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CPU Verification
• Many optimizations applied to improve performance

– Pipelining, forwarding, out-of-order execution, etc.

• Simulation is hard to cover the whole functionality of processor
– Hard to think of all corner cases and harder to simulate all corner cases

• Formal verification technique has became a trend
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ARM ISA-Formal
• End-to-end framework to detect bugs in the datapath, pipeline control 

and forwarding/stall logic of processors by model checking

• Explore all the legal different sequences of instructions and able to 
detect the defects mentioned above
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Cite : Alastair Reid et al., "End-to-end verification of processors with ISA-formal," International Conference on Computer Aided Verification, 2016.



riscv-formal
• Framework for formal end-to-end verification of RISC-V cores against 

the ISA specification

• Propose a RISC-V Formal Interface (RVFI) for riscv-formal 
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Cite : Clifford Wolf. RISC-V Formal Verification Framework. https://github.com/cliffordwolf/riscv-formal, 2016.



Deficiencies of Related Works
• ARM ISA formal

– CSR instruction 
– State-space explosion problem
– Coverage information

• riscv-formal
– Need to pre-set checking depths
– Environment calls/breakpoints instructions
– Check the read/write contents of CSR but not for CSR instructions
– Properties are manually created
– state-space explosion problem
– coverage information

7



Outline
• Introduction
• Application
• Experimental results
• Conclusions

© Accellera Systems Initiative 8



Proposed Workflow
Specification

Machine readable 
specification

SystemVerilog property 
(extended RVFI)

RISC-V based 
CPU

Model checker
(JasperGold)

Result

Extended RVFI 
wrapped CPU

SVA with split properties
Signal 

mapping 
model
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Extend RVFI for Property Auto-generation
• Automatically generate RV32I formal properties based on well-qualified 

machine readable specification 
• Extend RVFI for more functions
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MUL

rvfi_de_insn = vscale_pipeline.inst_DX; rvfi_insn2 <= rvfi_de_insn; rvfi_insn3 <= rvfi_insn2; 

rvfi_rs1_rdata = vscale_regfile.data[rvfi_rs1_addr];
rvfi_rs2_rdata = vscale_regfile.data[rvfi_rs2_addr];

rvfi_rd_wdata = vscale_regfile.data[rvfi_rd_addr];

Trigger



Extend RVFI for Property Auto-generation (cont’d)
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• Original SVA property for checking add instruction 



Verification Space Abstraction by Property Splitting

• Original SVA property for the add instruction is able to verify two targets :
1. Checks the correctness of the data forwarding (red)
2. Checks if the actual result data is correctly written back to the destination 

register (blue)
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Split SVA Properties for Checking add Instruction
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1.   Checks the correctness of the data 
forwarding 

2.  Checks if the actual result data is correctly 
written back to the destination register 



Compositional Formal Verification Method
• Assume-guarantee reasoning

• M and N : Components
• A : Assumption
• P : Property
• ∥: Composite
• ╞ : Satisfy
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𝐌𝐌 ∥ 𝐀𝐀╞ 𝐏𝐏 𝐍𝐍╞ 𝐀𝐀
𝐌𝐌 ∥ 𝐍𝐍 ╞ 𝐏𝐏

Premise

Conclusion

P = checking whether the correct data is calculated and sent to 
the correct destination register

A = assumption describing that the correctness of data 
forwarding is assumed valid

N = checking datapath of computing the correct write back data

M = checking datapath of writing data to correct destination register
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Design under verification
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• Vscale
- 32-bit 3-stage single-issue pipeline CPU

• RV12
- 32/64-bit 6-stage single-issue pipeline CPU

 Verification environment :
- Server running CentOS 6.10., which has 48 cores with 2.20 GHz CPU and 256 GB memory embedded
- Using Cadence JasperGold 2018.03 



Comparison
• Take Vscale for example
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Original Abstract  

Property name original_add forward_add rd_wb_test

Result Pass Pass Pass

Time (sec) 75140.4 1187.3 6.7

COI coverage of pipeline module 93.13% 93.13%

Proof core coverage of pipeline module 48.98% 60.60%

• Cone-of-influence (COI) coverage : Determines the cover items in the Cone-of-influence of each assert
• Proof core coverage :  Represents the portion of the design verified by formal engines



Results of Vscale ISA formal verification 

Instruction type Number of 
properties

Execution time 
(second) Verification result

R-type 22 16167.3 PASS (except sra instruction)
I-type 18 23482.0 PASS (except srai instruction)
B-type 12 1624.2 PASS
J-type 8 15.8 PASS (except jalr instruction)
L-type 12 38.2 PASS
S-type 8 39.3 PASS
U-type 4 29.8 PASS

Assumption 4 --- ---

Total properties 88 --- ---
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Number of inconclusive instruction properties in RV12 

Instruction 
type

# of properties 
(inconclusive/total)

(without abstraction)

# of properties 
(inconclusive/total)
(with abstraction)

Improvements (%)

R-TYPE 10/10 5/10 50.0%

I-TYPE 9/9 3/9 66.6%

J-TYPE 2/4 1/4 25.0%
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Coverage information
• Vscale

– Top module :
• COI coverage : 92.80 %
• Proof core coverage : 76.96 %

– Core module :
• COI coverage : 92.87 %
• Proof core coverage : 75.92 %

• RV12
– Top module :

• COI coverage : 67.93 %
• Proof core coverage : 61.17 %

– Core module :
• COI coverage : 87.85 %
• Proof core coverage : 83.33 %
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waive
98.18 %
89.11 %

waive
96.11 %
91.57 %



Defects found by our verification flow
• Vscale :

– sra and srai
– jalr

• RV12 :
– csrrwi
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Error in sra and srai instructions (Vscale)
• “Arithmetic right shifts” operator should be “>>>”, while they are implemented 

as “>>” which is the logical right shift operator.
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 Vscale ALU implementation



Error in jalr instruction (Vscale)
• Vscale directly sets the lowest bit of the immediate value to be 0 and 

then adding to rs1, which is different from RISC-V specification 
requirements 
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 Part of Vscale PC mux implementation



Error in “csrrwi” instructions (RV12)
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• csrrs, csrrc, csrrsi and csrrci
– Have to concern whether source register is x0

• csrrw and csrrwi
– Shouldn’t concern whether source register is x0

 Part of RV12 decode stage implementation

rs = x0

rs = x0

Shall not cause illegal instruction exception

Still cause illegal instruction exception 
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Conclusions
• Propose a verification flow to automatically generate the formal properties for 

RISC-V RV32I instructions

• The properties are reliable by coverage analysis information
– Proof coverage can average about 90% in core module after waive unconcerned module

• Using abstraction technique to mitigate state-space explosion problem

• Defect the faults in our experimental CPU
– sra, srai and jalr instructions in Vscale case
– csrrwi instruction in RV12 case 
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Thank you for your attention!

Q&A
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