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ABSTRACT 
Most digital designs inherently possess asynchronous behaviors of 
some kind. While the SystemVerilog assertion (SVA) language 
offers some asynchronous controls like disable iff, writing 
concurrent assertions that accurately describe asynchronous 
behavior is not so straightforward.  SVA properties require a 
clocking event, making them innately synchronous.  When 
describing asynchronous behavior, the behavior of interest 
typically occurs after the asynchronous trigger appears.  
Unfortunately, SystemVerilog scheduling semantics make this 
rather difficult to check because the assertion input values are 
sampled before the trigger occurs.  This often leads assertion 
writers to sampling using clocks, which may not guarantee 
matching and optimal checking in all cases.  Alternatively, there 
are some simple approaches for describing asynchronous behavior 
using SVA that this paper explores.  The SystemVerilog 
scheduling semantics are described along with the difficulties they 
pose for checking asynchronous behavior.  Traditional approaches 
are considered such as synchronizing to a clock, but better 
asynchronous alternatives are suggested and practical examples 
provided.  In addition, some practical solutions are offered for 
other asynchronous behaviors like asynchronous communication 
between clock domains or across bus interfaces.  Lastly, this paper 
considers the various changes and additions to the recently 
published IEEE 1800-2009 standard, which may simplify 
checking asynchronous behavior. 

Categories and Subject Descriptors 
B.6.3 [Logic Design]: Design Aids – automatic synthesis, 
hardware description languages, optimization, simulation, 
switching theory, and verification. 

General Terms 
Languages, Verification. 
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Assertions, clock domain crossing, asynchronous handshaking, 
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regions, Preponed, Active, NBA, non-blocking assignment, 
Observed, Reactive, expect, programs, clocking block, immediate 
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1. INTRODUCTION 
Asynchronous behaviors still find their way into almost every 
design whether it operates synchronously or not.  For example, 
designs use asynchronous reset controls or respond to 
asynchronous inputs like non-maskable interrupts, enables, or 
other asynchronous controls.  Not uncommonly, interface 
protocols use asynchronous handshakes, and multiple clocks in a 
design cause asynchronous communication between clock 
domains.  Therefore, it is just as necessary to adequately test the 
asynchronous behaviors in a design as it is the synchronous ones.   

SystemVerilog assertions (SVA) are an ideal choice for writing 
checkers given the rich temporal syntax provided by the language. 
However, they operate synchronously by nature because they 
sample relative to a sampling event (such as a clock) and because 
of the SVA scheduling semantics described in the IEEE 1800-
2005 SystemVerilog standard[3], making SVA a little tricky to 
use for describing asynchronous behaviors.  Asynchronous 
behaviors usually fall into two categories:  (1) asynchronous 
control, and (2) asynchronous communication.  SystemVerilog 
assertions can be used for either, but each presents its own set of 
challenges.  In the following section, both types of asynchronous 
behaviors are considered along with the difficulties of describing 
them using SVA, and practical examples and solutions to resolve 
these difficulties.  In section 3, the latest additions and 
modifications to the SystemVerilog 2009 standard[4] that aid 
asynchronous assertion writing are considered, followed by a brief 
summary of the recommended practices and solutions presented in 
this paper. 

2. ASYNCHRONOUS BEHAVIORS 
2.1 Asynchronous controls 
The most common form of asynchronous behavior found in nearly 
every design is asynchronous control.  For purposes of discussion, 
consider the following up-down counter example: 
module Counter (input Clock, Reset, Enable,                      
                      Load, UpDn,  
                input [7:0] Data,  
                output logic [7:0]  Q); 
 
 
   always @(posedge Reset or posedge Clock) 
     if (Reset) 
  Q <= 0; 
     else 



  if (Enable) 
     if (Load) 
   Q <= Data; 
     else 
   if (UpDn) 
      Q <= Q + 1; 
   else 
      Q <= Q - 1; 
endmodule 

As one might expect, this counter has an asynchronous reset to 
initialize the module upon power-up or system reset.  The 
counter’s behavior is defined in Table 1. 

Table 1.   Truth table of up/down counter functionality. 

Reset Clock Enable Load Up1Dn0 Data next Q 
1 - - - - - 0 
0 rise 0 - - - unchanged 
0 rise 1 1 - Data Data 
0 rise 1 0 0 - Q-1 
0 rise 1 0 1 - Q+1 

 

Using concurrent1 SystemVerilog assertions, checkers can be 
easily written to cover the functionality in the counter truth table.  
For example, several assertions could be written as follows: 
default clocking cb @(posedge Clock); 
endclocking 

// Enable 
assert property ( !Enable |=> Q == $past(Q) ); 

// Load of data 
assert property ( Enable && Load |=> Q == 
$past(Data) ); 

// Up counting 
assert property ( Enable && !Load && UpDn |=> Q 
== $past(Q)+8'b1 ); 

// Down counting 
assert property ( Enable && !Load && !UpDn |=> Q 
== $past(Q)-8'b1 ); 

2.1.1 Disable iff 
These concurrent assertions are fairly straightforward; however, 
they neglect the effect of an asynchronous reset during the 
assertion evaluation.  If a reset occurs, these checks may 
immediately become invalid.  A common mistake is to place the 
asynchronous control signal in the precondition (also referred to 
as the antecedent) of the assertion.  Adding the asynchronous 
control into the assertion’s precondition stops the evaluation of 
any new assertion threads, but it fails to affect any existing 
assertion threads.  For example, Figure 1 shows how adding the 
reset to the precondition seems like it will work, but actually 
results in false failures. 

                                                                    
1 SystemVerilog defines two types of assertions:  (1) immediate 
and (2) concurrent.  Immediate assertions are created by using 
assert() in a procedural block of code like always or initial.  
Concurrent assertions create their own thread of execution waiting 
for the particular property or sequence to occur, creating 
independent checkers. 
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assert property ( !Reset && Enable && Load |=>  
          Q == $past(Data) ); 

stops new threads 

existing threads fail 

 
Figure 1.  Asynchronous control in a precondition results in 

false failures. 

The most appropriate approach to cope with the asynchronous 
reset is to use the SystemVerilog disable iff construct.  Disable iff 
provides a level-sensitive control to automatically stop new 
assertion evaluations and terminate active threads.  To fix the 
assertions in this example, each assertion should have an abort 
condition specified by adding a disable iff clause in order to work 
properly in all situations: 
// Enable 
assert property ( disable iff( Reset ) !Enable 
|=> Q == $past(Q) ); 

// Load of data 
assert property ( disable iff( Reset ) Enable && 
Load |=> Q == $past(Data) ); 

// Up counting 
assert property ( disable iff( Reset )  Enable 
&& !Load && UpDn |=> Q == $past(Q)+8'b1 ); 

// Down counting 
assert property ( disable iff( Reset ) Enable && 
!Load && !UpDn |=> Q == $past(Q)-8'b1 ); 

 

Guideline 1:  Always use disable iff to asynchronously 
terminate active assertions threads. 

2.1.2 Checking asynchronous events 
While disable iff handles asynchronous assertion termination, 
what if the asynchronous behavior is the thing to be checked?  In 
the simple counter example, one check is missing—does Q go to 0 
immediately upon reset?  Since concurrent assertions require a 
sampling event, one might be tempted to write a concurrent 
assertion as follows: 
assert property(@(posedge Reset) Reset |->  
         Q == 0 ); 

At first glance, this looks like it works because Q is being checked 
for 0 after the reset signal occurs.  However, that is not actually 
the case.  In order to understand what is happening, the 
SystemVerilog scheduling semantics need to be considered. 



Before SystemVerilog, a Verilog simulation only had a few 
scheduling regions: active, inactive, non-blocking assignment 
(NBA), and the monitor/strobe regions.   All blocking assignments 
and statements are scheduled in the active region, while non-
blocking assignments are scheduled to evaluate later after all 
active assignments and statements have been executed.  This gives 
non-blocking assignments their characteristic behavior of 
updating at the end of a simulation time slot. 

SystemVerilog, on the other hand, has greatly expanded the 
number of simulator regions in order to evaluate correctly the new 
constructs introduced like assertions, clocking blocks, and 
programs.  The Preponed region was introduced to properly 
handle assertions.  As simulation time advances, the Preponed 
region is at the beginning of each new simulation time slot and 
proceeds before any events or assignments are generated from 
always or initial blocks (see Figure 2).  The SystemVerilog 
standard requires that all values used to evaluate concurrent 
assertions must be sampled during the Preponed region ([3], 
section 17.3).  This means that the values are always sampled 
before any sampling event triggers the assertions to evaluate, 
making all assertions synchronous to the sampling event and 
avoiding any changes or metastability issues on the assertion 
inputs. 
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Figure 2.  SystemVerilog scheduling regions. 

Unfortunately, the way the concurrent assertion semantics are 
defined makes it difficult to check asynchronous behavior during 
the same time slot as the asynchronous event.  In the simple 
counter example, the assertion above will never succeed for two 
reasons.  First, the precondition checks to see if Reset is 1, which 
seems sensible since a posedge Reset triggers the assertion.  
However, assertions use input values sampled in the Preponed 
region, or the value just before the posedge Reset occurs; i.e., a 
value of 0.  Since Reset equals 0, the precondition always 
evaluates false.  A way to work around this would be to set the 
precondition to true in order to force the check: 
assert property(@(posedge Reset) 1 |-> Q == 0 ); 

Using this precondition causes the assertion to evaluate, but raises 
a second issue.  As with the Reset value, the value of Q will 
always be the value before the posedge of Reset.  Considering the 
simple up-down counter, Q is reset to 0 using a non-blocking 
statement, which means that Q does not update until the NBA 
region long after Q is sampled in the Preponed region.  Figure 3 

illustrates this point.  The assertion could be re-written to use 
@(negedge Reset) instead, but the behavior of Q during 
reset might be unstable and that would never be detected by the 
check.   

assert property ( @(posedge Reset) 1 |->  
            Q == 0 ); 

Assertion fails 

assert property ( @(posedge Reset) Reset |->  
     Q == 0 ); 

Precondition false 
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Figure 3.  Signals that change asynchronously are not 
available immediately in concurrent assertions. 

The solution to the problem is to sample the input values at a 
different simulation time.  Therefore, the key to checking 
asynchronous behavior after an asynchronous control is to delay 
either the evaluation of the check or the sampling of the assertion 
inputs.  There are many ways to accomplish this and the following 
offers some possible solutions. 

Guideline 2: The key to checking asynchronous 
behavior is to delay either the evaluation of the 
checking or the sampling of the assertion inputs. 

2.1.2.1 Synchronously checking 
The most common way to check asynchronous behavior is to 
synchronously sample the assertion inputs.  While this is usually 
sufficient, it is essentially a “cheat” and lacks the assurance that 
all behavior has been thoroughly checked (see Figure 4).   

Reset 

2 0 3 Q 

assert property ( @(posedge Clock) Reset |-> Q == 0 ); 

Success! 

assert property ( @(posedge Reset) 1 |=>  
        @(posedge Clock) Q == 0 ); 

But what 
happened 

here? 
 

Figure 4.  Synchronously sampling asynchronous behavior. 

Sometimes, the clock frequency may not be fast enough to sample 
the asynchronous behavior so an oversampling fast clock could be 



used.  Often, this is used with hardware emulators or to catch 
glitches that occur on the asynchronous signals.  Even so, it is the 
author’s opinion that synchronous sampling of asynchronous 
behavior should only be used when necessary since there are 
better asynchronous ways to write checkers that do not open the 
possibility of missing spurious transitions between sampling 
events.  

2.1.2.2 Immediate assertions 
Immediate assertions have the advantage that they evaluate at the 
point that they are executed whichever simulation region that may 
be.   Using immediate assertions, the asynchronous reset assertion 
could be written as: 
always @( posedge Reset ) assert( Q == 0 ); 

As with the earlier concurrent assertion example, this looks like it 
should work; however, again there is the issue of when the 
immediate assertion evaluation takes place.  Immediate assertions 
execute by default in the Active scheduler region.  In the design, Q 
is being updated by a non-blocking assignment so it is being 
updated after the assertion check evaluates during the NBA region. 

Considering Figure 2, the only way for the checking of Q to 
evaluate correctly is for the assertion to execute in either the 
Observed, Reactive, Re-inactive, or Postponed regions since they 
all evaluate after the design has updated the value of Q in the NBA 
region.2   The Postponed region is only available to PLI routines 
(like $monitor and $strobe) or clocking block sampling, leaving 
the Observed, Reactive, and Re-inactive regions to evaluate the 
assertion.  There are several easy approaches to accomplish this:  
use a (1) program block, (2) a sequence event, (3) the expect 
statement, (4) a non-blocking trigger event, or (5) a clocking 
block. 

2.1.2.2.1 Program blocks 
Program blocks are designed intentionally to execute after all 
events are evaluated in the design in order to avoid race 
conditions between the testbench and the design.  A program 
block’s inputs are sampled in the Observed region, and any initial 
blocks within a program are scheduled to execute in the Reactive 
region ([3], section 16.3).  By placing the immediate assertion in a 
program, Q will have the reset value when the check is evaluated. 
program tester; 
 initial forever 
   @(posedge Reset) assert( Q == 0 ) 
     else $error( "Q != 0 after reset!" ); 
endprogram 

Note, program blocks can be nested inside of modules or 
interfaces so that they have visibility to signals in the local scope, 
but not all simulators support nested programs.  Thus, one 
disadvantage to this approach is that it requires hierarchical 

                                                                    
2 There are also several regions not shown in Figure 2 that are 
provided for PLI such as the Post-NBA, Post-Observed, and Pre-
Postponed regions, which would also suffice.  While PLI could be 
used to check asynchronous behaviors, it is the author’s opinion 
that PLI is considerably more complicated than the simple 
approaches presented in this paper and are therefore not 
considered. 

references to probe the design signals, unless the program is 
bound (using bind) into the design hierarchy. 

2.1.2.2.2 Sequence events 
A sequence event is an alternate approach to using programs.  
Sequences define a series of temporal events and can be used to 
block the execution of statements until the sequence has been 
matched.  The SystemVerilog standard defines that the end-point 
status for a sequence is set in the Observed region of simulation.  
Therefore, waiting upon the completion of a sequence by either 
using a sequence method like .ended, .matched, or .triggered, or 
using @(sequence) will delay the execution of subsequent 
statements until after the Observed region ([3], sections 10.10.1 
and 17.12.6). 

For example, the same reset check could be written as: 
sequence reset_s; 
    @(posedge Reset) 1; 
endsequence 

always @(reset_s) assert( Q == 0 );  

The advantage of using sequence events is that each asynchronous 
control can be defined as a named sequence and then used 
appropriately in any always or initial block in modules, interfaces, 
or programs.  Sequence events provide a great alternative to delay 
assertion input sampling, but be aware that not all simulation tools 
fully support them yet. 

2.1.2.2.3 Expect statements 
Perhaps providing the best compromise between immediate and 
concurrent assertions is the SystemVerilog expect statement.  
Expect is a procedural statement for use within always or initial 
blocks, but it also understands the temporal property syntax 
available to concurrent assertions.  For example, an expect 
statement can use properties such as this: 
initial 
  expect( @(posedge clk) a ##1 b ##1 c ) else  
           $error; 

Fortunately, expect is a great construct for checking asynchronous 
behaviors.  The SystemVerilog standard states that the statement 
after expect is executed after the Observed region ([3], section 
17.16).  Therefore, using expect, immediate assertions can be 
executed after the Observed region as follows: 
always  
 expect(@(posedge Reset) 1) assert( Q == 0 ); 

Unfortunately, not all major simulators execute the expect 
statement and subsequent statements after the Observed region.  
To compensate, the assertion evaluation can be delayed to at least 
the NBA or Observed region by waiting for the change to occur on 
Q: 
always  
 expect(@(posedge Reset) 1) @Q assert( Q == 0 ); 

However, waiting for Q to change may be problematic.  For 
instance, if Q is already 0 when Reset occurs, then the assertion 
would fail to check until the first non-zero change of Q, resulting 
in a false failure.  Instead, the expect statement can be placed 
inside of a program block to delay the sampling of the assertion 
inputs: 



program tester; 
 
 initial forever  
    expect(@(posedge Reset) 1) assert( Q == 0 ); 
 
endprogram 

2.1.2.2.4 Non-blocking event trigger 
Another trick to delay the sampling of an immediate assertion’s 
inputs is to use a non-blocking event trigger (->>).  Traditional 
Verilog provides an event trigger (->) that is evaluated 
immediately and only for the current simulation time step.  The 
non-blocking event trigger delays its evaluation to the non-
blocking assignment (NBA) region of the current or future time 
step.  In the counter example, Q is updated in the NBA region 
using a non-blocking assign.  By waiting for a non-blocking event 
trigger, the assertion is also delayed until the NBA region.  For 
example,  
always @(posedge Reset) 
begin 
   event t; 
   ->> #0 t; 
    @(t) assert ( Q == 0 ); 
end 

However, this non-blocking trigger evaluates during the same 
simulation time as the RTL is resetting Q, which essentially 
creates a race condition depending on the order that the simulator 
evaluates the two processes.  In some simulators, the non-
blocking trigger always occurs at the appropriate time after the 
RTL has been updated; in others, it depends on whether the 
assertion is co-located with the RTL code or in a separate module. 

In order to guarantee the correct input sampling, a #0 delay can be 
placed before the assertion to cause the assertion to be further 
delayed until the RTL has finished evaluation: 
always @(posedge Reset) 
begin 
   event t; 
   ->> t; 
    @(t) #0 assert ( Q == 0 ); 
end  

As the simulator processes the NBA events, they are promoted to 
the Active region where they are evaluated as shown in Figure 5: 

scheduled 

->>t 

always @(posedge Clock or posedge Reset) 
    if (Reset) 
      Q <= 0; 
    else ... always @(posedge Reset) 

begin 
   event t; 
   ->>t; 
   @(t) #0 assert ( Q == 0 ); 
end 

Inactive 

NBA 

Preponed 

Q <= 0 ->>t 

Q <= 0 
assert() 

#0 assert() 

… 
->>t Q <= 0 

…
->>t Q <= 0 

#0 #0 

Non-blocking events 
scheduled indeterminately 

in the NBA region 

Active 

#0 

…

time delta 

OR 

OR 

Assertion evaluates 
after RTL update! 

scheduled 

evaluated evaluated 

 
Figure 5.  Verilog indeterminacy does not affect the assertion 
evaluation when using a non-blocking trigger and #0 delay. 

The assertion is further delayed to the Inactive region, causing the 
RTL assignment to Q to always evaluate beforehand regardless of 
the order that the non-blocking events were scheduled.  Using the 
#0 delay, the race condition between non-blocking events is 
eliminated and the assertion can be placed either in the RTL code 
or elsewhere.  Incidentally, until recently not all major simulators 
supported non-blocking event triggering, but now the latest 
versions generally have good support.  

2.1.2.2.5 Clocking blocks 
Clocking blocks can delay the sampling of inputs used in 
immediate assertions.  By default, clocking blocks sample using 
#1step, which is equivalent to the Postponed region of the 
previous time slot or the Preponed region of the current.  
Sampling can be delayed until the Observed region by specifying 
the input delay to be #0 instead.  By using a clocking block input 
in the immediate assert, the value of Q will already be updated 
from asynchronous reset: 
clocking cb @(posedge Reset); 
     input #0 Q;  // Delay sampling 
endclocking 

always @(posedge Reset) 
     assert( cb.Q == 0 ); 

Notice that the clocking block samples with respect to the 
asynchronous reset.  Because the input delay is specified as #0, 
the value used for Q comes from the Observed region after the 
updated RTL reset value was set in the NBA region. 

Using the reset as the clocking block’s sampling event creates a 
potential race condition between updating the clocking variable 
cb.Q and sampling cb.Q from the assertion the first time Reset 
occurs.  Assuming Q is 4-state and the assertion process evaluates 
first, then a erroneous value of X will be sampled before the 
clocking variable cb.Q is updated, resulting in a false failure.  
With some simulators, it is enough to wait on the clocking block 
before evaluating the assertion like this: 
 always @(posedge Reset) 
     @cb assert( cb.Q == 0 ); 

Given the possibility of a false failure, this method should be used 
with care. 

Guideline 3: Immediate assertions can check 
asynchronous events if evaluated in the Observed or 
Reactive simulation regions. 

2.1.2.3 Concurrent assertions 
While concurrent assertions sample synchronously and so have a 
disadvantage when used for asynchronous checking, there are a 
few tricks to make them work without resorting to sampling off a 
clock.  As previously discussed, the key to checking asynchronous 
behaviors is to delay the checking or the sampling of the inputs.   
Clocking blocks cannot be used as with immediate assertions 
because the SystemVerilog standard explicitly states that clocking 
block inputs used by concurrent assertions must be sampled using 
#1step, not #0 ([3], section 17.3).  Nonetheless, there is still a 
way to delay the input sampling or the assertion checking by 
delaying the sampling trigger or calling subroutine methods using 
matched sequences. 



2.1.2.3.1 Delaying the asynchronous control 
While it may seem like “cheating” just like sampling using a 
clock, delaying the asynchronous control signal slightly to allow 
the RTL to finish evaluation is really one of the easiest and 
simplest approaches to checking asynchronous behavior.  In the 
counter example, the original concurrent assertion can be used but 
with the Reset signal delayed just enough for the RTL to reset the 
value of Q: 

assign #1 trigger = Reset; 
assert property( @(posedge trigger) 1 |-> Q==0); 

Since there is no unit specified with #1, the delay will be 1 time 
unit delay.  Normally, this is sufficient but the smallest precision 
time unit could also be used.  Some simulators allow the use of 
the #1step keyword, which represents the global time precision: 

assign #1step trigger = Reset; 
assert property( @(posedge trigger) 1 |-> Q==0); 

Using #1step guarantees that no action is missed between the 
time slot that the Reset occurs and when the value of Q is reset.  
Not all simulators implement #1step so a hard coded value is 
usually adequate.3  Note, using a delay with a continuous 
assignment statement is easiest, but a separate process could also 
be used to delay Reset or create a named event to trigger the 
assertion evaluation. 

Reset 

2 0 3 Q 

Q == 0 

assign #1 trigger = Reset; 

assert property ( @(posedge trigger) 1 |-> Q == 0 ); 

 

Figure 6.  A delayed asynchronous trigger causes Q to be 
sampled at the correct time. 

2.1.2.3.2 Calling subroutines on matched sequences 
While the SystemVerilog standard restricts the sampling of 
concurrent assertion inputs to the Preponed region (i.e., the value 
before the sampling event), it does not restrict the sampling of the 
inputs used by tasks or functions called by an assertion sequence.   
In fact, a subroutine called by a sequence is specifically defined to 
evaluate in the Reactive region ([3], section 17.9), allowing the 
inputs to be sampled after the RTL design has finished updating 
from any asynchronous events. 

For example, consider the following task: 

                                                                    
3 One major simulator disallows #1step outside of a clocking 
block, but allows the non-standard use of #step in an assignment 
statement to accomplish the same result. 

task automatic check( ref logic [7:0] data,  
     input logic [7:0] value ); 
   assert ( data == value ); 
endtask 

The check() task accepts any 8 bit variable or wire and 
compares it to value.   Notice, the data is passed using ref, 
which is important because otherwise the Preponed value will be 
passed.  Since ref is required, the task must be automatic to 
work properly in some simulators.  Now the task can be called in 
a concurrent assertion in the following manner: 
assert property( @(posedge Reset) 1 |->  
     (1, check( Q, 0 ))); 

or in a named sequence: 
sequence check_q_eq_0; 
     (1, check( Q, 8'b0 )); 
endsequence 
assert property( @(posedge Reset) 1 |->  
         check_q_eq_0 ); 

Because the task is evaluated in the Reactive region, the value of 
Q is read at that time, giving the updated RTL value after the 
asynchronous reset occurs.  The same could be done with a 
function, but not all simulators evaluate functions or sample their 
inputs in the Reactive region as the standard specifies.   
Nonetheless, a generally portable solution is as follows: 
function bit check_q( input logic [7:0] value ); 
   return ( Q == value ); 
endfunction 
assert property( @(posedge Reset) 1 |-> 
     check_q( 0 )); 

or using a named sequence: 
sequence checkq; 
   check_q( 0 ); 
endsequence 
assert property(@(posedge Reset) 1 |-> checkq ); 

The drawback to this approach is that the variable (or wire) being 
checked cannot be passed as an argument but must be hard coded 
inside the function so that it is sampled at the appropriate time.  
As a result, using the task version is a more flexible and 
preferable solution. 

Guideline 4:  Concurrent assertions can check 
asynchronous events by delaying the asynchronous 
control or calling a subroutine from a matched 
sequence. 

2.1.3 Other Considerations 
2.1.3.1 Stability checking 
In the simple counter example, checking that the RTL outputs the 
correct value upon an asynchronous control signal is important 
and deserves consideration.   However, there are other assertion 
checks worth considering as well.  For example, a check to test 
the stability of Q while under reset might also prove useful.  Such 
a check could simply be written as: 
assert property ( @(negedge (Q === 0)) !Reset ); 

This assertion checks if a non-zero change on Q occurs that it 
does not happens while the device is held under reset.  The 



assertion could have been written using @(posedge Q), but 
simulation tools might interpret this as a non-zero Q[0] or the 
entire vector Q.  Instead, a more cautious approach is preferred of 
detecting a negedge transition using the true/false expression 
result of (Q===0). 

2.1.3.2 Timing simulations 
Delaying the input sampling on an asynchronous assertion works 
well as long as there are no timing delays in the design RTL.  
Most of the methods shown in this section evaluate the assertions 
at the same simulation time as the asynchronous control signal 
occurs, which would not work with a design that includes delays 
such as a gate-level netlist.  In this case, several easy options 
exists that could be used to delayed the assertion checking long 
enough for Reset to propagate through the design and Q to be 
updated: 

(1) Sample synchronously as shown in 2.1.2.1: 
assert property (  
    @(posedge Clock) Reset |=> Q == 0  
); 

(2) Delay the asynchronous control signal as shown in 2.1.2.3.1: 
parameter gatedelay = 10; 
... 
assign #gatedelay trigger = Reset; 
assert property( @(posedge trigger) 1 |-> Q==0); 

(3) Delay the assertion checking a fixed amount of time: 
always @(posedge Reset) 
  #gatedelay assert( Q == 0 ); 

OR 
always @(posedge Reset) begin 
  event t; 
  ->> #gatedelay t; 
  @(t) assert( Q == 0 ); 
end 

(4) Delay the assertion checking until the RTL changes: 
program tester; 
  initial forever 
  begin // Signals visible to program 
      @(posedge Reset); 
      if ( Q !== 0 ) 
         @Q assert ( Q == 0 && Reset ); 
  end 
endprogram 

Option 1 generally works provided Reset lasts longer than one 
clock period; a fast sampling clock could also be used.  Options 2 
and 3 generally work, but may require some trial and error to find 
the correct sampling delays that work. 

Option 4 is essentially immune to timing delays since it triggers 
on events, but poses its own set of difficulties.  First, if Q already 
equals 0, then the assertion never performs its check (this is 
required if Q equals 0 to prevent a false failure occurring when 
Reset is released and Q starts changing).  Second, in a gate-level 
simulation glitches may occur on Q resulting in false failures.  
Third, a concurrent assertion cannot be used for this check since 
the value of Q will be sampled in the Preponed region instead of 
after the RTL has updated Q; therefore, the assertion needs to be 
delayed using a program block or other method previously 

discussed in order to correctly sample the assertion’s input 
value(s).  Fourth, there is no guarantee that Q actually changes on 
the same Reset that triggered the evaluation!  If Q fails to change 
and Reset is de-asserted and re-asserted, then the assertion may 
not check the value of Q until a subsequent occurrence of Reset.   

(5) Create a multi-clocked sequence: 
parameter TIMEOUT = 2; 
... 
assert property (  
  @(posedge Reset) 1 |=>  
  @(Clock) ##[1:TIMEOUT] Q == 0 && Reset 

); 

Probably the best compromise is Option 5—sampling using the 
clock once the Reset triggers the assertion evaluation.  Instead of 
waiting for Q to change, a parameterized timeout value can be 
specified so if Q never changes before Reset de-asserts then an 
error is flagged.  This allows the use of a concurrent assertion, and 
changing the timeout number of clock edges to sample is much 
simpler than adjusting hard-coded timing delays anytime the gate-
level netlist changes.  This type of assertion is referred to as a 
multi-clocked sequence and is discussed in detail in the next 
section. 

Guideline 5:  For timing simulations, synchronously 
checking the designʼs behavior upon the asynchronous 
event is probably the best overall solution. 

2.2 Asynchronous communication 
The second major category of asynchronous behavior is 
asynchronous communication.   In most designs, asynchronous 
communication commonly occurs between two independent 
clocks domains or with an asynchronous interface protocol.  
Checking asynchronous communication is usually easier than 
asynchronous controls because the signals or data being checked 
are typically setup and ready for sampling before the sampling 
event occurs.  The exception to this occurs between clock 
domains when the independent clocks happen to occur at the exact 
same simulation time.  While this may be unlikely, even if it does 
happen it is usually not a problem because sampling is simply 
delayed to the next clock edge; whereas, with asynchronous 
controls, there is no following control signal to perform the 
sampling so other methods are required such as those outlined in 
the preceding sections. 

The SystemVerilog standard has extensively defined the 
semantics for multi-clock support, which can be used to sample 
events across clock domains as well as asynchronous protocols.  
The basic principles will be presented here; however, refer to [3] 
for more specific and in-depth details. 

2.2.1 Clock domain crossing 
The first type of asynchronous communication to consider is 
clock domain crossing.  The key to building multi-clocked 
sequences is using the concatenation operator ##1.  In a singly 
clocked sequence, the concatenation operator represents one 
sampling event and joins sequences and expressions together.  In 
multi-clocked sequences, however, the concatenation operator 
synchronizes between two differently clocked sequences or 
properties.  Consider the following example:  



@(posedge clk1) sig_a ##1 @(posedge clk2) sig_b 

Here, sig_a is sampled using clk1 and sig_b using clk2.  
The ##1 joins the two differently clocked sequences together, also 
known as clock handover (see Figure 7).  In fact, it is illegal to use 
##0, ##2, or any other cycle delay operator besides ##1.  
Likewise, the non-overlapping implication operator can be used 
between differently clocked sequences, but the overlapping 
implication operator is not allowed. The clock flows through an 
implication operator and sequence until another sampling clock is 
encountered. 

sequence flag; !line ##1 line[*6] ##1 !line; endsequence 
sequence irq; $fell( nIRQ ); endsequence unclocked 

line_ck 

cpu_ck 

line 

##1 

assert property  
   ( @(posedge line_ck) flag ##1 @(posedge cpu_ck) irq ); 

nIRQ 

clock handover 
sampling for $fell 

 

Figure 7.  Example of using ##1 clock handover between 
differently clocked sequences. 

The concatenation operator also requires that clk2 is strictly 
subsequent, i.e., not occurring at the exact same simulation time 
slot as clk1.  If it does, then sig_b will not be sampled until the 
next subsequent occurrence of clk2. 

Using clock handover when crossing clock domains seems rather 
straightforward, but the duration of ##1 may be arbitrarily short, 
which may not provide the setup and hold time necessary to avoid 
timing hazards.   Consider the scenario in Figure 8 where the 
strobe signal is generated in the src_clk domain and must be 
stable for at least 3 cycles in the dst_clk domain.  An assertion 
must check that the strobe signal remains stable but also that it 
has the adequate setup and hold time to be sampled in the 
dst_clk domain. 

src_clk 

dst_clk 

strobe 

no guaranteed 
hold time 

no guaranteed 
setup time 

unacceptable 

first reliable detection in destination domain 
 

Figure 8.  ##1 is arbitrarily short so timing hazards may 
occur. 

One possible solution would be to describe the strobe signal in 
both clock domains and match the two sequences together.  The 
intersect operator can easily accomplish this, but the beginning 
and end points must occur at the same time or with the same 
starting and ending clocks.  Using intersect, the assertion can be 
described as: 

assert property (  
  @(posedge src_clk) $rose(strobe) |-> ( 
   strobe[*1:$] ##1 1 ) 
      ) intersect ( 
   ##1 @(posedge dst_clk) strobe[*3]  
   ##1 @(posedge src_clk) 1 
      ) 
); 

Since the intersect operator requires the same end points, the 
additional ##1 1 is appended to the src_clk sequence so that 
it can match the end of the dst_clk sequence.  Likewise, the 
dst_clk sequence switches to the src_clk domain to 
complete its sequence, giving it the same ending point as the 
src_clk sequence.  Figure 9 illustrates how the two sequences 
synchronize together.  The assertion satisfies both the stability and 
timing checks since the sequences combined ensure that the 
strobe signal remains asserted for the required number of 
cycles.  For a more in-depth discussion on clock domain crossing 
and jitter as well as an example of a multi-clocked asynchronous 
FIFO, refer to [5]. 

assert property (  
  @(posedge src_clk) $rose(strobe) |-> 
    (                          strobe[*1:$] ##1 1 ) 

  intersect 

    (                    ##1 
                   @(posedge dst_clk) strobe[*3] ##1  
                                  @(posedge src_clk) 1 ) 
); 

strobe 

src_clk 

dst_clk 

 

Figure 9.  Assertion for clock domain crossing. 

Guideline 6:  The key to writing assertions for clock 
domain crossing is proper understanding and handling 
of the clock handover using |=> or ##1. 

2.2.2 Asynchronous interface protocols 
An asynchronous interface protocol is one that either sends 
information without an accompanying clock or one that uses an 
asynchronous handshaking mechanism.  While the interface may 
be asynchronous, the design will still use a clock to sample the 
asynchronous data or transfer the information over the interface.  
Because a clock is used, writing assertions for asynchronous 
interfaces can be as simple as writing a synchronous property, or 
at worst a multi-clocked sequence since the handshaking signals 
can be treated like different sampling clocks.  With handshaking, 
the data is setup beforehand so sampling the data is typically not 
an issue as discussed previously with asynchronous control 
signals. 

2.2.2.1 Serial UART Interface Example 
A classic example of an asynchronous protocol is the universal 
asynchronous receiver / transmitter—commonly known as a 
UART.  More recent UARTs support synchronous transfers, but 
they still support asynchronously data transfer.  The protocol 
requires that both the receiver and transfer agree beforehand the 
baud rate to transmit, and then both set their internal clocks to the 
same frequency.   



The protocol is considered asynchronous because no clock signal 
is transmitted with the data.  The sampling of the data is 
accomplished by using a fast clock to detect the start of the 
transfer, and then generate a sampling clock from the fast clock 
that samples in the middle of each data bit.  A simple ready-to-
send (RTS) and clear-to-send (CTS) handshaking is used to start 
the data transfer. 

Since a sampling clock is used, writing the assertion for the serial 
data transfer is very straightforward.  The beginning of the 
transfer can be detected by using a sequence to wait for the 
RTS/CTS handshake:  
sequence handshake; 
 @(posedge rts) 1 ##1 @(posedge cts) 1; 
endsequence 

The ##1 in this sequence performs the clock handover between 
the two signals.  Recall from section 2.1.2 that using @(posedge 
rts) rts or @(posedge cts) cts does not work 
properly because the value of rts and cts will be sampled 
before the rising edge occurs. 

To check that the data is sent correctly, a sequence with a local 
variable is used to capture each bit and then check the parity at the 
end of the sequence.  The internal sampling clock is used to 
capture the bits: 
sequence check_trans; 
  logic [7:0] tr;             // Local variable 
  @(posedge sample_clk) 1 ##1 // Skip start bit 
   (1, tr[0] = data) ##1 (1, tr[1] = data) ##1 
   (1, tr[2] = data) ##1 (1, tr[3] = data) ##1 
   (1, tr[4] = data) ##1 (1, tr[5] = data) ##1 
   (1, tr[6] = data) ##1 (1, tr[7] = data) ##1 
   data === ^tr      ##1  // Check parity 
   data === 1;   // Check stop bit 
endsequence 

With the two sequences defined, the two can be synchronized 
using the non-overlapping implication operator to handover the 
clock between the sequences: 
assert property( handshake |=> check_trans ); 

Notice using multi-clock semantics, both the synchronous and 
asynchronous behaviors can easily work together as illustrated in 
Figure 10.   

assert property ( handshake |=> check_trans ); 

sequence check_trans; 
  logic [7:0] tr;     // Local variable 
  @(posedge sample_clk)  1    ##1  // Skip start bit 

      (1, tr[0] = data) ##1 (1, tr[1] = data) ##1 
      (1, tr[2] = data) ##1 (1, tr[3] = data) ##1 
      (1, tr[4] = data) ##1 (1, tr[5] = data) ##1 
      (1, tr[6] = data) ##1 (1, tr[7] = data) ##1 
      data === ^tr      ##1  // Check parity 
      data === 1;    // Check stop bit 

endsequence 

sample_clk rts 
cts 
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sequence handshake; 
 @(posedge rts) 1 ##1 
 @(posedge cts) 1; 
endsequence 

clock handover 

 
Figure 10.  Example using multi-clocked sequences to sample 
an asynchronous serial transfer. 

SystemVerilog also defines the sequence method .matched that 
can be used to detect the end of a sequence sampled in a different 
clock domain.  Using .matched instead, the assertion could 
have been written as: 
assert property (  
   @(posedge sample_clk) handshake.matched |->  
        check_trans 
); 

The matched method retains the end state of the sequence until its 
next evaluation.  No clock handover is required because the end 
state is simply sampled using sample_clk.  The .matched 
method is often an easier way to describe clock domain crossing 
than matching sequence end points with the intersect method 
as shown in Figure 9. 

2.2.2.2 SCSI Interface Example 
While the UART protocol operates asynchronously, data is still 
sent in a synchronous manner because both sides agree to an 
transmission frequency.  Handshaking is used to start the transfer, 
but many other protocols use handshaking as their primary way to 
transfer data.  The SCSI4 protocol is one such interface used 
primarily to transfer data to peripheral interfaces like hard disk 
drives.  The SCSI protocol involves both an arbitration 
handshaking phase and an information transfer handshake (see 
Figure 11).  For purposes of this paper, just the information 
transfer handshake will be considered. 

SEL 
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I/O 

MSG 

REQ 

ACK 

ATN 

Info transfer handshake 

Arbitration handshake 

 

Figure 11.  Handshaking in the SCSI interface protocol. 

The SCSI protocol passes messages and data, and uses the three 
signals C/D, I/O, and MSG to define the transfer type.  The 
initiator requests a transfer using REQ and the receiver 
acknowledges with ACK.  The data is transferred over differential 
pairs and is sampled upon arrival of the ACK signal. 

A simple assertion check would be to check that the data sent by 
the initiator properly appears on the SCSI interface.  The assertion 
should detect when the design is ready to transfer by 
synchronously sampling the design’s FSM and the data to be 
transferred.  While the initiator will assert the REQ signal using 
its internal clock, it is just as easy to write a multi-clocked 
property to describe the REQ/ACK handshake.  Using a local 
variable to capture the data, the data is then checked by the 
assertion on the data bus when the ACK signal arrives: 

                                                                    
4 SCSI is an acronym for Small Computer System Interface. 



property data_cmd;  // Valid data command 
  !cd && io && !msg; 
endproperty 

property check_data; 
 data_t txdata; // Local variable 

 @(posedge clk) 
  ( state == TX, txdata = datareg )|=> 
  @(posedge REQ) data_cmd ##1 
  @(posedge ACK) databus == txdata; 
endproperty 

assert property ( check_data ); 

The design’s internal clock is used to sample the current FSM 
state and save the data to be transferred in a local variable.  
Because the data bus has valid data to sample when ACK arrives, 
this check is nothing more than a straightforward multi-clocked 
sequence.  The non-overlapping implication and concatenation 
operators perform the clock handover from the RTL’s clock 
domain to the asynchronous REQ and ACK signals.  The flow of 
this assertion evaluation is illustrated in Figure 12. 

property check_data; 
 data_t txdata;   // Local variable 

 @(posedge clk)  

 ( state == TX, txdata = datareg )|=> 

  @(posedge REQ) data_cmd ##1 

  @(posedge ACK) databus == txdata; 
endproperty 

databus 

c/d 

i/o 

msg 

req 

ack 

TX 

datareg 

state 

clock handover 

property data_cmd; 
  !cd && io && !msg; 
endproperty 

RTL signals 

assert property ( check_data ); 
 

Figure 12.  An example handshaking assertion for the SCSI 
interface. 

The SCSI and UART examples demonstrate how communication 
across an interface with asynchronous handshakes or using 
sampling is nothing more than a type of a clock (sample) domain 
crossing, which the SystemVerilog standard has ample support for 
using multi-clocked properties and sequences.  The key to 
properly written assertions is ensuring proper clock handover 
between sampling domains. 

Guideline 7:  An asynchronous interface can be 
handled using clock handover in the same way as clock 
domain crossing. 

3. SV 1800-2009 ENHANCEMENTS 
The Verilog (IEEE 1364-2005) and SystemVerilog (IEEE 1800-
2005) standards have been merged into one unified document 
known as the SystemVerilog 2009 standard[4].  In addition to 
merging the two languages, many improvements have been made 
to the assertion language.  This section offers a preview of some 
of the improvements that should have an impact on handling 
asynchronous behaviors as discussed in this paper (for a very 
good summary of SVA changes, refer to [1]).  

3.1 Asynchronous abort properties 
The SVA language defines disable iff to disable assertions 
and their actively evaluating threads.  In the new standard, 
disable iff can be applied to assertions globally like the 
default clocking, making them more concise to write: 
default disable iff reset; 

The disable iff statement has also been added to the new 
cover sequence statement: 

cover sequence ( @(event) disable iff ( expr )  
       sequence_expr ); 

The cover sequence statement is used to record the number 
of times a sequence is matched versus a cover property that 
records the number of times a property succeeds. 

The new standard has also introduced some new constructs to 
abort assertions in a similar way as disable iff called abort 
properties.  There are 2 asynchronous abort properties and 2 
synchronous.  The asynchronous abort properties take the form: 
accept_on ( expr ) property_expr 

reject_on ( expr ) property_expr 

where expr represents the abort condition.  If while the assertion 
is evaluating the abort condition becomes true, then accept_on 
returns true or reject_on returns false; otherwise, the 
property_expr is evaluated.  A significant difference with 
disable iff is how the abort condition is evaluated.  The 
expression used with disable iff uses the current simulation 
values (i.e., not sampled but level sensitive); whereas, the abort 
condition for abort properties are sampled the same property 
values (i.e., in the Preponed region). 

3.2 Global clocks 
In section 2.1.2.1, synchronously checking using a fast clock was 
offered as a common solution for checking asynchronous 
behaviors.  The SV-2009 standard defines the semantics for a 
global assertion clock, which could be used as a fast clock for 
sampling asynchronous signals.  The global clock is defined by 
using the new keyword global with an unnamed clocking 
block: 
global clocking @clk; endclocking 

Once the global clock is defined, many new sample value 
functions are available: 

Past value functions Future value functions 

$past_gclk(expr) 
$rose_gclk(expr) 
$fell_gclk(expr) 
$stable_gclk(expr) 
$changed_gclk(expr) 

$future_gclk(expr) 
$rising_gclk(expr) 
$falling_gclk(expr) 
$steady_gclk(expr) 
$changing_gclk(expr) 

These sample value functions provide new ways to define 
properties to match asynchronous behaviors. 

3.3 Procedural concurrent assertions 
Generally, concurrent assertions are written to stand by 
themselves, but they can also be embedded inside of initial and 



always blocks.   Inside a procedural block, the event control and 
enabling conditions are inferred from the context if not declared 
explicitly.  While procedural concurrent assertions are evaluated 
in the simulator’s Observed region ([3], section 17.3), the inputs 
are sampled as other concurrent assertions in the Preponed region.  
This poses the same issues when checking asynchronous control 
signals as discussed in section 2.1, and requires the same solutions 
presented in section 2.1.2.3. 

However, the SV-2009 standard has greatly enhanced the 
semantics for procedural concurrent assertions.  All procedural 
concurrent assertion inputs are still sampled in the Preponed 
region save for one exception—inputs declared as const or 
automatic variables.  With const and automatic variables, their 
immediate values are used when evaluating the assertion property.  
For example, the asynchronous reset assertion for the counter 
example could be written as: 
always @( posedge Reset ) 
   assert property( const’( Q ) == 0 ); 

An automatic variable will also be treated as a constant and its 
immediate value used.  For example, the assertion could be 
written as: 
always @( posedge Reset ) 
begin 
   automatic byte q = Q; 
   assert property( q == 0 ); 
end 

Unfortunately, this feature does not eliminate the difficulty of 
sampled values with concurrent assertions.  The evaluation of the 
assertion is delayed until the simulation’s Observed region, but 
the immediate value used for the constant and automatic values is 
taken when the procedural concurrent assertion is scheduled.  
Inside a module, always and initial blocks execute in the 
simulator’s Active region so the assertion will be scheduled in the 
Active region before the design has updated the value of Q upon 
reset in the NBA region.  In order to make this new feature work, 
either a timing control would be required before the assertion to 
delay its scheduling—which is explicitly prohibited by the 
standard—or the procedural concurrent assertion could be used 
inside program block to delay its scheduling until the Reactive 
region (see section 2.1.2.2.1). 

Another change that may benefit describing asynchronous 
behavior is how the enabling condition for procedural concurrent 
assertions is handled.  For example, an if statement could be used 
around a procedural concurrent assertion: 
always @(posedge clk) 
   if ( a )   // Enabling condition 
  assert property ( check_data ); 

In the current SV-2005 standard, the values used for the enabling 
condition are sampled in the same manner as the assertion inputs.  
According to the SV-2009 standard, the enabling conditions will 
use the immediate values just like constant and automatic inputs.  
If used in a program block, this will provide another means of 
checking behavior after the asynchronous signal(s) occur.   

3.4 Checkers 
The SV-2009 standard introduces a new verification block known 
as a checker.  A checker can contain assertions, covergroups, 
procedural blocks of code, and generate statements much like a 

module, but modules, programs, interfaces, or packages cannot be 
instantiated within a checker.  Checkers can be use most 
anywhere a concurrent assertion is used with the exception of 
fork-join statements.  Checkers can also be passed arguments, 
which will work very much the same as procedural concurrent 
assertions.  If a checker’s arguments are declared as const or 
automatic, then the immediate values from the checker’s context 
will be passed.  As with procedural concurrent assertions, 
checkers could be adapted to check asynchronous behaviors if 
used in the same manner described in the previous section.  For an 
in-depth look at checkers, refer to [1].  

3.5 Deferred Immediate Assertions 
Deferred assertions are immediate assertions that are delayed in 
their evaluation.  The purpose of a deferred assertion is to avoid 
false failures due to glitches on combinational circuitry.  The SV-
2009 standard defines the semantics for deferred assertions so that 
they are evaluated in the Observed region, and their action blocks 
report in the Reactive region. A deferred assertion may be used 
within or outside of a procedural block and is written as follows: 
assert #0 ( expression ) pass_action_block else  
        failure_action_block; 

Note that a deferred assertion follows the same form as an 
immediate assertion but with the additional #0 notation.  Using a 
deferred assertion is an ideal way to handle the case of 
asynchronous reset assertion in the simple counter example: 
always @(posedge Reset) 
    assert #0 ( Q == 0 ); 

The evaluation of Q == 0 is delayed until after the design has 
updated Q from the asynchronous reset so the assertion will 
evaluation the check correctly.  Deferred immediate assertions are 
an excellent method to handle not only combinational glitches but 
other asynchronous behaviors. 

4. CONCLUSION 
In this paper, SystemVerilog assertions have been examined in 
detailed for their ability to handle describing and checking 
asynchronous behaviors.  The harder asynchronous behavior to 
check are the asynchronous control signals that immediately affect 
the design like enables and resets.  The difficulty lies in how the 
assertion inputs are sampled preceding the asynchronous trigger.  
This difficulty can be overcome by using the following 
guidelines: 

• Guideline 1:  Always use disable iff to asynchronously 
terminate active assertions threads. 

• Guideline 2:  Delay either the evaluation of the checking or the 
sampling of the assertion inputs. 

• Guideline 3:  Immediate assertions can check asynchronous 
events if evaluated in the Observed or Reactive simulation 
regions. 

• Guideline 4:  Concurrent assertions can check asynchronous 
events by delaying the asynchronous control or calling a 
subroutine from a matched sequence. 

• Guideline 5: For timing simulations, synchronously checking 
the design’s behavior upon the asynchronous event is probably 
the best overall solution. 



The second class of asynchronous behaviors is communication 
between modules.  The sender and receiver both operate 
synchronously, but since they do not pass a clock the 
communication becomes asynchronous and either the information 
must be sampled synchronously or with a handshaking scheme.  
Checking asynchronously communication can be treated as 
nothing more than a SVA multi-clocked sequence.  
SystemVerilog has well-defined semantics for clock handover and 
clock flow through a sequence so the difficulty lies in 
synchronizing between the two clock domains.  With proper clock 
handover, writing sequences to check asynchronous 
communication is a straightforward task.  Handling asynchronous 
communication can be summarized using the following 
guidelines: 

• Guideline 6:  Clock domain crossing is handled using |=> or 
##1 for clock handover. 

• Guideline 7:  An asynchronous interface can be handled using 
clock handover in the same way as clock domain crossing. 

Coverage can also be measured using these techniques.  While not 
discussed in this paper, the same assertion properties can be used 
by cover property and the same asynchronous behaviors recorded.  
By following these simple guidelines, most—if not all—kinds of 
asynchronous behaviors can be properly handled, increasing 
overall verification confidence.   
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