
Asynchronous Behaviors Meet Their Match with
SystemVerilog Assertions

Doug Smith
Doulos

16165 Monterey Road, Suite 109
Morgan Hill, CA USA
+1-888-GO DOULOS

doug.smith@doulos.com

ABSTRACT
Most digital designs inherently possess asynchronous behaviors of
some kind. While the SystemVerilog assertion (SVA) language
offers some asynchronous controls like disable iff, writing
concurrent assertions that accurately describe asynchronous
behavior is not so straightforward. SVA properties require a
clocking event, making them innately synchronous. When
describing asynchronous behavior, the behavior of interest
typically occurs after the asynchronous trigger appears.
Unfortunately, SystemVerilog scheduling semantics make this
rather difficult to check because the assertion input values are
sampled before the trigger occurs. This often leads assertion
writers to sampling using clocks, which may not guarantee
matching and optimal checking in all cases. Alternatively, there
are some simple approaches for describing asynchronous behavior
using SVA that this paper explores. The SystemVerilog
scheduling semantics are described along with the difficulties they
pose for checking asynchronous behavior. Traditional approaches
are considered such as synchronizing to a clock, but better
asynchronous alternatives are suggested and practical examples
provided. In addition, some practical solutions are offered for
other asynchronous behaviors like asynchronous communication
between clock domains or across bus interfaces. Lastly, this paper
considers the various changes and additions to the recently
published IEEE 1800-2009 standard, which may simplify
checking asynchronous behavior.

Categories and Subject Descriptors
B.6.3 [Logic Design]: Design Aids – automatic synthesis,
hardware description languages, optimization, simulation,
switching theory, and verification.

General Terms
Languages, Verification.

Keywords
Assertion, asynchronous, SystemVerilog, SVA, SystemVerilog
Assertions, clock domain crossing, asynchronous handshaking,
delay, trigger, clock handover, scheduling semantics, simulation
regions, Preponed, Active, NBA, non-blocking assignment,
Observed, Reactive, expect, programs, clocking block, immediate
assertions, concurrent assertions, procedural concurrent assertions,
deferred assertions, checkers, multi-clock sequences, abort
properties, disable, property, sequence.

1. INTRODUCTION
Asynchronous behaviors still find their way into almost every
design whether it operates synchronously or not. For example,
designs use asynchronous reset controls or respond to
asynchronous inputs like non-maskable interrupts, enables, or
other asynchronous controls. Not uncommonly, interface
protocols use asynchronous handshakes, and multiple clocks in a
design cause asynchronous communication between clock
domains. Therefore, it is just as necessary to adequately test the
asynchronous behaviors in a design as it is the synchronous ones.

SystemVerilog assertions (SVA) are an ideal choice for writing
checkers given the rich temporal syntax provided by the language.
However, they operate synchronously by nature because they
sample relative to a sampling event (such as a clock) and because
of the SVA scheduling semantics described in the IEEE 1800-
2005 SystemVerilog standard[3], making SVA a little tricky to
use for describing asynchronous behaviors. Asynchronous
behaviors usually fall into two categories: (1) asynchronous
control, and (2) asynchronous communication. SystemVerilog
assertions can be used for either, but each presents its own set of
challenges. In the following section, both types of asynchronous
behaviors are considered along with the difficulties of describing
them using SVA, and practical examples and solutions to resolve
these difficulties. In section 3, the latest additions and
modifications to the SystemVerilog 2009 standard[4] that aid
asynchronous assertion writing are considered, followed by a brief
summary of the recommended practices and solutions presented in
this paper.

2. ASYNCHRONOUS BEHAVIORS
2.1 Asynchronous controls
The most common form of asynchronous behavior found in nearly
every design is asynchronous control. For purposes of discussion,
consider the following up-down counter example:
module Counter (input Clock, Reset, Enable,
 Load, UpDn,
 input [7:0] Data,
 output logic [7:0] Q);

 always @(posedge Reset or posedge Clock)
 if (Reset)
 Q <= 0;
 else

 if (Enable)
 if (Load)
 Q <= Data;
 else
 if (UpDn)
 Q <= Q + 1;
 else
 Q <= Q - 1;
endmodule

As one might expect, this counter has an asynchronous reset to
initialize the module upon power-up or system reset. The
counter’s behavior is defined in Table 1.

Table 1. Truth table of up/down counter functionality.

Reset Clock Enable Load Up1Dn0 Data next Q
1 - - - - - 0
0 rise 0 - - - unchanged
0 rise 1 1 - Data Data
0 rise 1 0 0 - Q-1
0 rise 1 0 1 - Q+1

Using concurrent1 SystemVerilog assertions, checkers can be
easily written to cover the functionality in the counter truth table.
For example, several assertions could be written as follows:
default clocking cb @(posedge Clock);
endclocking

// Enable
assert property (!Enable |=> Q == $past(Q));

// Load of data
assert property (Enable && Load |=> Q ==
$past(Data));

// Up counting
assert property (Enable && !Load && UpDn |=> Q
== $past(Q)+8'b1);

// Down counting
assert property (Enable && !Load && !UpDn |=> Q
== $past(Q)-8'b1);

2.1.1 Disable iff
These concurrent assertions are fairly straightforward; however,
they neglect the effect of an asynchronous reset during the
assertion evaluation. If a reset occurs, these checks may
immediately become invalid. A common mistake is to place the
asynchronous control signal in the precondition (also referred to
as the antecedent) of the assertion. Adding the asynchronous
control into the assertion’s precondition stops the evaluation of
any new assertion threads, but it fails to affect any existing
assertion threads. For example, Figure 1 shows how adding the
reset to the precondition seems like it will work, but actually
results in false failures.

1 SystemVerilog defines two types of assertions: (1) immediate
and (2) concurrent. Immediate assertions are created by using
assert() in a procedural block of code like always or initial.
Concurrent assertions create their own thread of execution waiting
for the particular property or sequence to occur, creating
independent checkers.

Enable

Load

Reset

Data 2 X

6 0 7 2 Q

assert property (!Reset && Enable && Load |=>
 Q == $past(Data));

stops new threads

existing threads fail

Figure 1. Asynchronous control in a precondition results in

false failures.

The most appropriate approach to cope with the asynchronous
reset is to use the SystemVerilog disable iff construct. Disable iff
provides a level-sensitive control to automatically stop new
assertion evaluations and terminate active threads. To fix the
assertions in this example, each assertion should have an abort
condition specified by adding a disable iff clause in order to work
properly in all situations:
// Enable
assert property (disable iff(Reset) !Enable
|=> Q == $past(Q));

// Load of data
assert property (disable iff(Reset) Enable &&
Load |=> Q == $past(Data));

// Up counting
assert property (disable iff(Reset) Enable
&& !Load && UpDn |=> Q == $past(Q)+8'b1);

// Down counting
assert property (disable iff(Reset) Enable &&
!Load && !UpDn |=> Q == $past(Q)-8'b1);

Guideline 1: Always use disable iff to asynchronously
terminate active assertions threads.

2.1.2 Checking asynchronous events
While disable iff handles asynchronous assertion termination,
what if the asynchronous behavior is the thing to be checked? In
the simple counter example, one check is missing—does Q go to 0
immediately upon reset? Since concurrent assertions require a
sampling event, one might be tempted to write a concurrent
assertion as follows:
assert property(@(posedge Reset) Reset |->
 Q == 0);

At first glance, this looks like it works because Q is being checked
for 0 after the reset signal occurs. However, that is not actually
the case. In order to understand what is happening, the
SystemVerilog scheduling semantics need to be considered.

Before SystemVerilog, a Verilog simulation only had a few
scheduling regions: active, inactive, non-blocking assignment
(NBA), and the monitor/strobe regions. All blocking assignments
and statements are scheduled in the active region, while non-
blocking assignments are scheduled to evaluate later after all
active assignments and statements have been executed. This gives
non-blocking assignments their characteristic behavior of
updating at the end of a simulation time slot.

SystemVerilog, on the other hand, has greatly expanded the
number of simulator regions in order to evaluate correctly the new
constructs introduced like assertions, clocking blocks, and
programs. The Preponed region was introduced to properly
handle assertions. As simulation time advances, the Preponed
region is at the beginning of each new simulation time slot and
proceeds before any events or assignments are generated from
always or initial blocks (see Figure 2). The SystemVerilog
standard requires that all values used to evaluate concurrent
assertions must be sampled during the Preponed region ([3],
section 17.3). This means that the values are always sampled
before any sampling event triggers the assertions to evaluate,
making all assertions synchronous to the sampling event and
avoiding any changes or metastability issues on the assertion
inputs.

Inactive

NBA

Active =

#0
<=

Postponed

$strobe,
$monitor

<= #N

#N ...

Preponed

Observed

Re-inactive

Re-active =

#0 #N ...
•  PROGRAM code

schedules events here

•  MODULE and
INTERFACE code
schedules events here

<=

To next time slot

From previous
time slot

Figure 2. SystemVerilog scheduling regions.

Unfortunately, the way the concurrent assertion semantics are
defined makes it difficult to check asynchronous behavior during
the same time slot as the asynchronous event. In the simple
counter example, the assertion above will never succeed for two
reasons. First, the precondition checks to see if Reset is 1, which
seems sensible since a posedge Reset triggers the assertion.
However, assertions use input values sampled in the Preponed
region, or the value just before the posedge Reset occurs; i.e., a
value of 0. Since Reset equals 0, the precondition always
evaluates false. A way to work around this would be to set the
precondition to true in order to force the check:
assert property(@(posedge Reset) 1 |-> Q == 0);

Using this precondition causes the assertion to evaluate, but raises
a second issue. As with the Reset value, the value of Q will
always be the value before the posedge of Reset. Considering the
simple up-down counter, Q is reset to 0 using a non-blocking
statement, which means that Q does not update until the NBA
region long after Q is sampled in the Preponed region. Figure 3

illustrates this point. The assertion could be re-written to use
@(negedge Reset) instead, but the behavior of Q during
reset might be unstable and that would never be detected by the
check.

assert property (@(posedge Reset) 1 |->
 Q == 0);

Assertion fails

assert property (@(posedge Reset) Reset |->
 Q == 0);

Precondition false

Reset

2 0 3 Q

Reset == 0, Q == 3
in the Preponed region!

Inactive

NBA

Active

Preponed

Observed

Reactive

Reset == 0
Q == 3

Q <= 0

Reset = 1

RTL

Q == 0

Need to check here!

Figure 3. Signals that change asynchronously are not
available immediately in concurrent assertions.

The solution to the problem is to sample the input values at a
different simulation time. Therefore, the key to checking
asynchronous behavior after an asynchronous control is to delay
either the evaluation of the check or the sampling of the assertion
inputs. There are many ways to accomplish this and the following
offers some possible solutions.

Guideline 2: The key to checking asynchronous
behavior is to delay either the evaluation of the
checking or the sampling of the assertion inputs.

2.1.2.1 Synchronously checking
The most common way to check asynchronous behavior is to
synchronously sample the assertion inputs. While this is usually
sufficient, it is essentially a “cheat” and lacks the assurance that
all behavior has been thoroughly checked (see Figure 4).

Reset

2 0 3 Q

assert property (@(posedge Clock) Reset |-> Q == 0);

Success!

assert property (@(posedge Reset) 1 |=>
 @(posedge Clock) Q == 0);

But what
happened

here?

Figure 4. Synchronously sampling asynchronous behavior.

Sometimes, the clock frequency may not be fast enough to sample
the asynchronous behavior so an oversampling fast clock could be

used. Often, this is used with hardware emulators or to catch
glitches that occur on the asynchronous signals. Even so, it is the
author’s opinion that synchronous sampling of asynchronous
behavior should only be used when necessary since there are
better asynchronous ways to write checkers that do not open the
possibility of missing spurious transitions between sampling
events.

2.1.2.2 Immediate assertions
Immediate assertions have the advantage that they evaluate at the
point that they are executed whichever simulation region that may
be. Using immediate assertions, the asynchronous reset assertion
could be written as:
always @(posedge Reset) assert(Q == 0);

As with the earlier concurrent assertion example, this looks like it
should work; however, again there is the issue of when the
immediate assertion evaluation takes place. Immediate assertions
execute by default in the Active scheduler region. In the design, Q
is being updated by a non-blocking assignment so it is being
updated after the assertion check evaluates during the NBA region.

Considering Figure 2, the only way for the checking of Q to
evaluate correctly is for the assertion to execute in either the
Observed, Reactive, Re-inactive, or Postponed regions since they
all evaluate after the design has updated the value of Q in the NBA
region.2 The Postponed region is only available to PLI routines
(like $monitor and $strobe) or clocking block sampling, leaving
the Observed, Reactive, and Re-inactive regions to evaluate the
assertion. There are several easy approaches to accomplish this:
use a (1) program block, (2) a sequence event, (3) the expect
statement, (4) a non-blocking trigger event, or (5) a clocking
block.

2.1.2.2.1 Program blocks
Program blocks are designed intentionally to execute after all
events are evaluated in the design in order to avoid race
conditions between the testbench and the design. A program
block’s inputs are sampled in the Observed region, and any initial
blocks within a program are scheduled to execute in the Reactive
region ([3], section 16.3). By placing the immediate assertion in a
program, Q will have the reset value when the check is evaluated.
program tester;
 initial forever
 @(posedge Reset) assert(Q == 0)
 else $error("Q != 0 after reset!");
endprogram

Note, program blocks can be nested inside of modules or
interfaces so that they have visibility to signals in the local scope,
but not all simulators support nested programs. Thus, one
disadvantage to this approach is that it requires hierarchical

2 There are also several regions not shown in Figure 2 that are
provided for PLI such as the Post-NBA, Post-Observed, and Pre-
Postponed regions, which would also suffice. While PLI could be
used to check asynchronous behaviors, it is the author’s opinion
that PLI is considerably more complicated than the simple
approaches presented in this paper and are therefore not
considered.

references to probe the design signals, unless the program is
bound (using bind) into the design hierarchy.

2.1.2.2.2 Sequence events
A sequence event is an alternate approach to using programs.
Sequences define a series of temporal events and can be used to
block the execution of statements until the sequence has been
matched. The SystemVerilog standard defines that the end-point
status for a sequence is set in the Observed region of simulation.
Therefore, waiting upon the completion of a sequence by either
using a sequence method like .ended, .matched, or .triggered, or
using @(sequence) will delay the execution of subsequent
statements until after the Observed region ([3], sections 10.10.1
and 17.12.6).

For example, the same reset check could be written as:
sequence reset_s;
 @(posedge Reset) 1;
endsequence

always @(reset_s) assert(Q == 0);

The advantage of using sequence events is that each asynchronous
control can be defined as a named sequence and then used
appropriately in any always or initial block in modules, interfaces,
or programs. Sequence events provide a great alternative to delay
assertion input sampling, but be aware that not all simulation tools
fully support them yet.

2.1.2.2.3 Expect statements
Perhaps providing the best compromise between immediate and
concurrent assertions is the SystemVerilog expect statement.
Expect is a procedural statement for use within always or initial
blocks, but it also understands the temporal property syntax
available to concurrent assertions. For example, an expect
statement can use properties such as this:
initial
 expect(@(posedge clk) a ##1 b ##1 c) else
 $error;

Fortunately, expect is a great construct for checking asynchronous
behaviors. The SystemVerilog standard states that the statement
after expect is executed after the Observed region ([3], section
17.16). Therefore, using expect, immediate assertions can be
executed after the Observed region as follows:
always
 expect(@(posedge Reset) 1) assert(Q == 0);

Unfortunately, not all major simulators execute the expect
statement and subsequent statements after the Observed region.
To compensate, the assertion evaluation can be delayed to at least
the NBA or Observed region by waiting for the change to occur on
Q:
always
 expect(@(posedge Reset) 1) @Q assert(Q == 0);

However, waiting for Q to change may be problematic. For
instance, if Q is already 0 when Reset occurs, then the assertion
would fail to check until the first non-zero change of Q, resulting
in a false failure. Instead, the expect statement can be placed
inside of a program block to delay the sampling of the assertion
inputs:

program tester;

 initial forever
 expect(@(posedge Reset) 1) assert(Q == 0);

endprogram

2.1.2.2.4 Non-blocking event trigger
Another trick to delay the sampling of an immediate assertion’s
inputs is to use a non-blocking event trigger (->>). Traditional
Verilog provides an event trigger (->) that is evaluated
immediately and only for the current simulation time step. The
non-blocking event trigger delays its evaluation to the non-
blocking assignment (NBA) region of the current or future time
step. In the counter example, Q is updated in the NBA region
using a non-blocking assign. By waiting for a non-blocking event
trigger, the assertion is also delayed until the NBA region. For
example,
always @(posedge Reset)
begin
 event t;
 ->> #0 t;
 @(t) assert (Q == 0);
end

However, this non-blocking trigger evaluates during the same
simulation time as the RTL is resetting Q, which essentially
creates a race condition depending on the order that the simulator
evaluates the two processes. In some simulators, the non-
blocking trigger always occurs at the appropriate time after the
RTL has been updated; in others, it depends on whether the
assertion is co-located with the RTL code or in a separate module.

In order to guarantee the correct input sampling, a #0 delay can be
placed before the assertion to cause the assertion to be further
delayed until the RTL has finished evaluation:
always @(posedge Reset)
begin
 event t;
 ->> t;
 @(t) #0 assert (Q == 0);
end

As the simulator processes the NBA events, they are promoted to
the Active region where they are evaluated as shown in Figure 5:

scheduled

->>t

always @(posedge Clock or posedge Reset)
 if (Reset)
 Q <= 0;
 else ... always @(posedge Reset)

begin
 event t;
 ->>t;
 @(t) #0 assert (Q == 0);
end

Inactive

NBA

Preponed

Q <= 0 ->>t

Q <= 0
assert()

#0 assert()

…
->>t Q <= 0

…
->>t Q <= 0

#0 #0

Non-blocking events
scheduled indeterminately

in the NBA region

Active

#0

…

time delta

OR

OR

Assertion evaluates
after RTL update!

scheduled

evaluated evaluated

Figure 5. Verilog indeterminacy does not affect the assertion
evaluation when using a non-blocking trigger and #0 delay.

The assertion is further delayed to the Inactive region, causing the
RTL assignment to Q to always evaluate beforehand regardless of
the order that the non-blocking events were scheduled. Using the
#0 delay, the race condition between non-blocking events is
eliminated and the assertion can be placed either in the RTL code
or elsewhere. Incidentally, until recently not all major simulators
supported non-blocking event triggering, but now the latest
versions generally have good support.

2.1.2.2.5 Clocking blocks
Clocking blocks can delay the sampling of inputs used in
immediate assertions. By default, clocking blocks sample using
#1step, which is equivalent to the Postponed region of the
previous time slot or the Preponed region of the current.
Sampling can be delayed until the Observed region by specifying
the input delay to be #0 instead. By using a clocking block input
in the immediate assert, the value of Q will already be updated
from asynchronous reset:
clocking cb @(posedge Reset);
 input #0 Q; // Delay sampling
endclocking

always @(posedge Reset)
 assert(cb.Q == 0);

Notice that the clocking block samples with respect to the
asynchronous reset. Because the input delay is specified as #0,
the value used for Q comes from the Observed region after the
updated RTL reset value was set in the NBA region.

Using the reset as the clocking block’s sampling event creates a
potential race condition between updating the clocking variable
cb.Q and sampling cb.Q from the assertion the first time Reset
occurs. Assuming Q is 4-state and the assertion process evaluates
first, then a erroneous value of X will be sampled before the
clocking variable cb.Q is updated, resulting in a false failure.
With some simulators, it is enough to wait on the clocking block
before evaluating the assertion like this:
 always @(posedge Reset)
 @cb assert(cb.Q == 0);

Given the possibility of a false failure, this method should be used
with care.

Guideline 3: Immediate assertions can check
asynchronous events if evaluated in the Observed or
Reactive simulation regions.

2.1.2.3 Concurrent assertions
While concurrent assertions sample synchronously and so have a
disadvantage when used for asynchronous checking, there are a
few tricks to make them work without resorting to sampling off a
clock. As previously discussed, the key to checking asynchronous
behaviors is to delay the checking or the sampling of the inputs.
Clocking blocks cannot be used as with immediate assertions
because the SystemVerilog standard explicitly states that clocking
block inputs used by concurrent assertions must be sampled using
#1step, not #0 ([3], section 17.3). Nonetheless, there is still a
way to delay the input sampling or the assertion checking by
delaying the sampling trigger or calling subroutine methods using
matched sequences.

2.1.2.3.1 Delaying the asynchronous control
While it may seem like “cheating” just like sampling using a
clock, delaying the asynchronous control signal slightly to allow
the RTL to finish evaluation is really one of the easiest and
simplest approaches to checking asynchronous behavior. In the
counter example, the original concurrent assertion can be used but
with the Reset signal delayed just enough for the RTL to reset the
value of Q:

assign #1 trigger = Reset;
assert property(@(posedge trigger) 1 |-> Q==0);

Since there is no unit specified with #1, the delay will be 1 time
unit delay. Normally, this is sufficient but the smallest precision
time unit could also be used. Some simulators allow the use of
the #1step keyword, which represents the global time precision:

assign #1step trigger = Reset;
assert property(@(posedge trigger) 1 |-> Q==0);

Using #1step guarantees that no action is missed between the
time slot that the Reset occurs and when the value of Q is reset.
Not all simulators implement #1step so a hard coded value is
usually adequate.3 Note, using a delay with a continuous
assignment statement is easiest, but a separate process could also
be used to delay Reset or create a named event to trigger the
assertion evaluation.

Reset

2 0 3 Q

Q == 0

assign #1 trigger = Reset;

assert property (@(posedge trigger) 1 |-> Q == 0);

Figure 6. A delayed asynchronous trigger causes Q to be
sampled at the correct time.

2.1.2.3.2 Calling subroutines on matched sequences
While the SystemVerilog standard restricts the sampling of
concurrent assertion inputs to the Preponed region (i.e., the value
before the sampling event), it does not restrict the sampling of the
inputs used by tasks or functions called by an assertion sequence.
In fact, a subroutine called by a sequence is specifically defined to
evaluate in the Reactive region ([3], section 17.9), allowing the
inputs to be sampled after the RTL design has finished updating
from any asynchronous events.

For example, consider the following task:

3 One major simulator disallows #1step outside of a clocking
block, but allows the non-standard use of #step in an assignment
statement to accomplish the same result.

task automatic check(ref logic [7:0] data,
 input logic [7:0] value);
 assert (data == value);
endtask

The check() task accepts any 8 bit variable or wire and
compares it to value. Notice, the data is passed using ref,
which is important because otherwise the Preponed value will be
passed. Since ref is required, the task must be automatic to
work properly in some simulators. Now the task can be called in
a concurrent assertion in the following manner:
assert property(@(posedge Reset) 1 |->
 (1, check(Q, 0)));

or in a named sequence:
sequence check_q_eq_0;
 (1, check(Q, 8'b0));
endsequence
assert property(@(posedge Reset) 1 |->
 check_q_eq_0);

Because the task is evaluated in the Reactive region, the value of
Q is read at that time, giving the updated RTL value after the
asynchronous reset occurs. The same could be done with a
function, but not all simulators evaluate functions or sample their
inputs in the Reactive region as the standard specifies.
Nonetheless, a generally portable solution is as follows:
function bit check_q(input logic [7:0] value);
 return (Q == value);
endfunction
assert property(@(posedge Reset) 1 |->
 check_q(0));

or using a named sequence:
sequence checkq;
 check_q(0);
endsequence
assert property(@(posedge Reset) 1 |-> checkq);

The drawback to this approach is that the variable (or wire) being
checked cannot be passed as an argument but must be hard coded
inside the function so that it is sampled at the appropriate time.
As a result, using the task version is a more flexible and
preferable solution.

Guideline 4: Concurrent assertions can check
asynchronous events by delaying the asynchronous
control or calling a subroutine from a matched
sequence.

2.1.3 Other Considerations
2.1.3.1 Stability checking
In the simple counter example, checking that the RTL outputs the
correct value upon an asynchronous control signal is important
and deserves consideration. However, there are other assertion
checks worth considering as well. For example, a check to test
the stability of Q while under reset might also prove useful. Such
a check could simply be written as:
assert property (@(negedge (Q === 0)) !Reset);

This assertion checks if a non-zero change on Q occurs that it
does not happens while the device is held under reset. The

assertion could have been written using @(posedge Q), but
simulation tools might interpret this as a non-zero Q[0] or the
entire vector Q. Instead, a more cautious approach is preferred of
detecting a negedge transition using the true/false expression
result of (Q===0).

2.1.3.2 Timing simulations
Delaying the input sampling on an asynchronous assertion works
well as long as there are no timing delays in the design RTL.
Most of the methods shown in this section evaluate the assertions
at the same simulation time as the asynchronous control signal
occurs, which would not work with a design that includes delays
such as a gate-level netlist. In this case, several easy options
exists that could be used to delayed the assertion checking long
enough for Reset to propagate through the design and Q to be
updated:

(1) Sample synchronously as shown in 2.1.2.1:
assert property (
 @(posedge Clock) Reset |=> Q == 0
);

(2) Delay the asynchronous control signal as shown in 2.1.2.3.1:
parameter gatedelay = 10;
...
assign #gatedelay trigger = Reset;
assert property(@(posedge trigger) 1 |-> Q==0);

(3) Delay the assertion checking a fixed amount of time:
always @(posedge Reset)
 #gatedelay assert(Q == 0);

OR
always @(posedge Reset) begin
 event t;
 ->> #gatedelay t;
 @(t) assert(Q == 0);
end

(4) Delay the assertion checking until the RTL changes:
program tester;
 initial forever
 begin // Signals visible to program
 @(posedge Reset);
 if (Q !== 0)
 @Q assert (Q == 0 && Reset);
 end
endprogram

Option 1 generally works provided Reset lasts longer than one
clock period; a fast sampling clock could also be used. Options 2
and 3 generally work, but may require some trial and error to find
the correct sampling delays that work.

Option 4 is essentially immune to timing delays since it triggers
on events, but poses its own set of difficulties. First, if Q already
equals 0, then the assertion never performs its check (this is
required if Q equals 0 to prevent a false failure occurring when
Reset is released and Q starts changing). Second, in a gate-level
simulation glitches may occur on Q resulting in false failures.
Third, a concurrent assertion cannot be used for this check since
the value of Q will be sampled in the Preponed region instead of
after the RTL has updated Q; therefore, the assertion needs to be
delayed using a program block or other method previously

discussed in order to correctly sample the assertion’s input
value(s). Fourth, there is no guarantee that Q actually changes on
the same Reset that triggered the evaluation! If Q fails to change
and Reset is de-asserted and re-asserted, then the assertion may
not check the value of Q until a subsequent occurrence of Reset.

(5) Create a multi-clocked sequence:
parameter TIMEOUT = 2;
...
assert property (
 @(posedge Reset) 1 |=>
 @(Clock) ##[1:TIMEOUT] Q == 0 && Reset

);

Probably the best compromise is Option 5—sampling using the
clock once the Reset triggers the assertion evaluation. Instead of
waiting for Q to change, a parameterized timeout value can be
specified so if Q never changes before Reset de-asserts then an
error is flagged. This allows the use of a concurrent assertion, and
changing the timeout number of clock edges to sample is much
simpler than adjusting hard-coded timing delays anytime the gate-
level netlist changes. This type of assertion is referred to as a
multi-clocked sequence and is discussed in detail in the next
section.

Guideline 5: For timing simulations, synchronously
checking the designʼs behavior upon the asynchronous
event is probably the best overall solution.

2.2 Asynchronous communication
The second major category of asynchronous behavior is
asynchronous communication. In most designs, asynchronous
communication commonly occurs between two independent
clocks domains or with an asynchronous interface protocol.
Checking asynchronous communication is usually easier than
asynchronous controls because the signals or data being checked
are typically setup and ready for sampling before the sampling
event occurs. The exception to this occurs between clock
domains when the independent clocks happen to occur at the exact
same simulation time. While this may be unlikely, even if it does
happen it is usually not a problem because sampling is simply
delayed to the next clock edge; whereas, with asynchronous
controls, there is no following control signal to perform the
sampling so other methods are required such as those outlined in
the preceding sections.

The SystemVerilog standard has extensively defined the
semantics for multi-clock support, which can be used to sample
events across clock domains as well as asynchronous protocols.
The basic principles will be presented here; however, refer to [3]
for more specific and in-depth details.

2.2.1 Clock domain crossing
The first type of asynchronous communication to consider is
clock domain crossing. The key to building multi-clocked
sequences is using the concatenation operator ##1. In a singly
clocked sequence, the concatenation operator represents one
sampling event and joins sequences and expressions together. In
multi-clocked sequences, however, the concatenation operator
synchronizes between two differently clocked sequences or
properties. Consider the following example:

@(posedge clk1) sig_a ##1 @(posedge clk2) sig_b

Here, sig_a is sampled using clk1 and sig_b using clk2.
The ##1 joins the two differently clocked sequences together, also
known as clock handover (see Figure 7). In fact, it is illegal to use
##0, ##2, or any other cycle delay operator besides ##1.
Likewise, the non-overlapping implication operator can be used
between differently clocked sequences, but the overlapping
implication operator is not allowed. The clock flows through an
implication operator and sequence until another sampling clock is
encountered.

sequence flag; !line ##1 line[*6] ##1 !line; endsequence
sequence irq; $fell(nIRQ); endsequence unclocked

line_ck

cpu_ck

line

##1

assert property
 (@(posedge line_ck) flag ##1 @(posedge cpu_ck) irq);

nIRQ

clock handover
sampling for $fell

Figure 7. Example of using ##1 clock handover between
differently clocked sequences.

The concatenation operator also requires that clk2 is strictly
subsequent, i.e., not occurring at the exact same simulation time
slot as clk1. If it does, then sig_b will not be sampled until the
next subsequent occurrence of clk2.

Using clock handover when crossing clock domains seems rather
straightforward, but the duration of ##1 may be arbitrarily short,
which may not provide the setup and hold time necessary to avoid
timing hazards. Consider the scenario in Figure 8 where the
strobe signal is generated in the src_clk domain and must be
stable for at least 3 cycles in the dst_clk domain. An assertion
must check that the strobe signal remains stable but also that it
has the adequate setup and hold time to be sampled in the
dst_clk domain.

src_clk

dst_clk

strobe

no guaranteed
hold time

no guaranteed
setup time

unacceptable

first reliable detection in destination domain

Figure 8. ##1 is arbitrarily short so timing hazards may
occur.

One possible solution would be to describe the strobe signal in
both clock domains and match the two sequences together. The
intersect operator can easily accomplish this, but the beginning
and end points must occur at the same time or with the same
starting and ending clocks. Using intersect, the assertion can be
described as:

assert property (
 @(posedge src_clk) $rose(strobe) |-> (
 strobe[*1:$] ##1 1)
) intersect (
 ##1 @(posedge dst_clk) strobe[*3]
 ##1 @(posedge src_clk) 1
)
);

Since the intersect operator requires the same end points, the
additional ##1 1 is appended to the src_clk sequence so that
it can match the end of the dst_clk sequence. Likewise, the
dst_clk sequence switches to the src_clk domain to
complete its sequence, giving it the same ending point as the
src_clk sequence. Figure 9 illustrates how the two sequences
synchronize together. The assertion satisfies both the stability and
timing checks since the sequences combined ensure that the
strobe signal remains asserted for the required number of
cycles. For a more in-depth discussion on clock domain crossing
and jitter as well as an example of a multi-clocked asynchronous
FIFO, refer to [5].

assert property (
 @(posedge src_clk) $rose(strobe) |->
 (strobe[*1:$] ##1 1)

 intersect

 (##1
 @(posedge dst_clk) strobe[*3] ##1
 @(posedge src_clk) 1)
);

strobe

src_clk

dst_clk

Figure 9. Assertion for clock domain crossing.

Guideline 6: The key to writing assertions for clock
domain crossing is proper understanding and handling
of the clock handover using |=> or ##1.

2.2.2 Asynchronous interface protocols
An asynchronous interface protocol is one that either sends
information without an accompanying clock or one that uses an
asynchronous handshaking mechanism. While the interface may
be asynchronous, the design will still use a clock to sample the
asynchronous data or transfer the information over the interface.
Because a clock is used, writing assertions for asynchronous
interfaces can be as simple as writing a synchronous property, or
at worst a multi-clocked sequence since the handshaking signals
can be treated like different sampling clocks. With handshaking,
the data is setup beforehand so sampling the data is typically not
an issue as discussed previously with asynchronous control
signals.

2.2.2.1 Serial UART Interface Example
A classic example of an asynchronous protocol is the universal
asynchronous receiver / transmitter—commonly known as a
UART. More recent UARTs support synchronous transfers, but
they still support asynchronously data transfer. The protocol
requires that both the receiver and transfer agree beforehand the
baud rate to transmit, and then both set their internal clocks to the
same frequency.

The protocol is considered asynchronous because no clock signal
is transmitted with the data. The sampling of the data is
accomplished by using a fast clock to detect the start of the
transfer, and then generate a sampling clock from the fast clock
that samples in the middle of each data bit. A simple ready-to-
send (RTS) and clear-to-send (CTS) handshaking is used to start
the data transfer.

Since a sampling clock is used, writing the assertion for the serial
data transfer is very straightforward. The beginning of the
transfer can be detected by using a sequence to wait for the
RTS/CTS handshake:
sequence handshake;
 @(posedge rts) 1 ##1 @(posedge cts) 1;
endsequence

The ##1 in this sequence performs the clock handover between
the two signals. Recall from section 2.1.2 that using @(posedge
rts) rts or @(posedge cts) cts does not work
properly because the value of rts and cts will be sampled
before the rising edge occurs.

To check that the data is sent correctly, a sequence with a local
variable is used to capture each bit and then check the parity at the
end of the sequence. The internal sampling clock is used to
capture the bits:
sequence check_trans;
 logic [7:0] tr; // Local variable
 @(posedge sample_clk) 1 ##1 // Skip start bit
 (1, tr[0] = data) ##1 (1, tr[1] = data) ##1
 (1, tr[2] = data) ##1 (1, tr[3] = data) ##1
 (1, tr[4] = data) ##1 (1, tr[5] = data) ##1
 (1, tr[6] = data) ##1 (1, tr[7] = data) ##1
 data === ^tr ##1 // Check parity
 data === 1; // Check stop bit
endsequence

With the two sequences defined, the two can be synchronized
using the non-overlapping implication operator to handover the
clock between the sequences:
assert property(handshake |=> check_trans);

Notice using multi-clock semantics, both the synchronous and
asynchronous behaviors can easily work together as illustrated in
Figure 10.

assert property (handshake |=> check_trans);

sequence check_trans;
 logic [7:0] tr; // Local variable
 @(posedge sample_clk) 1 ##1 // Skip start bit

 (1, tr[0] = data) ##1 (1, tr[1] = data) ##1
 (1, tr[2] = data) ##1 (1, tr[3] = data) ##1
 (1, tr[4] = data) ##1 (1, tr[5] = data) ##1
 (1, tr[6] = data) ##1 (1, tr[7] = data) ##1
 data === ^tr ##1 // Check parity
 data === 1; // Check stop bit

endsequence

sample_clk rts
cts

st
op

st
ar

t

pa
rit

y

sequence handshake;
 @(posedge rts) 1 ##1
 @(posedge cts) 1;
endsequence

clock handover

Figure 10. Example using multi-clocked sequences to sample
an asynchronous serial transfer.

SystemVerilog also defines the sequence method .matched that
can be used to detect the end of a sequence sampled in a different
clock domain. Using .matched instead, the assertion could
have been written as:
assert property (
 @(posedge sample_clk) handshake.matched |->
 check_trans
);

The matched method retains the end state of the sequence until its
next evaluation. No clock handover is required because the end
state is simply sampled using sample_clk. The .matched
method is often an easier way to describe clock domain crossing
than matching sequence end points with the intersect method
as shown in Figure 9.

2.2.2.2 SCSI Interface Example
While the UART protocol operates asynchronously, data is still
sent in a synchronous manner because both sides agree to an
transmission frequency. Handshaking is used to start the transfer,
but many other protocols use handshaking as their primary way to
transfer data. The SCSI4 protocol is one such interface used
primarily to transfer data to peripheral interfaces like hard disk
drives. The SCSI protocol involves both an arbitration
handshaking phase and an information transfer handshake (see
Figure 11). For purposes of this paper, just the information
transfer handshake will be considered.

SEL
BSY

Data(7-0,P)

C/D

I/O

MSG

REQ

ACK

ATN

Info transfer handshake

Arbitration handshake

Figure 11. Handshaking in the SCSI interface protocol.

The SCSI protocol passes messages and data, and uses the three
signals C/D, I/O, and MSG to define the transfer type. The
initiator requests a transfer using REQ and the receiver
acknowledges with ACK. The data is transferred over differential
pairs and is sampled upon arrival of the ACK signal.

A simple assertion check would be to check that the data sent by
the initiator properly appears on the SCSI interface. The assertion
should detect when the design is ready to transfer by
synchronously sampling the design’s FSM and the data to be
transferred. While the initiator will assert the REQ signal using
its internal clock, it is just as easy to write a multi-clocked
property to describe the REQ/ACK handshake. Using a local
variable to capture the data, the data is then checked by the
assertion on the data bus when the ACK signal arrives:

4 SCSI is an acronym for Small Computer System Interface.

property data_cmd; // Valid data command
 !cd && io && !msg;
endproperty

property check_data;
 data_t txdata; // Local variable

 @(posedge clk)
 (state == TX, txdata = datareg)|=>
 @(posedge REQ) data_cmd ##1
 @(posedge ACK) databus == txdata;
endproperty

assert property (check_data);

The design’s internal clock is used to sample the current FSM
state and save the data to be transferred in a local variable.
Because the data bus has valid data to sample when ACK arrives,
this check is nothing more than a straightforward multi-clocked
sequence. The non-overlapping implication and concatenation
operators perform the clock handover from the RTL’s clock
domain to the asynchronous REQ and ACK signals. The flow of
this assertion evaluation is illustrated in Figure 12.

property check_data;
 data_t txdata; // Local variable

 @(posedge clk)

 (state == TX, txdata = datareg)|=>

 @(posedge REQ) data_cmd ##1

 @(posedge ACK) databus == txdata;
endproperty

databus

c/d

i/o

msg

req

ack

TX

datareg

state

clock handover

property data_cmd;
 !cd && io && !msg;
endproperty

RTL signals

assert property (check_data);

Figure 12. An example handshaking assertion for the SCSI
interface.

The SCSI and UART examples demonstrate how communication
across an interface with asynchronous handshakes or using
sampling is nothing more than a type of a clock (sample) domain
crossing, which the SystemVerilog standard has ample support for
using multi-clocked properties and sequences. The key to
properly written assertions is ensuring proper clock handover
between sampling domains.

Guideline 7: An asynchronous interface can be
handled using clock handover in the same way as clock
domain crossing.

3. SV 1800-2009 ENHANCEMENTS
The Verilog (IEEE 1364-2005) and SystemVerilog (IEEE 1800-
2005) standards have been merged into one unified document
known as the SystemVerilog 2009 standard[4]. In addition to
merging the two languages, many improvements have been made
to the assertion language. This section offers a preview of some
of the improvements that should have an impact on handling
asynchronous behaviors as discussed in this paper (for a very
good summary of SVA changes, refer to [1]).

3.1 Asynchronous abort properties
The SVA language defines disable iff to disable assertions
and their actively evaluating threads. In the new standard,
disable iff can be applied to assertions globally like the
default clocking, making them more concise to write:
default disable iff reset;

The disable iff statement has also been added to the new
cover sequence statement:

cover sequence (@(event) disable iff (expr)
 sequence_expr);

The cover sequence statement is used to record the number
of times a sequence is matched versus a cover property that
records the number of times a property succeeds.

The new standard has also introduced some new constructs to
abort assertions in a similar way as disable iff called abort
properties. There are 2 asynchronous abort properties and 2
synchronous. The asynchronous abort properties take the form:
accept_on (expr) property_expr

reject_on (expr) property_expr

where expr represents the abort condition. If while the assertion
is evaluating the abort condition becomes true, then accept_on
returns true or reject_on returns false; otherwise, the
property_expr is evaluated. A significant difference with
disable iff is how the abort condition is evaluated. The
expression used with disable iff uses the current simulation
values (i.e., not sampled but level sensitive); whereas, the abort
condition for abort properties are sampled the same property
values (i.e., in the Preponed region).

3.2 Global clocks
In section 2.1.2.1, synchronously checking using a fast clock was
offered as a common solution for checking asynchronous
behaviors. The SV-2009 standard defines the semantics for a
global assertion clock, which could be used as a fast clock for
sampling asynchronous signals. The global clock is defined by
using the new keyword global with an unnamed clocking
block:
global clocking @clk; endclocking

Once the global clock is defined, many new sample value
functions are available:

Past value functions Future value functions

$past_gclk(expr)
$rose_gclk(expr)
$fell_gclk(expr)
$stable_gclk(expr)
$changed_gclk(expr)

$future_gclk(expr)
$rising_gclk(expr)
$falling_gclk(expr)
$steady_gclk(expr)
$changing_gclk(expr)

These sample value functions provide new ways to define
properties to match asynchronous behaviors.

3.3 Procedural concurrent assertions
Generally, concurrent assertions are written to stand by
themselves, but they can also be embedded inside of initial and

always blocks. Inside a procedural block, the event control and
enabling conditions are inferred from the context if not declared
explicitly. While procedural concurrent assertions are evaluated
in the simulator’s Observed region ([3], section 17.3), the inputs
are sampled as other concurrent assertions in the Preponed region.
This poses the same issues when checking asynchronous control
signals as discussed in section 2.1, and requires the same solutions
presented in section 2.1.2.3.

However, the SV-2009 standard has greatly enhanced the
semantics for procedural concurrent assertions. All procedural
concurrent assertion inputs are still sampled in the Preponed
region save for one exception—inputs declared as const or
automatic variables. With const and automatic variables, their
immediate values are used when evaluating the assertion property.
For example, the asynchronous reset assertion for the counter
example could be written as:
always @(posedge Reset)
 assert property(const’(Q) == 0);

An automatic variable will also be treated as a constant and its
immediate value used. For example, the assertion could be
written as:
always @(posedge Reset)
begin
 automatic byte q = Q;
 assert property(q == 0);
end

Unfortunately, this feature does not eliminate the difficulty of
sampled values with concurrent assertions. The evaluation of the
assertion is delayed until the simulation’s Observed region, but
the immediate value used for the constant and automatic values is
taken when the procedural concurrent assertion is scheduled.
Inside a module, always and initial blocks execute in the
simulator’s Active region so the assertion will be scheduled in the
Active region before the design has updated the value of Q upon
reset in the NBA region. In order to make this new feature work,
either a timing control would be required before the assertion to
delay its scheduling—which is explicitly prohibited by the
standard—or the procedural concurrent assertion could be used
inside program block to delay its scheduling until the Reactive
region (see section 2.1.2.2.1).

Another change that may benefit describing asynchronous
behavior is how the enabling condition for procedural concurrent
assertions is handled. For example, an if statement could be used
around a procedural concurrent assertion:
always @(posedge clk)
 if (a) // Enabling condition
 assert property (check_data);

In the current SV-2005 standard, the values used for the enabling
condition are sampled in the same manner as the assertion inputs.
According to the SV-2009 standard, the enabling conditions will
use the immediate values just like constant and automatic inputs.
If used in a program block, this will provide another means of
checking behavior after the asynchronous signal(s) occur.

3.4 Checkers
The SV-2009 standard introduces a new verification block known
as a checker. A checker can contain assertions, covergroups,
procedural blocks of code, and generate statements much like a

module, but modules, programs, interfaces, or packages cannot be
instantiated within a checker. Checkers can be use most
anywhere a concurrent assertion is used with the exception of
fork-join statements. Checkers can also be passed arguments,
which will work very much the same as procedural concurrent
assertions. If a checker’s arguments are declared as const or
automatic, then the immediate values from the checker’s context
will be passed. As with procedural concurrent assertions,
checkers could be adapted to check asynchronous behaviors if
used in the same manner described in the previous section. For an
in-depth look at checkers, refer to [1].

3.5 Deferred Immediate Assertions
Deferred assertions are immediate assertions that are delayed in
their evaluation. The purpose of a deferred assertion is to avoid
false failures due to glitches on combinational circuitry. The SV-
2009 standard defines the semantics for deferred assertions so that
they are evaluated in the Observed region, and their action blocks
report in the Reactive region. A deferred assertion may be used
within or outside of a procedural block and is written as follows:
assert #0 (expression) pass_action_block else
 failure_action_block;

Note that a deferred assertion follows the same form as an
immediate assertion but with the additional #0 notation. Using a
deferred assertion is an ideal way to handle the case of
asynchronous reset assertion in the simple counter example:
always @(posedge Reset)
 assert #0 (Q == 0);

The evaluation of Q == 0 is delayed until after the design has
updated Q from the asynchronous reset so the assertion will
evaluation the check correctly. Deferred immediate assertions are
an excellent method to handle not only combinational glitches but
other asynchronous behaviors.

4. CONCLUSION
In this paper, SystemVerilog assertions have been examined in
detailed for their ability to handle describing and checking
asynchronous behaviors. The harder asynchronous behavior to
check are the asynchronous control signals that immediately affect
the design like enables and resets. The difficulty lies in how the
assertion inputs are sampled preceding the asynchronous trigger.
This difficulty can be overcome by using the following
guidelines:

• Guideline 1: Always use disable iff to asynchronously
terminate active assertions threads.

• Guideline 2: Delay either the evaluation of the checking or the
sampling of the assertion inputs.

• Guideline 3: Immediate assertions can check asynchronous
events if evaluated in the Observed or Reactive simulation
regions.

• Guideline 4: Concurrent assertions can check asynchronous
events by delaying the asynchronous control or calling a
subroutine from a matched sequence.

• Guideline 5: For timing simulations, synchronously checking
the design’s behavior upon the asynchronous event is probably
the best overall solution.

The second class of asynchronous behaviors is communication
between modules. The sender and receiver both operate
synchronously, but since they do not pass a clock the
communication becomes asynchronous and either the information
must be sampled synchronously or with a handshaking scheme.
Checking asynchronously communication can be treated as
nothing more than a SVA multi-clocked sequence.
SystemVerilog has well-defined semantics for clock handover and
clock flow through a sequence so the difficulty lies in
synchronizing between the two clock domains. With proper clock
handover, writing sequences to check asynchronous
communication is a straightforward task. Handling asynchronous
communication can be summarized using the following
guidelines:

• Guideline 6: Clock domain crossing is handled using |=> or
##1 for clock handover.

• Guideline 7: An asynchronous interface can be handled using
clock handover in the same way as clock domain crossing.

Coverage can also be measured using these techniques. While not
discussed in this paper, the same assertion properties can be used
by cover property and the same asynchronous behaviors recorded.
By following these simple guidelines, most—if not all—kinds of
asynchronous behaviors can be properly handled, increasing
overall verification confidence.

5. ACKNOWLEDGEMENTS
I would like to thank and acknowledge the excellent engineers at
Doulos who have developed the SystemVerilog and SVA training
courses. In particular, I have borrowed diagrams from the SV
scheduling and multi-clock assertion materials.

Many thanks to my former colleague, Jonathan Bromley
(Verilabs), who has provided incredible insights and invaluable
comments in reviewing this paper. As always, Jonathan has an
incredible depth of knowledge and understanding of
SystemVerilog, and challenges me to research my ideas to much
greater depths.

Also, many thanks to Matt Homiller (Sun Microsystems) for his
review and comments of this paper.

6. REFERENCES
[1] Dudani, S., Cerny, E., Korchemny, D., Seligman, E., and

Piper, L. 2009. “Verification case studies: evolution from
SVA 2005 to SVA 2009.” Proceedings of DVCon (February
24-25, 2009).

[2] IEEE P1800/D8 Draft Standard for SystemVerilog—Unified
Hardware Design, Specification, and Verification Language.
IEEE Computer Society, New York, 2008.

[3] IEEE Std 1800TM-2005. IEEE Standard for SystemVerilog—
Unified Hardware Design, Specification, and Verification
Language. IEEE Computer Society, New York, 2005.

[4] IEEE Std 1800TM-2009. IEEE Standard for SystemVerilog—
Unified Hardware Design, Specification, and Verification
Language. IEEE Computer Society, New York, 2009.

[5] Litterick, M. 2006. “Pragmatic Simulation-Based
Verification of Clock Domain Crossing Signals and Jitter
Using SystemVerilog Assertions.” Proceedings of DVCon
(February 22-24, 2006).
http://www.verilab.com/files/sva_cdc_presentation_dvcon20
06.pdf
http://www.verilab.com/files/sva_cdc_paper_dvcon2006.pdf

