
Autocuration: An Implementation of a Continuous Int egration
System Employed in the Development of AMD’s

Next-generation Microprocessor Core

Wei Foong Thoo
Advanced Micro Devices, Inc.

1 AMD Place
Sunnyvale CA 94088, USA
weifoong.thoo@amd.com

David A. Burgoon
Advanced Micro Devices, Inc.

2950 E Harmony Rd #300
Fort Collins CO 80528, USA

dave.burgoon@amd.com

ABSTRACT
A mechanism for validating each source code change contribution to
the version-controlled source code repository is vital in a large
microprocessor design project. This mechanism is part of a software
development practice known as continuous integration. This paper
will describe AMD’s “Autocuration” system: the set of tools
comprising the automated continuous integration system used in the
development of the verification and Verilog HDL source codes for
AMD’s next-generation microprocessor core.

To make efficient use of available computer resources, the system
has a dynamic process to determine the appropriate subset of
regression test suites that need to be run for each source commit to
the trunk. It also maintains the latest overall passing version of the
microprocessor core as well as the latest passing version of individual
unit suites, which provides a convenient way for each sub-team
responsible for a particular functional unit of the microprocessor core
to choose a version of the trunk that is suitable for running nightly
regression tests. The data stored in the system is also a useful source
for generating metrics to track the state of the project. The
architecture of the system and all its components will be presented in
detail along with the supporting flows, problems in the current
system, and ideas for further improvement.

General Terms
Verification, Continuous Integration System

Keywords
Verification, Nightly Regression, Release Flow

1. INTRODUCTION
In a large microprocessor design project with many team members, it
is crucial to complement a robust version control system with a
mechanism for validating each source code change contribution so
any bad code is quickly fixed or rejected. This mechanism ensures
that one can simply check out a specially designated recent copy of
the source tree from the version controlled source code repository
with the confidence that key builds and simulations will pass, and the
copy is therefore viable for use in further development. This
mechanism is part of a software development practice known as
continuous integration. It is normally implemented by having a set of
tools to help developers run a suite of regression tests before
committing their local changes to the source code repository, and
having a back-end daemon that detects the commits in order to
trigger builds and simulations.

This paper will describe AMD’s “Autocuration” system: the set of
tools comprising the automated continuous integration system used in
the development of the verification and Verilog HDL source codes
for AMD’s next-generation microprocessor core, used in conjunction
with a copy-modify-merge source code control approach. The
development team was organized into sub-teams based on the

functional units of the core. Each unit team developed its own set of
test benches and tests, which form the regression test suite for the
unit. In addition to these, there was also a core-level regression test
suite. If we had naively attempted to use all these test suites, every
commit to the source code repository could have potentially spawned
an unmanageably large set of compute-intensive jobs. To avoid this,
techniques were developed to dynamically determine the appropriate
sub-set of regression test suites that need to be run for each commit
without sacrificing the ability to view fine grained results for each
commit.

Besides providing the results to the author of each commit via e-mail
notification, there is also a Web-based interface for viewing the
results of the regression and other useful details for each commit such
as the author, list of files modified, and a summary of the changes
made relative to the previous version. All the data stored in the
database of the system serves as a good source for generating various
metrics to track the state of the project. The system also has a method
for individually tagging the health of each unit’s regression test suite.
This provides a convenient way for each unit to choose a passing
version in the trunk for running its comprehensive nightly regression
tests without being impacted by any commits that break the health of
other units.

Having such a system in place in a project does away with the need to
perform time-consuming periodic manual integration of all the units
of which the core is comprised of. It provides early warning of
incompatible code, and promotes regular commits, which encourages
complex features to be broken up into smaller chunks [1].

The architecture of the system and all its components will be
presented in detail along with the supporting flows, problems in the
current system, and ideas for further improvement. The basic
workflow and guidelines used by the logic design and verification
engineers of this project to complement the system will also be
covered. This is a system that has been proven to work successfully
for a project with developers working in different parts the world
with a high volume of commits, to the tune of a commit every few
minutes.

2. BASIC WORK FLOW AND GUIDELINES
All engineers in the project follow a sequence of simple steps to
develop source code that is ready for committing into the source code
repository (Figure 1). The basic idea is that each developer begins
work on a set of changes using a known-good copy of the version
control repository in a private workspace, such that any build or
simulation errors observed using this workspace can be safely
assumed to be caused by the as-yet uncommitted changes to the
source files. These must be corrected before the changes may be
committed to the repository.

The first step is to run a command that creates a new workspace. By
default, that command checks out from the trunk of the source code
repository the latest version that passes all the regression test suites

configured in the release_gate tool, the tool that each engineer
runs to qualify their changes before committing them to the source
code repository. Such a version is designated by the Autocuration
system as Latest Known Good. If a workspace already exists, we run
a command that incrementally updates the workspace to, by default,
the Latest Known Good version.

With a workspace that is of Latest Known Good quality, local source
code development can be done with the assumption that any
subsequent build or simulation failures encountered are due to locally
modified changes. In practice, the development engineer usually runs
release_gate (or individual tests) one or more times to
incrementally qualify the changes under development, without
encountering any noise due to the incremental development of others
(whose work in progress is safely sequestered in individual private
workspaces). When an engineer has completed making local source
code changes, it is time to run release_gate one final time. But
before doing so, it may be important to update the files in the
workspace to the Latest Known Good version of the trunk. This
ensures that incompatibilities with the change-sets committed since
the workspace was last created/updated are dealt with locally, and not
committed until resolved. This is such an important step to do that
the release_gate tool actually pauses to print a warning about
the need to update the workspace if the current workspace version is
50 versions older than the current latest passing version. Because we
print only a warning, this final update step is optional, and left to
each engineer’s judgment.

After the final release_gate completes with a passing result, the
local changes can be safely committed to the source code repository.
If there is at least one failure, the problem must be debugged, and any
modification to the changes will have to go through the
aforementioned flow before attempting to commit the changes again.

Create or update

workspace

Develop source files

Is workspace

too old?

Run release_gate

Commit changes

Update workspace

pass

fail

no

yes

Figure 1: Basic work flow used by all engineers

Before making a commit, it is common for copy-modify-merge
source code management systems to require locally modified files to
be updated by merging them with the latest change-set at the head of
the trunk. This update could result in merge conflicts. If the merge
conflicts are minor and can be resolved easily, it is fine to proceed
with the commit after resolving the conflicts. But if the conflicts are

extensive, it is recommended to update the workspace to the version
that introduced the conflicts and rerun release_gate .

It is important for the regression test suites in release_gate to
complete within an acceptable amount of time. One reason is that
release_gate is meant to be an interactive process in which the
user eagerly waits for the results to determine that the locally made
changes did not break anything. The other reason is that the same
release_gate is also run by the Autocuration system after each
commit is detected. When the release_gate run on the
committed version passes, that version will be marked as the new
Latest Known Good version. Hence, the faster it completes, the
quicker a newly committed version is made available by default to
other users who create or update their workspaces. This ensures that
the Latest Known Good version is constantly very close to the head
of the trunk, which is desirable so code change qualification is always
done against a recent baseline code.

It may seem redundant for Autocuration to run release_gate
again because the author of the commit has already done so. But the
key difference is that the release_gate run by Autocuration
includes all new commits that were made since the workspace
version in which the local release_gate was run. It catches any
incompatibility that may exist between the newly committed changes
and all the other recently made commits that were introduced while
the local release_gate was running.

There is no strict enforcement of the requirement to run
release_gate before making a commit. Hence, an irresponsible
author could potentially commit changes without running
release_gate . However, if the commit fails in Autocuration, the
offending commit will be reverted. More details about this are
discussed in Section 3.6. In practice, a wise and diligent engineer
may run more regression tests than what is in the standard
release_gate suite to ensure that the changes do not introduce
problematic large-scale failures in the nightly regression.

Because the sequence of updating the workspace, running
release_gate , and committing the changes if release_gate
passes is done so frequently, these steps are performed automatically
by release_gate if the -donate switch is used. A large number
of the engineers in the project choose to make their commits this
way.

Another common work flow pattern is to speculatively update the
workspace to a recently committed version that has not yet been
marked as the Latest Known Good version. Usually this practice is
done by a person who wants to commit changes made so far on a
complex feature to save the current work in progress, and then wants
to immediately continue working on the feature. Another use case is
one in which two or more engineers working on similar areas of the
code update to the newly committed version by the other engineer
before beginning additional changes to avoid complicated merge
conflicts.

3. DETAILS OF THE SYSTEM
The Autocuration system is made up of the key components
described in Table 1.

Table 1: Components of the Autocuration system

Perl scripts Crontab entries

• push_into_queue
• pop_from_queue
• autocurate
• ac_cleanup
• release_gate
• auto_commit

• Run pop_from_queue
every 5 minutes

• Run ac_cleanup every
5 hours

• Run auto_commit every
4 hours

PHP scripts MySQL database tables

• curation_index.php
• rm_from_queue.php

• commit_queue
• curation_db

The whole process begins with a commit into the source code
repository. After that, the process continues with a series of cron jobs
that execute the various Perl scripts to qualify the changes
committed. Finally, the results will be updated in the MySQL
database and an e-mail notification is sent to the author of the
commit. The whole sequence is illustrated in Figure 2.

Figure 2: Autocuration process flow diagram

3.1 Description of the Perl scripts

� push_into_queue

This script is invoked by a commit hook in the source code
management system when the commit is made. It pushes the
committed version into commit_queue, and also updates
curation_db with the author’s name, list of committed files, and
the commit message. The script actually augments the raw commit
message supplied by the author with additional information such as
the workspace version that release_gate was run on and the
path and geographic site where the workspace is located. These
bits of information help tremendously in debugging failures and
determining how the failures were introduced.

� pop_from_queue

This script is invoked every five minutes by a cron job. Its primary
function is to pick the oldest entry in commit_queue (i.e., the oldest

committed version that is not yet processed by the system), remove
the picked entry from commit_queue, and call autocurate with
the entry.

� autocurate

This script creates a fresh workspace of the committed version and
runs release_gate . It updates curation_db with the results of
the qualification, e-mails the results to the author of the commit,
and marks the committed version as passing or failing. To
conserve disk space, this script deletes the entire workspace if
release_gate passed. Otherwise, it will only remove all the
source files and leave the build and simulation output files for
debugging purposes.

� ac_cleanup

This script is invoked every five hours by a cron job to remove any
workspaces that are older than five hours. These are the
workspaces that failed release_gate .

� release_gate

The main function of this script is to run regression test suites.
There is a data file for this script (release_gate.yml) in

YAML format that specifies all the targets in release_gate .
For each target, the command to build the simulation model and
the commands to dispatch simulations for the simulation model are
specified. It also generates data files that autocurate uses to
update curation_db: (a) the qualification result status file (for each
unit suite) and (b) the performance data file, which contains
various metrics like cycles-per-second (CPS) data, time taken to
run each batch of simulations, and the time taken to get a slot on
the compute farm.

� auto_commit

This script is invoked every four hours by a cron job to trigger a
release_gate that runs all targets. Refer to Section 3.5 for
more details on why this is done.

3.2 Description of the MySQL database tables
The Autocuration system has two MySQL database tables:
commit_queue and curation_db. The commit_queue table acts as a
simple queue of commits that have not been qualified yet. The
curation_db table is used to store various information about the
commit like the timestamp, author, commit version, and so on.

Here is a listing of the actual MySQL commands to create the two
tables:

CREATE TABLE `commit_queue` (
`id` INT(255) NOT NULL AUTO_INCREMENT
PRIMARY KEY,
`version` VARCHAR(200),
`author` VARCHAR(200)
);

CREATE TABLE `curation_db` (
`id` INT(255) NOT NULL AUTO_INCREMENT,
`timestamp` VARCHAR(20),
`version` VARCHAR(200),
`author` VARCHAR(200),
`combo_status` VARCHAR(255),
`status` VARCHAR(20),
`files` LONGTEXT,

`msg_file` LONGTEXT,
`qual_log` LONGTEXT,
`perf_data` LONGTEXT,
`sitename` VARCHAR(10),
`infra_error` VARCHAR(10) DEFAULT '0',
PRIMARY KEY (`version`),
INDEX (`id`)
);

Most of the fields in the two tables are self explanatory. However,
there are a number of fields in the curation_db table that warrant
additional description:

Table 2: Description of fields in the curation_db table

Field Description

combo_status This field records the release_gate
regression suite status for each unit.

status
This field records the overall
release_gate status.

files
This field records the list of files modified by
the commit.

msg_file This field records the commit message.

qual_log
This field records the qualification log (i.e.,
release_gate STDOUT and STDERROR
output).

perf_data

This field records the performance data such as
the CPS data, time taken to run each batch of
simulations, and the time taken to get a slot on
the compute farm.

sitename
This field records the site name from which the
commit was made.

infra_error
This field records whether any simulation jobs
suffered a failure due to an IT infrastructure
problem.

3.3 Dynamic selection of the qualifications to run
The release_gate script runs in two modes: user mode and
Autocuration mode. In user mode, the first thing it does is run a
source code management command to get a list of modified files
(including added and deleted files) and a list of files not versioned by
the source code management system (unknown files). The next step
is to compute the list of source files for each simulation model that
release_gate recognizes. This list of source files is also known
as the bill of materials (BOM), and is derived using a feature of our
build system. In Autocuration mode, only the BOM computation step
is done because the list of modified files can be obtained directly
from the curation_db.

To dynamically determine the appropriate selection of qualification
suites to run, release_gate matches the list of modified files
against the BOM for each model. If any file in the list of modified
files is contained in the BOM for a model, the model will be selected.
There are also certain files in the workspace associated with a target
in release_gate , such as a test list, a script to generate test cases,
and the like, that wouldn’t be in the BOM of the simulation model
because they are not really source files. But these files definitely
affect the outcome of release_gate , so a modification to those
files must also cause the appropriate model to be selected as part of

the qualification suites to run. This is achieved through a separate
qual_tuner.yml input file in YAML format that specifies the list
of targets and simulation models that a non-source file should trigger.
Hence, after matching the list of modified files against the BOM for
each model, release_gate also matches against the files
specified in qual_tuner.yml . Finally, if there are any modified
files that did not match anything, all targets in release_gate will
be selected to be safe.

To facilitate the ability to provide distinct release_gate result
status for each unit of the core, a group of release_gate targets
associated with a unit is categorized as the unit suite for a unit. With
this arrangement, it is necessary to spread the selection of
qualification targets to all the targets of the unit suite whenever any
single target of the unit suite is selected through the BOM or
qual_tuner.yml mechanism. This ability enables the
Autocuration system to mark the unit status for each commit, in
addition to marking the overall status. This provides a convenient
way for each unit to choose a passing version in the trunk for running
its comprehensive nightly regression tests without being impacted by
any commits that fail the qualification suite of other units.

3.4 Miscellaneous release_gate checks
Because release_gate has the list of unknown files and the
BOM for all models, it also performs additional check for any new
source files that the user has forgotten to schedule for addition to the
source code management system.

Additionally, release_gate performs a CPS check for each
simulation model to flag any CPS degradation from the CPS bar that
is set for the model. It is convenient to carry out this check in
release_gate because it already collects the CPS data for the
perf_data field of the curation_db table. This check is extremely
helpful to prevent slowdown in simulation speed that would
otherwise be detected only later in a nightly regression if someone
noticed the delay when the regression completes. Even when it’s
detected through the nightly regression, it would take some effort to
identify the commit that caused the slowdown if the problem wasn’t
caught in a local release_gate or in Autocuration.

3.5 Result states of a qualification
Even though only a sub-set of the regression test suites in
release_gate is run for every commit depending on the changes
made, it is still possible to infer the overall result of every commit
through a mechanism that inherits the result of the previous commit.
This allows us to mark a qualified commit as the Latest Known Good
even though only a sub-set of the targets were run, thereby
optimizing compute resource usage without sacrificing the ability to
have the full release_gate result for each commit. For this to
work accurately, it is important to not have any flaw in the logic that
dynamically selects the appropriate unit suites to run (i.e., BOM
enumeration must be perfect).

In addition to the standard pass or fail result state, several additional
states are created for the mechanism of inheriting previous results.
Table 3 shows all the result states in the system.

Table 3: Autocuration result states

State Description

P Passed.

F Failed.

NP
Not run, but passed. This means that the unit suite
for the unit wasn't run, but it passed the last time it
was run.

NF
Not run, but failed. This means that the unit suite
for the unit wasn't run, but it failed the last time it
was run.

U

Undetermined. If the current run completed earlier
than the previous run, it will wait for some time to
get the status of the previous run. If the previous
run is still in progress after waiting for some time,
it will time out and the current run status will just
be U.

I The release_gate is still in progress.

The release_gate run for a commit may get stuck due to a bad
host on the compute farm, or it may be running very slowly because
the jobs ran on a disk that is hosted on a busy file server. When this
happens, a subsequent commit that is waiting to inherit the results of
this stuck or slow commit will eventually time out and receive a U
result state for the unit suites that require inheritance.

If the result for a commit contains a U state for a unit suite, that U
state will be inherited by subsequent commits until there is a commit
that triggers the unit suite to be run. Because we can mark a commit
as the Latest Known Good version only if all unit suites passed (i.e.,
all unit suites are in either the P or NP state), the propagation of U
states should not be allowed to continue for too long. This is achieved
by introducing a no-op commit (a commit that introduces no material
change in source code) that triggers a run of all unit suites. In our
implementation, a cron job that runs the auto_commit script every

4 hours does this. The frequency should be adjusted based on the rate
of commits in the project.

The no-op commit also helps to determine if there is a bug in the
BOM-driven logic that dynamically selects the appropriate unit suites
to run. A NP state for a unit suite that turns into an F state in the no-
op commit indicates that one of the earlier commits should have had
an F state, but it failed to happen because the unit suite incorrectly
did not run.

Figure 3 shows an example of the Autocuration results Web page. It
shows a listing of all commits made in chronological order, with the
most recent commit at the top of the page. The ST column refers to
the overall status for a commit based on the individual unit suite
status. The EX, LS, ID, FP, and CU columns refer to the sub-units of
AMD’s microprocessor core codenamed Bulldozer [2], while the CO
column refers to the regression suite status for the overall core. The
PG column shows the current progress.

In this example, user_f’s 3321 commit did not pass the FP unit suite
and it also timed out while waiting to inherit the results from user_h’s
3320 commit. Because user_f’s commit modified only files that
mattered to the FP and CO suites, the rest of the columns have a U
state. The columns with a U state continue to propagate until a
commit that runs the corresponding unit suite. The EX and LS
columns turned into a non-U state in user_g’s 3322 commit because
that commit modified files that triggered the EX and LS unit suites.
The CU column only recovered from a U state on the cron-driven no-
op 3325 commit. A person who creates a new workspace would get
version 3328 because the current Latest Known Good version is
3328.

Date
mm-dd-yy HHMM

Commit Author ST
Unit Suite Status

PG
EX LS ID FP CU CO

10-20-11 17:59 UTC @3330 [qual] [diff] user_a I I I I I I I 12/33

10-20-11 17:48 UTC @3329 [qual] [diff] user_b I I I I I I I 18/25

10-20-11 17:23 UTC @3328 [qual] [diff] user_c P NP NP P NP NP P DONE

10-20-11 17:12 UTC @3327 [qual] [diff] user_d F NP NP NF NP P P DONE

10-20-11 17:07 UTC @3326 [qual] [diff] user_e F NP NP F NP NP P DONE

10-20-11 17:00 UTC @3325 [qual] [diff] admin P P P P P P P DONE

10-20-11 16:54 UTC @3324 [qual] [diff] user_c U NP P P NP U P DONE

10-20-11 16:50 UTC @3323 [qual] [diff] user_f U NP NP U P U P DONE

10-20-11 16:48 UTC @3322 [qual] [diff] user_g U P P U U U U DONE

10-20-11 16:43 UTC @3321 [qual] [diff] user_f U U U U F U P DONE

10-20-11 16:36 UTC @3320 [qual] [diff] user_h P NP NP NP NP NP P DONE

10-20-11 16:25 UTC @3319 [qual] [diff] user_i P P NP NP NP NP P DONE

Figure 3: An illustration of the Autocuration Web Page

The “[qual]” string on the Autocuration results Web page is actually
a hyperlink to a Web page that shows the progress of
release_gate , and the “[diff]” string is a hyperlink to a Web
page that shows the change-set made by the commit in the standard
UNIX diff format. The commit number in the Commit column is a
hyperlink to a Web page that shows the commit change log message
and the list of files modified.

3.6 Team of curators
Occasionally, somebody will make a bad commit that fails one of the
unit suites’ regressions, either due to lack of appropriate local
qualification or due to incompatibility with one of the earlier
committed change-sets. To ensure that the head of the trunk is always
passing, the bad commit must be reverted or fixed. Sometimes, the
author of a commit will attempt to fix the problem he or she
introduced, which is what user_f’s 3323 commit did in our example
in Figure 3.

However, to ensure that the problem is fixed in a timely fashion, a
team of curators, with one representative from each unit, is formed to
share the responsibility of periodically monitoring the health of the
trunk. If a bad commit is detected, the curator will either try to fix it
if the fix is very simple and obvious, or just revert the commit. In our
example, user_c’s 3328 commit reverts user_e’s bad 3326 commit
that broke ID’s unit suite.

3.7 Disk and server management
Because the Autocuration system continuously performs a very high
volume of disk-intensive activity, it can overload a file server if
everything is done on a single partition on the same server. To
mitigate this problem, the Autocuration disks are broken into multiple
partitions that are hosted on different file servers. The disk for
running the release_gate on each commit is then picked in a
round-robin fashion.

Two dedicated compute servers were used to run the cron job that
executes pop_from_queue every 5 minutes, staggered alternately
on each server. This was done because a single server can get
overloaded with the number of parallel release_gate processes
that are running at any point in time.

3.8 Metrics generation
The data stored in curation_db is a good source for generating
various charts about state of the project. Examples are charts that
show the average commits per day, average time between commits,
the time taken for the various builds to complete, the time taken for
the simulations to complete, and the time spent waiting to get a
machine slot in the compute farm. These metrics assist in identifying
problems in the design infrastructure that impedes efficiency.

4. PROBLEMS AND IMPROVEMENT IDEAS

4.1 Difficulty in identifying the bad commit
One problem with the system is the difficulty in figuring out which
commit introduced a failure if another bad commit was made in the
shadow of an earlier bad commit. For example, if commit 1103
causes the compilation of simulation models to fail, the next several
commits won’t be able to run any simulations. If a subsequent
commit 1106 causes simulations to fail, we won’t be able to easily
tell which commit started the simulation failures even if the original
bad commit 1103 was reverted. In practice, this is not a major
problem because the bad commit is usually manually reverted by the
team of curators in a timely fashion. But to fully resolve this problem
in an automated fashion, the idea described in Section 4.5 can be
implemented.

4.2 New releases can be blocked by a bad commit
If a bad commit was left in the trunk for too long, it causes the Latest
Known Good version to become older and older as time passes.
Because the creation and update of a workspace uses this version by
default, engineers in the project are essentially blocked from picking
up new changes released by their peers. Even though it is possible to
manually update to a version that has failures to bring in changes
released by others, it is still not easy to qualify locally made changes
properly with the presence of existing failures. This is not a big issue
because a bad commit wouldn’t stay in the trunk for too long with a
team of curators keeping a close watch. This problem can also be
resolved by the idea described in Section 4.5.

4.3 Further reduction of resource usage
A possible enhancement to the system to further reduce the usage of
computer resources is by running release_gate once for several
commits. The list of modified files for the set of commits is
combined for the purpose of determining which unit suite regressions
to run. The release_gate result can then be applied to all
commits in the set. If a failure was detected, release_gate
should be run for each commit individually to identify the commit
that introduced the failure.

4.4 Getting rid of U states
Even though it is not a real problem, the U states (light blue in Figure
3) scattered around the Autocuration results Web page makes it a
little confusing to a person viewing the Web page as compared to a
Web page with just a passing or failing state with a green or red
background color. One way to improve this is by having a process
that periodically walks through the result states for all commits that
completed running release_gate to convert all the U states to
either NP or NF states.

4.5 Staging commits on a branch
The Autocuration system only verifies the quality of the commits
after they have been committed to the trunk of the source code
repository. Once a bad commit has been made, rolling it back is
purely a manual process. Until it is rolled back, the bad changes tend
to propagate into user workspaces as a consequence of the
conditionally mandatory merge at commit time that is a natural part
of copy-modify-merge version control systems. As an improvement,
the system can be enhanced with a flow that sequesters each change
on a branch, rather than staging potentially bad changes on the trunk.
The system still verifies all change-sets through release_gate ,
but it would only release passing change-sets into the trunk through
an automated branch-to-trunk merge process. All commits that fail
will be abandoned (i.e., left on their branch without merging to the
trunk) after sending e-mail notification to the offending authors.

5. SUMMARY
The Autocuration system is an invaluable tool relied on by all logic
design and verification engineers of the project in their daily work. It
makes efficient use of resources to provide fine-grained details about
the health of each commit, and also provides individual latest passing
tag for each unit, which facilitates the nightly regression flow. The
system has been proven to work for a large microprocessor design
project with engineers spread across many geographical sites.

6. REFERENCES

[1] "Continuous integration." Wikipedia: The Free Encyclopedia.

Wikimedia Foundation, Inc. 9 November 2011. Web.
<http://en.wikipedia.org/wiki/Continuous_integration>

[2] M. Butler, “Bulldozer – a new approach to multi-thread compute
performance,” the IEEE 22nd HotChips conference – a
symposium on high performance chips, Session 7.2, August 22 –
24, 2010.

