
Automate and Accelerate RISC-V Verification
by Compositional Formal Methods

Yean-Ru Chen, Cheng-Ting Kao, Yi-Chun Kao, Tien-Yin Cheng, Chun-
Sheng Ke and Chia-Hao Hsu

Department of Electrical Engineering, National Cheng Kung University,
Tainan City, Taiwan (R.O.C)

© Accellera Systems Initiative 1

Outline
• Introduction
• Application
• Experimental results
• Conclusions

© Accellera Systems Initiative 2

Outline
• Introduction
• Application
• Experimental results
• Conclusions

© Accellera Systems Initiative 3

CPU Verification
• Many optimizations applied to improve performance

– Pipelining, forwarding, out-of-order execution, etc.

• Simulation is hard to cover the whole functionality of processor
– Hard to think of all corner cases and harder to simulate all corner cases

• Formal verification technique has became a trend

© Accellera Systems Initiative 4

0
5

10
15
20
25
30
35

Formal property checking

2012
2014
2016

8% CAGR

D
es

ig
n

Pr
oj

ec
ts

 (%
)

Source : The 2016 Wilson Research Group ASIC/IC and FPGA Functional Verification Study

CAGR : Compound annual growth rate

ARM ISA-Formal
• End-to-end framework to detect bugs in the datapath, pipeline control

and forwarding/stall logic of processors by model checking

• Explore all the legal different sequences of instructions and able to
detect the defects mentioned above

© Accellera Systems Initiative 5

Cite : Alastair Reid et al., "End-to-end verification of processors with ISA-formal," International Conference on Computer Aided Verification, 2016.

riscv-formal
• Framework for formal end-to-end verification of RISC-V cores against

the ISA specification

• Propose a RISC-V Formal Interface (RVFI) for riscv-formal

© Accellera Systems Initiative 6

Cite : Clifford Wolf. RISC-V Formal Verification Framework. https://github.com/cliffordwolf/riscv-formal, 2016.

Deficiencies of Related Works
• ARM ISA formal

– CSR instruction
– State-space explosion problem
– Coverage information

• riscv-formal
– Need to pre-set checking depths
– Environment calls/breakpoints instructions
– Check the read/write contents of CSR but not for CSR instructions
– Properties are manually created
– state-space explosion problem
– coverage information

7

Outline
• Introduction
• Application
• Experimental results
• Conclusions

© Accellera Systems Initiative 8

Proposed Workflow
Specification

Machine readable
specification

SystemVerilog property
(extended RVFI)

RISC-V based
CPU

Model checker
(JasperGold)

Result

Extended RVFI
wrapped CPU

SVA with split properties
Signal

mapping
model

© Accellera Systems Initiative 9

Extend RVFI for Property Auto-generation
• Automatically generate RV32I formal properties based on well-qualified

machine readable specification
• Extend RVFI for more functions

© Accellera Systems Initiative 10

PC
Gen. IF DE

EX

WB

MEM

MUL

rvfi_de_insn = vscale_pipeline.inst_DX; rvfi_insn2 <= rvfi_de_insn; rvfi_insn3 <= rvfi_insn2;

rvfi_rs1_rdata = vscale_regfile.data[rvfi_rs1_addr];
rvfi_rs2_rdata = vscale_regfile.data[rvfi_rs2_addr];

rvfi_rd_wdata = vscale_regfile.data[rvfi_rd_addr];

Trigger

Extend RVFI for Property Auto-generation (cont’d)

© Accellera Systems Initiative 11

• Original SVA property for checking add instruction

Verification Space Abstraction by Property Splitting

• Original SVA property for the add instruction is able to verify two targets :
1. Checks the correctness of the data forwarding (red)
2. Checks if the actual result data is correctly written back to the destination

register (blue)

© Accellera Systems Initiative 12

r0
r1
r2

r8
r7
r6
r5
r4
r3

r9
rvficav_wb_data

Regfile

ALU

Reg[rs1]
MUX

Forwarding
data

Forwarding
data

Reg[rs2]
MEM MUX

rvfi_rd_addr

MUX

Split SVA Properties for Checking add Instruction

© Accellera Systems Initiative 13

1. Checks the correctness of the data
forwarding

2. Checks if the actual result data is correctly
written back to the destination register

Compositional Formal Verification Method
• Assume-guarantee reasoning

• M and N : Components
• A : Assumption
• P : Property
• ∥: Composite
• ╞ : Satisfy

14

𝐌𝐌 ∥ 𝐀𝐀╞ 𝐏𝐏 𝐍𝐍╞ 𝐀𝐀
𝐌𝐌 ∥ 𝐍𝐍 ╞ 𝐏𝐏

Premise

Conclusion

P = checking whether the correct data is calculated and sent to
the correct destination register

A = assumption describing that the correctness of data
forwarding is assumed valid

N = checking datapath of computing the correct write back data

M = checking datapath of writing data to correct destination register

Outline
• Introduction
• Application
• Experimental results
• Conclusions

© Accellera Systems Initiative 15

Design under verification

16

PC
GEN. IF DE

EX

WB
MEM
MUL

Branch
Predictor

Data
Cache

CPU State

Registor File

Instruction
Cache

Execution Pipeline

Fetch Pre-
Decode Decode Execute Memory

Access
Write
Back

• Vscale
- 32-bit 3-stage single-issue pipeline CPU

• RV12
- 32/64-bit 6-stage single-issue pipeline CPU

 Verification environment :
- Server running CentOS 6.10., which has 48 cores with 2.20 GHz CPU and 256 GB memory embedded
- Using Cadence JasperGold 2018.03

Comparison
• Take Vscale for example

© Accellera Systems Initiative 17

Original Abstract

Property name original_add forward_add rd_wb_test

Result Pass Pass Pass

Time (sec) 75140.4 1187.3 6.7

COI coverage of pipeline module 93.13% 93.13%

Proof core coverage of pipeline module 48.98% 60.60%

• Cone-of-influence (COI) coverage : Determines the cover items in the Cone-of-influence of each assert
• Proof core coverage : Represents the portion of the design verified by formal engines

Results of Vscale ISA formal verification

Instruction type Number of
properties

Execution time
(second) Verification result

R-type 22 16167.3 PASS (except sra instruction)
I-type 18 23482.0 PASS (except srai instruction)
B-type 12 1624.2 PASS
J-type 8 15.8 PASS (except jalr instruction)
L-type 12 38.2 PASS
S-type 8 39.3 PASS
U-type 4 29.8 PASS

Assumption 4 --- ---

Total properties 88 --- ---

© Accellera Systems Initiative 18

Number of inconclusive instruction properties in RV12

Instruction
type

of properties
(inconclusive/total)

(without abstraction)

of properties
(inconclusive/total)
(with abstraction)

Improvements (%)

R-TYPE 10/10 5/10 50.0%

I-TYPE 9/9 3/9 66.6%

J-TYPE 2/4 1/4 25.0%

© Accellera Systems Initiative 19

Coverage information
• Vscale

– Top module :
• COI coverage : 92.80 %
• Proof core coverage : 76.96 %

– Core module :
• COI coverage : 92.87 %
• Proof core coverage : 75.92 %

• RV12
– Top module :

• COI coverage : 67.93 %
• Proof core coverage : 61.17 %

– Core module :
• COI coverage : 87.85 %
• Proof core coverage : 83.33 %

20

waive
98.18 %
89.11 %

waive
96.11 %
91.57 %

Defects found by our verification flow
• Vscale :

– sra and srai
– jalr

• RV12 :
– csrrwi

21

Error in sra and srai instructions (Vscale)
• “Arithmetic right shifts” operator should be “>>>”, while they are implemented

as “>>” which is the logical right shift operator.

22

 Vscale ALU implementation

Error in jalr instruction (Vscale)
• Vscale directly sets the lowest bit of the immediate value to be 0 and

then adding to rs1, which is different from RISC-V specification
requirements

23

 Part of Vscale PC mux implementation

Error in “csrrwi” instructions (RV12)

24

• csrrs, csrrc, csrrsi and csrrci
– Have to concern whether source register is x0

• csrrw and csrrwi
– Shouldn’t concern whether source register is x0

 Part of RV12 decode stage implementation

rs = x0

rs = x0

Shall not cause illegal instruction exception

Still cause illegal instruction exception

Outline
• Introduction
• Application
• Experimental results
• Conclusions

© Accellera Systems Initiative 25

Conclusions
• Propose a verification flow to automatically generate the formal properties for

RISC-V RV32I instructions

• The properties are reliable by coverage analysis information
– Proof coverage can average about 90% in core module after waive unconcerned module

• Using abstraction technique to mitigate state-space explosion problem

• Defect the faults in our experimental CPU
– sra, srai and jalr instructions in Vscale case
– csrrwi instruction in RV12 case

26

Thank you for your attention!

Q&A

© Accellera Systems Initiative 27

Author Contact Information: chenyr@mail.ncku.edu.tw

	Automate and Accelerate RISC-V Verification by Compositional Formal Methods
	Outline
	Outline
	CPU Verification
	ARM ISA-Formal
	riscv-formal
	Deficiencies of Related Works
	Outline
	Proposed Workflow
	Extend RVFI for Property Auto-generation
	Extend RVFI for Property Auto-generation (cont’d)
	Verification Space Abstraction by Property Splitting
	Split SVA Properties for Checking add Instruction
	Compositional Formal Verification Method
	Outline
	Design under verification
	Comparison
	Results of Vscale ISA formal verification
	Number of inconclusive instruction properties in RV12
	Coverage information
	Defects found by our verification flow
	Error in sra and srai instructions (Vscale)
	Error in jalr instruction (Vscale)
	Error in “csrrwi” instructions (RV12)
	Outline
	Conclusions
	Thank you for your attention!��Q&A

