Autocuration: An Implementation of a Continuous Int

egration

System Employed in the Development of AMD’s
Next-generation Microprocessor Core

Wei Foong Thoo
Advanced Micro Devices, Inc.
1 AMD Place
Sunnyvale CA 94088, USA
weifoong.thoo@amd.com

ABSTRACT

A mechanism for validating each source code chaogéribution to

the version-controlled source code repository iwlvin a large
microprocessor design project. This mechanism it gfaa software
development practice known as continuous integratithis paper
will describe AMD’s “Autocuration” system: the setf tools

comprising the automated continuous integratioesysused in the
development of the verification and Verilog HDL soel codes for
AMD’s next-generation microprocessor core.

To make efficient use of available computer resesir¢he system
has a dynamic process to determine the appropseateset of

regression test suites that need to be run for saglce commit to
the trunk. It also maintains the latest overallgias version of the
microprocessor core as well as the latest pas@mion of individual

unit suites, which provides a convenient way focheaub-team

responsible for a particular functional unit of tinéroprocessor core
to choose a version of the trunk that is suitabterfinning nightly

regression tests. The data stored in the systeisdsa useful source
for generating metrics to track the state of thejgmt. The

architecture of the system and all its componetiltsoe presented in
detail along with the supporting flows, problems time current

system, and ideas for further improvement.

General Terms
Verification, Continuous Integration System

Keywords

Verification, Nightly Regression, Release Flow

1. INTRODUCTION

In a large microprocessor design project with mgamn members, it
is crucial to complement a robust version contydtem with a
mechanism for validating each source code changgibotion so
any bad code is quickly fixed or rejected. This hatism ensures
that one can simply check out a specially desighateent copy of
the source tree from the version controlled sowmae repository
with the confidence that key builds and simulatiail$ pass, and the
copy is therefore viable for use in further devetgmt. This
mechanism is part of a software development pmackicown as
continuous integration. It is normally implementadhaving a set of
tools to help developers run a suite of regresdiests before
committing their local changes to the source coggository, and
having a back-end daemon that detects the commiterder to
trigger builds and simulations.

This paper will describe AMD’s “Autocuration” syste the set of
tools comprising the automated continuous integnasiystem used in
the development of the verification and Verilog HBburce codes
for AMD’s next-generation microprocessor core, usedonjunction
with a copy-modify-merge source code control apghoaThe
development team was organized into sub-teams basedhe

David A. Burgoon
Advanced Micro Devices, Inc.
2950 E Harmony Rd #300
Fort Collins CO 80528, USA
dave.burgoon@amd.com

functional units of the core. Each unit team depetbits own set of
test benches and tests, which form the regresgsinstiite for the
unit. In addition to these, there was also a cevell regression test
suite. If we had naively attempted to use all thies¢ suites, every
commit to the source code repository could havergally spawned

an unmanageably large set of compute-intensive jbbsavoid this,

techniques were developed to dynamically deterrttieeappropriate
sub-set of regression test suites that need tatéor each commit
without sacrificing the ability to view fine graideresults for each
commit.

Besides providing the results to the author of earhmit via e-mail
notification, there is also a Web-based interfaoe ¥iewing the
results of the regression and other useful def@ileach commit such
as the author, list of files modified, and a summafr the changes
made relative to the previous version. All the datared in the
database of the system serves as a good sourgerferating various
metrics to track the state of the project. Theaysalso has a method
for individually tagging the health of each unitegression test suite.
This provides a convenient way for each unit toadeoa passing
version in the trunk for running its comprehensaightly regression
tests without being impacted by any commits thaakrthe health of
other units.

Having such a system in place in a project doey avith the need to
perform time-consuming periodic manual integratidrall the units

of which the core is comprised of. It provides gantarning of

incompatible code, and promotes regular commitschvencourages
complex features to be broken up into smaller ckytk

The architecture of the system and all its comptmenill be
presented in detail along with the supporting flopoblems in the
current system, and ideas for further improvemérte basic
workflow and guidelines used by the logic desigml aerification
engineers of this project to complement the systeith also be
covered. This is a system that has been proverot& successfully
for a project with developers working in differeparts the world
with a high volume of commits, to the tune of a coitmevery few
minutes.

2.BASIC WORK FLOW AND GUIDELINES

All engineers in the project follow a sequence whEe steps to
develop source code that is ready for committirig the source code
repository (Figure 1). The basic idea is that edeteloper begins
work on a set of changes using a known-good copthefversion

control repository in a private workspace, sucht thay build or

simulation errors observed using this workspace ban safely

assumed to be caused by the as-yet uncommittedgehao the
source files. These must be corrected before tlamges may be
committed to the repository.

The first step is to run a command that createsvaworkspace. By
default, that command checks out from the trunkhef source code
repository the latest version that passes all éyeession test suites

configured in theelease_gate tool, the tool that each engineer
runs to qualify their changes before committingnth® the source
code repository. Such a version is designated byAttocuration
system as Latest Known Good. If a workspace alrexdbts, we run
a command that incrementally updates the workspmadey default,
the Latest Known Good version.

With a workspace that is of Latest Known Good dyalocal source
code development can be done with the assumptian amy
subsequent build or simulation failures encountareddue to locally
modified changes. In practice, the developmentreegi usually runs
release_gate (or individual tests) one or more times to
incrementally qualify the changes under developmenithout
encountering any noise due to the incremental dewebnt of others
(whose work in progress is safely sequestered diviiual private
workspaces). When an engineer has completed méhéad) source
code changes, it is time to ruelease_gate one final time. But
before doing so, it may be important to update fites in the
workspace to the Latest Known Good version of thumk. This
ensures that incompatibilities with the change-setsmitted since
the workspace was last created/updated are dehltaeally, and not
committed until resolved. This is such an impartstep to do that
the release_gate tool actually pauses to print a warning about
the need to update the workspace if the currenkspace version is
50 versions older than the current latest passangion. Because we
print only a warning, this final update step isiopal, and left to
each engineer’s judgment.

After the finalrelease_gate =~ completes with a passing result, the
local changes can be safely committed to the sotode repository.

If there is at least one failure, the problem nhestebugged, and any
modification to the changes will have to go throudhe
aforementioned flow before attempting to commit¢hanges again.

Create or update
workspace

A 4

h 4

Develop source files

Is workspace

0 Update workspace
too old*

Run release_gate

Commit changes

Figure 1: Basic work flow used by all engineers

Before making a commit, it is common for copy-mgeifierge
source code management systems to require localtiified files to
be updated by merging them with the latest chaegetsthe head of
the trunk. This update could result in merge cotdli If the merge
conflicts are minor and can be resolved easilys fine to proceed
with the commit after resolving the conflicts. Biithe conflicts are

extensive, it is recommended to update the worlspathe version
that introduced the conflicts and renatease_gate

It is important for the regression test suitegdtease_gate to
complete within an acceptable amount of time. Oesson is that
release_gate is meant to be an interactive process in which the
user eagerly waits for the results to determiné the locally made
changes did not break anything. The other reasdhaisthe same
release_gate is also run by the Autocuration system after each
commit is detected. When theelease_gate run on the
committed version passes, that version will be marks the new
Latest Known Good version. Hence, the faster it mletes, the
quicker a newly committed version is made availdhfedefault to
other users who create or update their workspddes.ensures that
the Latest Known Good version is constantly venselto the head
of the trunk, which is desirable so code changdifipation is always
done against a recent baseline code.

It may seem redundant for Autocuration to melease_gate
again because the author of the commit has alrdadg so. But the
key difference is that theelease_ gate run by Autocuration
includes all new commits that were made since tleekspace
version in which the locakelease_gate was run. It catches any
incompatibility that may exist between the newlynroitted changes
and all the other recently made commits that weteduced while
the localrelease_gate was running.

There is no strict enforcement of the requirement run
release_gate before making a commit. Hence, an irresponsible
author could potentially commit changes without ming
release_gate . However, if the commit fails in Autocuration, the
offending commit will be reverted. More details abahis are
discussed in Section 3.6. In practice, a wise ailidedt engineer
may run more regression tests than what is in ttandard
release_gate suite to ensure that the changes do not introduce
problematic large-scale failures in the nightlyression.

Because the sequence of updating the workspaceningin
release_gate , and committing the changesriélease_gate
passes is done so frequently, these steps arampedautomatically
byrelease_gate if the-donate switch is used. A large number
of the engineers in the project choose to make thainmits this
way.

Another common work flow pattern is to speculatvelpdate the
workspace to a recently committed version that heis yet been

marked as the Latest Known Good version. Usualily pinactice is

done by a person who wants to commit changes madarson a

complex feature to save the current work in pragrasad then wants
to immediately continue working on the feature. & use case is
one in which two or more engineers working on saméreas of the
code update to the newly committed version by ttheroengineer
before beginning additional changes to avoid cotapdid merge
conflicts.

3.DETAILSOF THE SYSTEM
The Autocuration system is made up of the key compts
described in Table 1.

Table 1: Components of the Autocuration system

Perl scripts Crontab entries
* push_into_queue « Runpop_from_queue
¢ pop_from_queue every 5 minutes
e autocurate * Runac_cleanup every
e ac_cleanup 5 hours
* release_gate * Runauto_commit every
« auto_commit 4 hours
PHP scripts MySQL database tables
e curation_index.php e commit_queue
« rm_from_queue.php e curation_db

The whole process begins with a commit into thersmucode

repository. After that, the process continues waitseries of cron jobs
that execute the various Perl scripts to qualifye tbhanges
committed. Finally, the results will be updated tile MySQL

database and an e-mail notification is sent to ah¢hor of the
commit. The whole sequence is illustrated in Figtre

A commit into source code ush into cueis invoked
repository is made push_ T

commit_queue:
Queue of

Poll queue at regular interval by
commits

invokingpop_from queue

Y

curation_db:

Invoke aut. te to start the
oK B Update database

qualification process
for a commit

with qualification
results

Y

release gate determines the [E-mail qualification]

relevant regression test suites for results to the author
the commit and runs them of the commit

Figure2: Autocuration process flow diagram

3.1 Description of the Perl scripts
= push_into_queue

This script is invoked by a commit hook in the smurcode

management system when the commit is made. It putihe

committed version into commit_queue and also updates
curation_dbwith the author’'s name, list of committed filesida

the commit message. The script actually augmeetsaiv commit

message supplied by the author with additionalrinédion such as
the workspace version thetlease_gate was run on and the
path and geographic site where the workspace @tddc These
bits of information help tremendously in debuggiiagures and

determining how the failures were introduced.

= pop_from_qgueue

This script is invoked every five minutes by a cjohb. Its primary
function is to pick the oldest entry aommit_queudi.e., the oldest

committed version that is not yet processed bystis¢em), remove
the picked entry froneommit_queueand callautocurate with
the entry.

= autocurate

This script creates a fresh workspace of the cotachitersion and
runsrelease_gate . It updatescuration_dbwith the results of
the qualification, e-mails the results to the anthbthe commit,
and marks the committed version as passing orn€niliTo
conserve disk space, this script deletes the emtaekspace if
release_gate passed. Otherwise, it will only remove all the
source files and leave the build and simulationpouffiles for
debugging purposes.

= ac_cleanup

This script is invoked every five hours by a croh jo remove any
workspaces that are older than five hours. These the
workspaces that failegtlease_gate

= release_gate

The main function of this script is to run regressitest suites.
There is a data file for this scripte{ease_gate.yml) in
YAML format that specifies all the targets ielease_gate

For each target, the command to build the simulatrmdel and
the commands to dispatch simulations for the sitrarianodel are
specified. It also generates data files thatocurate uses to
updatecuration_db (a) the qualification result status file (for bac
unit suite) and (b) the performance data file, Wwhioontains
various metrics like cycles-per-second (CPS) diae taken to
run each batch of simulations, and the time takeget a slot on
the compute farm.

= auto_commit

This script is invoked every four hours by a crob fo trigger a
release_gate that runs all targets. Refer to Section 3.5 for
more details on why this is done.

3.2 Description of the MySQL database tables

The Autocuration system has two MySQL database esabl
commit_queuend curation_db The commit_queugable acts as a
simple queue of commits that have not been qudlifilet. The

curation_db table is used to store various information abd t
commit like the timestamp, author, commit versiang so on.

Here is a listing of the actual MySQL commands teate the two
tables:

CREATE TABLE ‘commit_queue’ (

“id” INT(255) NOT NULL AUTO_INCREMENT
PRIMARY KEY,

‘version” VARCHAR(200),

“author’ VARCHAR(200)

);

CREATE TABLE “curation_db" (

'id” INT(255) NOT NULL AUTO_INCREMENT,
‘timestamp” VARCHAR(20),

“version” VARCHAR(200),

“author® VARCHAR(200),

‘combo_status® VARCHAR(255),

“status® VARCHAR(20),

“files® LONGTEXT,

‘msg_file" LONGTEXT,

‘qual_log" LONGTEXT,

‘perf_data® LONGTEXT,

“sitename’ VARCHAR(10),

“infra_error’ VARCHAR(10) DEFAULT '0',
PRIMARY KEY (“version™),

INDEX ('id")

Most of the fields in the two tables are self expl@ry. However,
there are a number of fields in tlearation_dbtable that warrant
additional description:

Table 2: Description of fieldsin the curation_db table

3.3 Dynamic selection of the qualificationsto run
The release_gate script runs in two modes: user mode and
Autocuration mode. In user mode, the first thingd@tes is run a
source code management command to get a list offisbdiles
(including added and deleted files) and a listiletfnot versioned by
the source code management system (unknown fil&és).next step
is to compute the list of source files for eachdation model that
release_gate recognizes. This list of source files is also know
as the bill of materials (BOM), and is derived gsin feature of our
build system. In Autocuration mode, only the BOMrgutation step
is done because the list of modified files can b&aioed directly
from thecuration_db

To dynamically determine the appropriate selectibmualification
suites to runrelease_gate matches the list of modified files
against the BOM for each model. If any file in tie of modified
files is contained in the BOM for a model, the mod#l be selected.
There are also certain files in the workspace aatmtwith a target
in release_gate , such as a test list, a script to generate tegtsca
and the like, that wouldn’t be in the BOM of thensiation model
because they are not really source files. But tHieg definitely
affect the outcome ofelease_gate , so a modification to those
files must also cause the appropriate model toetexted as part of

the qualification suites to run. This is achievedough a separate
qual_tuner.yml input file in YAML format that specifies the list
of targets and simulation models that a non-sofileshould trigger.
Hence, after matching the list of modified filesaagst the BOM for
each model, release_gate also matches against the files
specified inqual_tuner.yml . Finally, if there are any modified
files that did not match anything, all targetgéfease_gate will

be selected to be safe.

To facilitate the ability to provide distincelease_gate result
status for each unit of the core, a groupedéase_gate targets
associated with a unit is categorized as the witié $or a unit. With
this arrangement, it is necessary to spread thectsah of
qualification targets to all the targets of thetwiite whenever any
single target of the unit suite is selected througk BOM or

Field Description qual_tuner.yml mechanism. This ability enables the
]] Autocuration system to mark the unit status forheaommit, in
combo status This field records the release_gate addition to marking the overall status. This presida convenient
- regression suite status for each unit. way for each unit to choose a passing versionértrilnk for running
]] its comprehensive nightly regression tests withmihg impacted by
status This field records the overall any commits that fail the qualification suite ofet units.
release_gate status.
This field i the list of fi dified 3.4 Miscellaneousr el ease_gat e checks
files thelscc:r?wmi:ecor s the list of Tiles modilied By Becauserelease_gate has the list of unknown files and the
) BOM for all models, it also performs additional ckefor any new
source files that the user has forgotten to scleeftuladdition to the
msg_file This field records the commit message. source code management system.
This field records the qualification log (i.€., Additionally, release_gate performs a CPS check for each
qual_log release_gate STDOUT and STDERROFR simulation model to flag any CPS degradation frbm €PS bar that
output)._ is set for the model. It is convenient to carry ¢his check in
This field ds th " dat 0 release_gate because it already collects the CPS data for the
IS held records the performance data such as perf_data field of thecuration_dbtable. This check is extremely
the CPS data, time taken to run each batch of . - A
perf_data . ; . helpful to prevent slowdown in simulation speed tthaould
simulations, and the time taken to get a slot on herwise be d d onlv | . iahtl N
the compute farm otherwise be detected only later in a nightly regien if someone
' noticed the delay when the regression completegenBEwvhen it's
- . . detected through the nightly regression, it woualketsome effort to
sitename This f'fald records the site name from which the identify the commit that caused the slowdown if fieblem wasn'’t
commit was made. . - .
caught in a localelease_gate or in Autocuration.
This field records whether any simulation jops . i
infra_error suffered a failure due to an IT infrastructure 3.5 Result states of a qualification
problem. Even though only a sub-set of the regression testess in

release_gate s run for every commit depending on the changes
made, it is still possible to infer the overall uktsof every commit
through a mechanism that inherits the result ofptleerious commit.
This allows us to mark a qualified commit as théesaKnown Good
even though only a sub-set of the targets were thereby
optimizing compute resource usage without sacnifdhe ability to
have the fullrelease_gate result for each commit. For this to
work accurately, it is important to not have arauflin the logic that
dynamically selects the appropriate unit suitesrun (i.e., BOM
enumeration must be perfect).

In addition to the standard pass or fail resultestaeveral additional
states are created for the mechanism of inherpirgyious results.
Table 3 shows all the result states in the system.

Table 3: Autocuration result states

State Description
P Passed.
F Failed.

Not run, but passed. This means that the unit quite

4 hours does this. The frequency should be adjusiedd on the rate
of commits in the project.

NP for the unit wasn't run, but it passed the lasetitn
was run. The no-op commit also helps to determine if thare ibug in the
Not run, but failed. This means that the unit stjite BOM-driven logic that dynamically selects the appiate unit suites
NE for the unit wasn't run, but it failed the last érit to run. A NP state for a unit suite that turns iatoF state in the no-
Was run. op commit indicates that one of the earlier comrsiitsuld have had
an F state, but it failed to happen because thiesuitie incorrectly
Undetermined. If the current run completed earlier did not run.
than the previous run, it will wait for some tinee |t
U get the status of the previous run. If the previpus Figure 3 shows an example of the Autocuration tesiMeb page. It

run is still in progress after waiting for some ¢inj
it will time out and the current run status wilkju
be U.

Therelease_gate is still in progress.

Therelease_gate
host on the compute farm, or it may be running \&oyly because
the jobs ran on a disk that is hosted on a busysgrver. When this
happens, a subsequent commit that is waiting terinthe results of
this stuck or slow commit will eventually time oand receive a U
result state for the unit suites that require iithece.

If the result for a commit contains a U state fourat suite, that U
state will be inherited by subsequent commits uhgke is a commit
that triggers the unit suite to be run. Becausecare mark a commit
as the Latest Known Good version only if all uniites passed (i.e.,
all unit suites are in either the P or NP stateg propagation of U
states should not be allowed to continue for tagldhis is achieved

run for a commit may get stuck due to a bad

shows a listing of all commits made in chronolobimaler, with the
most recent commit at the top of the page. The @tinen refers to
the overall status for a commit based on the indial unit suite
status. The EX, LS, ID, FP, and CU columns refahtosub-units of
AMD’s microprocessor core codenamed Bulldozer y#jjle the CO
column refers to the regression suite status ferawerall core. The
PG column shows the current progress.

In this example, user_f's 3321 commit did not piwesFP unit suite
and it also timed out while waiting to inherit tresults from user_h'’s
3320 commit. Because user_f's commit modified ofilgs that

mattered to the FP and CO suites, the rest of thertms have a U
state. The columns with a U state continue to papa until a
commit that runs the corresponding unit suite. H% and LS

columns turned into a non-U state in user_g's 3@@2mit because
that commit modified files that triggered the EXdainS unit suites.
The CU column only recovered from a U state onctioa-driven no-

op 3325 commit. A person who creates a new workspamuld get

version 3328 because the current Latest Known Ggadion is

3328.

by introducing a no-op commit (a commit that intiods no material
change in source code) that triggers a run of @il suites. In our
implementation, a cron job that runs tago_commit script every

Unit Suite Status

ST
o[o o
| | | | | | |

Date
mm-dd-yy HHMM

Author

Commit

10-20-11 17:59 UTC @3330 [qual] [diff] user_a 12/33
10-20-11 17:48 UTC @3329 [qual] [diff] user_b [[[[[[[18/25
10-20-11 17:23 UTC @3328 [qual] [diff] user_c P NP NP| P | NP | NP | P DONE
10-20-11 17:12 UTC @3327 [qual] [diff] user_d - NP NP - NP P P DONE
10-20-11 17:07 UTC @3326 [qual] [diff] user_e - NP NP - NP | NP | P DONE
10-20-11 17:00 UTC @3325 [qual] [diff] admin P P P P P P P DONE
10-20-11 16:54 UTC @3324 [qual] [diff] user_c U NP P P NP U P DONE
10-20-11 16:50 UTC @3323 [qual] [diff] user_f U NP NP U P U P DONE
10-20-11 16:48 UTC @3322 [qual] [diff] user_g U P P U U U U DONE
10-20-11 16:43 UTC @3321 [qual] [diff] user_f U U U U - U P DONE
10-20-11 16:36 UTC @3320 [qual] [diff] user_h P NP | NP | NP | NP | NP | P DONE
10-20-11 16:25 UTC @3319 [qual] [diff] user_i P P NP NP NP NP P DONE

Figure 3: Anillustration of the Autocuration Web Page

The “[qual]” string on the Autocuration results Wphge is actually

a hyperlink to a Web page that shows the progress o
release_gate , and the “[diff]” string is a hyperlink to a Web
page that shows the change-set made by the comritieistandard
UNIX diff format. The commit number in the Commit columm is
hyperlink to a Web page that shows the commit cedag message
and the list of files modified.

3.6 Team of curators

Occasionally, somebody will make a bad commit thés one of the
unit suites’ regressions, either due to lack of rappate local
qualification or due to incompatibility with one dhe earlier
committed change-sets. To ensure that the hedtedfunk is always
passing, the bad commit must be reverted or figminetimes, the
author of a commit will attempt to fix the probletre or she
introduced, which is what user_f's 3323 commit dicbur example
in Figure 3.

However, to ensure that the problem is fixed innzely fashion, a
team of curators, with one representative from eagh is formed to
share the responsibility of periodically monitoritige health of the
trunk. If a bad commit is detected, the curatot either try to fix it

if the fix is very simple and obvious, or just reivéhe commit. In our
example, user_c’s 3328 commit reverts user_e’s 3826 commit
that broke ID’s unit suite.

3.7 Disk and server management

Because the Autocuration system continuously persoa very high
volume of disk-intensive activity, it can overload file server if
everything is done on a single partition on the esaserver. To
mitigate this problem, the Autocuration disks arekien into multiple
partitions that are hosted on different file sesveFhe disk for
running therelease_gate on each commit is then picked in a
round-robin fashion.

Two dedicated compute servers were used to rurcribre job that
executepop_from_queue every 5 minutes, staggered alternately
on each server. This was done because a singlersean get
overloaded with the number of paraltelease_gate processes
that are running at any point in time.

3.8 Metrics generation

The data stored ircuration_dbis a good source for generating
various charts about state of the project. Examplescharts that
show the average commits per day, average timeeeet@ommits,
the time taken for the various builds to compldhe, time taken for
the simulations to complete, and the time spentimgpito get a
machine slot in the compute farm. These metricstissidentifying
problems in the design infrastructure that impezfésiency.

4. PROBLEMSAND IMPROVEMENT IDEAS

4.1 Difficulty in identifying the bad commit

One problem with the system is the difficulty igdring out which

commit introduced a failure if another bad comméswnade in the
shadow of an earlier bad commit. For example, ifnoat 1103

causes the compilation of simulation models to, thié next several
commits won't be able to run any simulations. Ifsabsequent
commit 1106 causes simulations to fail, we won'taide to easily
tell which commit started the simulation failureger if the original

bad commit 1103 was reverted. In practice, thimas a major
problem because the bad commit is usually manueligrted by the
team of curators in a timely fashion. But to fulsolve this problem
in an automated fashion, the idea described ini@®ee.5 can be
implemented.

4.2 New releases can be blocked by a bad commit

If a bad commit was left in the trunk for too lornigcauses the Latest
Known Good version to become older and older as tpasses.
Because the creation and update of a workspacethisegersion by
default, engineers in the project are essentidtigked from picking
up new changes released by their peers. Even thoigpossible to
manually update to a version that has failuresrtogbin changes
released by others, it is still not easy to qudlifyally made changes
properly with the presence of existing failuresisTis not a big issue
because a bad commit wouldn't stay in the trunktéor long with a
team of curators keeping a close watch. This probtan also be
resolved by the idea described in Section 4.5.

4.3 Further reduction of resource usage

A possible enhancement to the system to furtharaedhe usage of
computer resources is by runnirgjease_gate once for several
commits. The list of modified files for the set abmmits is
combined for the purpose of determining which gnite regressions
to run. Therelease_gate result can then be applied to all
commits in the set. If a failure was detectedlease_gate
should be run for each commit individually to idénthe commit
that introduced the failure.

4.4 Gettingrid of U states

Even though it is not a real problem, the U stéight blue in Figure
3) scattered around the Autocuration results Wete paakes it a
little confusing to a person viewing the Web pagecampared to a
Web page with just a passing or failing state vatlgreen or red
background color. One way to improve this is byihgva process
that periodically walks through the result statesdll commits that
completed runningelease_gate to convert all the U states to
either NP or NF states.

4.5 Staging commits on a branch

The Autocuration system only verifies the qualitytbe commits
after they have been committed to the trunk of sberce code
repository. Once a bad commit has been made, goltiback is
purely a manual process. Until it is rolled batie bad changes tend
to propagate into user workspaces as a consequefcthe
conditionally mandatory merge at commit time tretinatural part
of copy-modify-merge version control systems. Asrmprovement,
the system can be enhanced with a flow that seepsesach change
on a branch, rather than staging potentially bathghs on the trunk.
The system still verifies all change-sets througlease_gate
but it would only release passing change-sets timtotrunk through
an automated branch-to-trunk merge process. Allmitenthat fail
will be abandoned (i.e., left on their branch withenerging to the
trunk) after sending e-mail notification to theeftling authors.

5. SUMMARY

The Autocuration system is an invaluable tool elom by all logic
design and verification engineers of the projechieir daily work. It
makes efficient use of resources to provide firergrd details about
the health of each commit, and also provides inldia latest passing
tag for each unit, which facilitates the nightlygression flow. The
system has been proven to work for a large micigssor design
project with engineers spread across many geogralpsites.

6. REFERENCES

[1] "Continuous integration." Wikipedia: The Free Eropedia.
Wikimedia Foundation, Inc. 9 November 2011. Web.
<http://en.wikipedia.org/wiki/Continuous_integrairm®

[2] M. Butler, “Bulldozer — a new approach to multi¢ad compute
performance,” the IEEE 221 HotChips conference — a
symposium on high performance chifsssion 7.2, August 22 —
24, 2010.

