (MFCC).
The actual feature extraction is done by generic monitors

mentioned in section III-C. The selection of monitor algo-

rithms mainly depends on the demands of the verification

engineer and the requirements of the regarding project. In

terms of similarity analysis, the employed algorithm defines

the feature which is used for signal comparison within the

scoreboard. The described concept is shown in figure 2.
In the following the realization of the most important classes

and functions for the EMD implementation shall be explained.
First of all a SystemVerilog class for the earth mover’s

distance is defined (see listing 1). This class is used to

instantiate the metric within the scoreboard. The inputs of

the get-function are two feature vectors extracted from the

model outputs. Moreover a direct programming interface (DPI)

is defined in order to realize all CPU-intensive calculations

as a C-implementation. For this reason the EMD class only

contains the most essential parts. In addition to the feature

vectors the C-function receives the size n of the vectors. A

check ensures that both vectors have equal length.

i m p o r t " DPI−C" f u n c t i o n r e a l

a _ u v m _ l p _ s o lv e _ d p i ( b i t [ 6 3 : 0 ]

d a t a _ s t r _ a [ ] , b i t [ 6 3 : 0 ]

d a t a _ s t r _ b [ ] , i n t d a t a _ s t r _ s i z e ) ;

c l a s s a _ u v m _ e a r t h _ m o v e r s _ d i s t a n c e e x t e n d s

a _ u v m _ e r r o r _ m e t r i c ;

‘ u v m _ o b j e c t _ u t i l s (

a _ u v m _ e a r t h _ m o v e r s _ d i s t a n c e )

v i r t u a l f u n c t i o n r e a l g e t (

a _ u v m _ d a t a _ s t r a , b ) ;

a _ u v m _ i t e r a t o r _ b a s e a _ i t e r , b _ i t e r ;

i n t unsigned d a t a _ s t r _ s i z e ;

b i t [ 6 3 : 0 ] d a t a _ s t r _ a [ ] ;

b i t [ 6 3 : 0 ] d a t a _ s t r _ b [ ] ;

i n t i = 0 ;

a _ i t e r = a . g e t _ i t e r a t o r ( ) ;

b _ i t e r = b . g e t _ i t e r a t o r ( ) ;

i f ( a _ i t e r . g e t _ s i z e ( ) !=

b _ i t e r . g e t _ s i z e ( ) )

begin

‘ u v m _ f a t a l ( g e t_ ty p e_ n am e ( ) ,

" The p r o v i d e d d a t a s t r u c t u r e s

must be o f same s i z e ! " )

end

d a t a _ s t r _ s i z e = a _ i t e r . g e t _ s i z e ( ) ;

d a t a _ s t r _ a = new [ d a t a _ s t r _ s i z e ] ;

d a t a _ s t r _ b = new [ d a t a _ s t r _ s i z e ] ;

whi le ( a _ i t e r . h a s _ n e x t ( ) )

begin

d a t a _ s t r _ a [ i ] = $ r e a l t o b i t s (

a _ i t e r . n e x t ( ) ) ;

d a t a _ s t r _ b [ i ] = $ r e a l t o b i t s (

b _ i t e r . n e x t ( ) ) ;

i ++;

end

r e t u r n a _ u v m _ l p _ s o lv e _ d p i (

d a t a _ s t r _ a , d a t a _ s t r _ b ,

d a t a _ s t r _ s i z e ) ;

endfunct io n

e n d c l a s s

Listing 1: EMD class implementation and DPI-C (in SystemVerilog)

Next step is to declare a separate C-function for the ground

distance between elements xi and yi (see listing 2). This

enables us to easily add new or exchange existing implemen-

tations for ground distances.

An important fact is that the earth mover’s distance restricts

the applied ground distance to become 0 in case xi and yi are

equal. Hence, it is necessary to adjust the output interval for

the Tanimoto distance. Since dT(x, y) attains its maximum for

x = y it has to be mapped from [−0.3, 1] to [1, 0].
In order to solve the transportation problem stated in

equation 8 we utilize an already existing solver for linear



Signal level Transaction level

Model A

Model B

Feature

Extraction

Similarity

Analysis

via dEM

Signal A

Signal B

Feature

Vector A

Feature

Vector B

DUTs Monitors Scoreboard

Fig. 2: Basic concept for feature extraction and similarity analysis

s t a t i c double g e t _ d i s t a n c e ( double x ,

double y )

{

i f ( x ==0.0 && y = = 0 . 0 )

re turn 0 . 0 ;

e l s e

re turn (−0.75*x*y ) / ( pow ( x , 2 ) +pow ( y , 2 )

−x*y ) + 0 . 7 5 ;

}

Listing 2: Mapped Tanimoto distance which is used as EMD ground distance
(in C)

optimization problems, which is implemented in C [11]. It

provides an API to define the objective function from equation

3 and the constraints 4-7. Furthermore its engine is based

on the revised simplex algorithm, which is one of the most

efficient algorithms in practice for solving linear optimization

problems [12].

Listing 3 shows the main C-function for the earth mover’s

distance. The data structure lprec contains all information

of the optimization problem and belongs to the solver API.

First part of the function consists in calculating the ground

distances across all elements which are further used to build

the objective function.

double a _ u v m _ l p _ so lv e _ d p i (

c o n s t svOpenArrayHandle d a t a _ s t r _ a ,

c o n s t svOpenArrayHandle d a t a _ s t r _ b ,

i n t d a t a _ s t r _ s i z e )

{

i n t num_var=pow ( d a t a _ s t r _ s i z e , 2 ) ;

i n t i , j , row , c o l ;

double *aRow ;

l p r e c * l p ;

l p = make_lp ( 0 , num_var ) ;

aRow=( double * ) c a l l o c ( num_var+1 ,

s i z e o f ( double ) ) ;

/ / o b j e c t i v e f u n c t i o n

f o r ( i =0 ; i < d a t a _ s t r _ s i z e ; i ++)

{

f o r ( j =0 ; j < d a t a _ s t r _ s i z e ; j ++)

{

aRow [ i * d a t a _ s t r _ s i z e +( j +1 ) ]=

g e t _ d i s t a n c e (

* ( double * ) sv Ge tAr rE lem Pt r (

d a t a _ s t r _ a , i ) ,

* ( double * ) sv Ge tAr rE lem Pt r (

d a t a _ s t r _ b , j ) ) ;

}

}

s e t _ o b j _ f n ( lp , aRow ) ;

}

Listing 3: EMD main function and calculation of ground distances (in C)

Finally constraint 5, 6 and 7 are implemented (see listing 4,

5 and 6, respectively). The remaining constraint 4 is already

implicitly covered by the solver which only allows positive

variables. With respect to inequation 5, 6 and equation 7 it

can be said, that 2n+ 1 constraints have to be defined for a

particular optimization problem.
In the last step the solver optimizes the provided objective

function under the given constraints. After another mapping

from [0, 1] to [1, 0] the final result dmEM is returned to the

scoreboard and may take the following values:

• dmEM = 1− dEM(x,y) = 1: Feature vectors x and y are

identical.

• dmEM = 1 − dEM(x,y) = 0: Feature vectors x and y

behave completely contrary.

• 0 < dmEM = 1 − dEM(x,y) < 1: Feature vectors x and

y are neither identical nor behave completely contrary.

However, the value for dmEM quantifies their degree of

similarity.



f o r ( row =1 , i =0 ; row<= d a t a _ s t r _ s i z e ;

row ++ , i ++)

{

f o r ( c o l = 1 ; c o l <= d a t a _ s t r _ s i z e ;

c o l ++)

aRow [ c o l + i * d a t a _ s t r _ s i z e ] = 1 . 0 ;

a d d _ c o n s t r a i n t ( lp , aRow , LE ,

1 . 0 / d a t a _ s t r _ s i z e ) ;

}

Listing 4: Implementation of EMD constraint 5 (in C)

f o r ( row =1 , i =0 ; row<= d a t a _ s t r _ s i z e ;

row ++ , i ++)

{

f o r ( c o l = i +1 ; co l <=pow ( d a t a _ s t r _ s i z e , 2 ) ;

c o l += d a t a _ s t r _ s i z e )

aRow [ c o l ] = 1 . 0 ;

a d d _ c o n s t r a i n t ( lp , aRow , LE ,

1 . 0 / d a t a _ s t r _ s i z e ) ;

}

Listing 5: Implementation of EMD constraint 6 (in C)

f o r ( c o l =1 ; co l <=pow ( d a t a _ s t r _ s i z e , 2 ) ;

c o l ++)

aRow [ c o l ] = 1 . 0 ;

a d d _ c o n s t r a i n t ( lp , aRow , EQ, 1 . 0 ) ;

Listing 6: Implementation of EMD constraint 7 (in C)

VI. APPLICATION

When performing a similarity analysis for different mod-

els, feature vectors are extracted from their output signals

and represented by transactions. Each pair of transactions is

subsequently analyzed and assigned to a mapped EMD value

dmEM. Figure 3 shows an example of two analog signals where

equidistant sampling is chosen as extraction method. The

number of monitored samples per transaction is set to n = 6
(in the following also referred as number of data points). The

extracted transactions are being compared pairwise in order to

determine a distance dmEM for each pair.

Now the idea is to define a lower bound for the expected

similarity dmEM. In case dmEM falls below this bound the

causing transactions can be located and examined in order

to identify a potential behavioral mismatch between the em-

ployed models.

This test procedure can be run completely automated after

setting up test cases and determining appropriate extraction

methods. Furthermore the approach may be used to perform

regression tests for the validation of analog models.

VII. RESULTS

A. Performance and Accuracy

An application of our approach raises the question of per-

formance and accuracy. Therefore we examined both aspects

within a UVM test bench containing two analog models. Their

input stimuli is derived from randomly generated transactions.

Furthermore the extraction method is set to sampling.

For the performance analysis we measured the time con-

sumed by the C-function of the EMD implementation. A

considerable amount of time (approximately 90%) is thereby

consumed by the solver itself in order to minimize the

provided objective function. Figure 4 depicts the average

execution time depending on the number of data points n used

for the feature vectors. The graph shows a flat curve for data

points in the range [0, 134]. However, it can be easily seen

from the overall results that a nonlinear dependence exists

between performance and n.
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Fig. 4: Average execution time of the C-function depending on the number
of data points (for one pair of transactions)

Considering equation 3 it can be moreover shown that the

function has to be minimized for n2 variables. This implies

that a quadratic dependence exists between the length of

feature vectors and the size of the objective function. As

mentioned above the revised simplex algorithm is employed

for minimization. However, this method shows an exponential

worst-case but polynomial average complexity [13], which has

a determining influence on the overall performance of our

approach.

On the other hand, accuracy plays an important part when

analyzing performance. For this purpose we determined the

relative variation of the EMD results for each run. Figure 5

depicts the relative error depending on the number of data

points n used for the feature vectors. As can be seen from the

graph the curve is decreasing rapidly. Hence, accuracy can be

significantly increased by using more data points.

For the purpose of a better comparison between execution

times and relative errors, table I shows an overview for a

selection of data points. In order to obtain meaningful results
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TX A [-0.30 0.27 0.32 0.74 0.24 0.24] [0.23 -0.31 -0.04 -0.43 -0.17 -0.19]

Signal B

TX B [-0.09 0.24 0.39 0.73 0.24 0.23] [0.17 -0.44 0.10 -0.52 -0.20 -0.18]
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Fig. 3: Extracted transactions (TX) from two analog signals A and B by equidistant sampling
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Fig. 5: Accuracy of dmEM results depending on the number of data points

with a relative error below 1% an execution time of circa 2 s

has to be accepted which appears to be tolerable.

TABLE I: Performance and accuracy of the EMD approach

#Data points n Average execution time Relative error

20 0.0035 s 8.75%

25 0.0055 s 7.83%

34 0.0145 s 4.83%

50 0.0430 s 3.63%

80 0.1825 s 2.33%

100 0.3590 s 1.44%

134 1.0310 s 1.17%

167 2.1500 s 1.00%

200 4.0495 s 0.55%

B. Application to Real Models

In order to demonstrate the successful application of our

approach we would like to analyze two real-world models. For

this purpose we refer to the models of the voltage regulators

described in section II. As mentioned before both models show

a similar output behavior. However, the second regulator model

is less accurate due to its sampled output. In the following we

quantify the degree of similarity between both of them and

manipulate the output behavior of the second regulator model

to force a lower similarity.

First of all we created four test cases which differ in sample

time, output scaling and voltage offset. These values only

apply to the second regulator model while the first model

remains unmodified. Table II summarizes the test cases which

were used for the similarity analysis.

TABLE II: Test cases for the validation of voltage regulators

Test case Sample time Scale factor Offset

1 10 ns 1.0 0.0

2 40 ns 1.0 0.0

3 10 ns 3.0 0.0

4 10 ns 1.0 3.0

Both regulator models are being stimulated by random input

signals, but with the same seed for each test case. Table III

shows a selection of results for dmEM. As expected, test case 1
yields the greatest values since no modification was done on

both models. Increasing the sample time induces a slight but

visible change in the results while scaling and offset show the

highest impact on the similarity.

In terms of regression tests, it is conceivable to define an

EMD lower bound as for instance dmEM > 0.95. Hence, test

case 2 would only flag a few pairs of transactions which would

have to be reexamined, whereas test case 3 and 4 would reveal

a serious behavioral mismatch between both models.



TABLE III: A selection of five calculated EMD values regarding the test cases
in table II

dmEM (case 1) dmEM (case 2) dmEM (case 3) dmEM (case 4)

.

.

.
.
.
.

.

.

.
.
.
.

0.9863 0.9693 0.6380 0.3993

0.9815 0.9649 0.6742 0.4675

0.9752 0.9635 0.6518 0.2524

0.9771 0.9305 0.6671 0.3283

0.9793 0.9622 0.6437 0.3305

.

.

.
.
.
.

.

.

.
.
.
.

VIII. CONCLUSION AND OUTLOOK

In this paper we presented a new approach for comparing

analog models with respect to their output behavior. For this

purpose we used a metric called earth mover’s distance which

was implemented in SystemVerilog and C following the UVM

standard. The main idea is to quantify a degree of similarity

between transactions which are extracted from analog signals.

This measure enables us to perform regression tests in order to

validate behavioral models by defining an EMD lower bound

for all transactions. Hence, the effort for manually checking

waveforms of analog signals can be reduced tremendously.

Since this approach does not depend on the type of circuitry

it is moreover universal applicable and highly reusable.

As a future work, we plan to employ our approach within

further mixed-signal projects for the validation of analog

behavior. In addition we intend to improve the performance of

the solver engine, which is used to minimize our optimization

problem. As a consequence the execution time would decrease

while the accuracy of results would remain constant.
Our final goal is to provide a UVM-based model kit for

the simulation and verification of analog designs. This model

kit shall basically contain universal techniques for driving,

monitoring and checking of analog signals as well as coverage

collection and reference modeling.
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