

Automated Comparison of Analog Behavior in a UVM Environment

by Sebastian Simon Infineon Technologies AG

- 1. Motivation
- 2. Earth Mover's Distance
- 3. Concept of Automated Comparison
- 4. Application and Results
- 5. Conclusion and Outlook

Motivation

- Increasing number of mixed-signal designs
- **Mixed-signal verification:** time-consuming task compared to digital verification
- **Approach:** replacing accurate SPICE-models with less accurate behavior models
- **Potential problem:** divergence between SPICE-model and behavior model during design process
- Therefore, continuous model validation is indispensable
- But: usually done by manual inspections of analog signals/waveforms → error-prone and time-consuming

Motivation

• Example: voltage regulator (SPICE- and SystemVerilogmodel)

Motivation

- **Our goal:** automating the comparison between analog signals
- Embedding technique in an analog verification environment which is based on UVM → A-UVM
- Regression tests to ensure consistency between analog models at any time
- Question: How to determine perceptual similarity?

- 1. Motivation
- 2. Earth Mover's Distance
- 3. Concept of Automated Comparison
- 4. Application and Results
- 5. Conclusion and Outlook

Earth Mover's Distance

- Similarity can be measured by several metrics (Pearson correlation, cosine similarity, Euclidean distance, ...)
- **Deficiency:** bin-by-bin measures do not necessarily match perceptual similarity well

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \xleftarrow{} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

 Leveraging cross-bin measures in order to obtain more meaningful results → Earth Mover's Distance

Earth Mover's Distance

- Approach to measure the distance between two distributions
- Visualization: transportation of soil from one pile to another

- Work = distance x amount
- Find minimum flow which equalizes distributions → optimization problem has to be solved

- 1. Motivation
- 2. Earth Mover's Distance
- 3. Concept of Automated Comparison
- 4. Application and Results
- 5. Conclusion and Outlook

Concept of Automated Comparison

- Generic monitors extract analog transactions = feature vectors
- Extraction types: sampling, FOURIER, sine, ramp, jump
- Similarity analysis implemented with SystemVerilog DPI-C

Concept of Automated Comparison

• Analyzing one pair of transactions results in exactly one value for the Earth Mover's Distance

- Range: $0 \le d_{EM} \le 1$ (where 1 implies a full match)
- Basic idea for regression: defining a lower bound for d_{EM}
- Once d_{EM} falls below this bound, the regression test fails and the regarding transactions can be examined

- 1. Motivation
- 2. Earth Mover's Distance
- 3. Concept of Automated Comparison
- 4. Application and Results
- 5. Conclusion and Outlook

• Application to the aforementioned voltage regulators

• Three parameters of the second model will be modified in the following testcases

Test case	Sample time	Scale factor	Offset
1	10 ns	1.0	0.0 V
2	40 ns	1.0	0.0 V
3	10 ns	3.0	0.0 V
4	10 ns	1.0	3.0 V

• Assumption for regression: d_{EM} > 0.95

d _{EM} (case 1)	d _{EM} (case 2)	d _{EM} (case 3)	d _{EM} (case 4)
0.9863	0.9693	0.6380	0.3993
0.9815	0.9649	0.6742	0.4675
0.9752	0.9635	0.6518	0.2524
0.9771	0.9305	0.6671	0.3283
0.9793	0.9622	0.6437	0.3305
	•••		

- **Result:** as expected, only the first test case passes
- Remaining test cases would flag a model inconsistency

- Performance is determined by solver engine
- 90% of time is used for solving the optimization problem

- Accuracy can be improved by increasing size of feature vectors
- Trade-off between accuracy and performance

Relative error (in %)/Average execution time (in s)

- 1. Motivation
- 2. Earth Mover's Distance
- 3. Concept of Automated Comparison
- 4. Application and Results
- 5. Conclusion and Outlook

Conclusion and Outlook

- We presented a new approach for comparing analog behavior based on the Earth Mover's Distance
- Idea: quantifying a degree of perceptual similarity
- Advantages:
 - Model validation can be accomplished by automated regression tests
 - Effort for manually checking waveforms can be tremendously reduced
 - Approach does not depend on the type of circuitry
 → universally applicable

Conclusion and Outlook

- Our future work regarding this approach:
 - Validation of further models which are used in mixed-signal designs
 - Performance improvement
 - Implementation of additional distance measures
- **Overall goal:** UVM-based model kit for simulation and verification of analog designs

Thank you for your attention!